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ABSTRACT

Objective The use of risk prediction models grows as electronic medical records become widely available. Here, we develop and validate a model
to identify individuals at increased risk for colorectal cancer (CRC) by analyzing blood counts, age, and sex, then determine the model’s value
when used to supplement conventional screening.

Materials and Methods Primary care data were collected from a cohort of 606 403 Israelis (of whom 3135 were diagnosed with CRC) and a case
control UK dataset of 5061 CRC cases and 25 613 controls. The model was developed on 80% of the Israeli dataset and validated using the remaining
Israeli and UK datasets. Performance was evaluated according to the area under the curve, specificity, and odds ratio at several working points.
Results Using blood counts obtained 3—6 months before diagnosis, the area under the curve for detecting CRC was 0.82 = 0.01 for the Israeli valida-
tion set. The specificity was 88 == 2% in the Israeli validation set and 94 == 1% in the UK dataset. Detecting 50% of CRC cases, the odds ratio was
26 += 5 and 40 = 6, respectively, for a false-positive rate of 0.5%. Specificity for 50% detection was 87 + 2% a year before diagnosis and 85 + 2%
for localized cancers. When used in addition to the fecal occult blood test, our model enabled more than a 2-fold increase in CRC detection.
Discussion Comparable results in 2 unrelated populations suggest that the model should generally apply to the detection of CRC in other groups.
The model’s performance is superior to current iron deficiency anemia management guidelines, and may help physicians to identify individuals re-
quiring additional clinical evaluation.

Conclusions Our model may help to detect CRC earlier in clinical practice.

Keywords: colorectal cancer, risk prediction, early detection of cancer, machine learning, electronic medical records, primary health care

BACKGROUND AND SIGNIFICANCE

Electronic medical records (EMRs) have become increasingly available
in recent years."? As a result, many investigators are attempting to
predict disease occurrence in individual patients by analyzing clinical
parameters and constructing models that estimate the probability of
development of a disease (commonly termed “risk score”).® Such
models could be used by medical personnel to refer individuals at ap-
parent increased risk for further clinical evaluation.

Colorectal cancer (CRC) is the third most commonly diagnosed
cancer in men and the second in women worldwide.* Screening pro-
grams can reduce CRC mortality by 15-30%.%° Colonoscopy is often
the preferred screening test in the United States, although fecal-based
tests that detect occult bleeding are sometimes employed first.”®
There have been attempts to detect CRC early by analyzing symptoms
reported in general practice EMR databases. For example, Hippisley-
Cox et al.'® and Hamilton et al.'" have developed algorithms that
showed good discrimination for the incident diagnosis of CRC in indi-
viduals with certain symptoms. However, symptom-based models
have limitations, as symptoms may present only at an advanced stage
of the illness; furthermore, patients may ignore or not report symp-
toms. In addition to symptoms, laboratory tests may also indicate
presence of disease and have been found to contribute significantly to
clinical prediction models and CRC prognosis.'?™'®

Unexplained iron deficiency anemia due to bleeding within the gas-
trointestinal tract'® should be a “red flag” for CRC diagnosis, particu-
larly in the elderly.?°® However, some health care organizations do
not use such guidelines, and even when available, these guidelines
are often not followed.>*25 As we have previously suggested, recogni-
tion of a change in hemoglobin levels over time, rather than the cur-
rent value alone, could improve detection of CRC.%”

Here, we describe a novel approach for identifying individuals at
increased risk of having CRC through computational analyses of their
blood counts, age, and sex. Our approach is based on machine learn-
ing methods, mainly decision trees and cross-validation techniques,
which enable generation and evaluation of data-driven prediction mod-
els. We developed and validated our approach on large retrospective
data sets from 2 different countries.

MATERIALS AND METHODS

Datasets

Data and methodology are illustrated in Figure 1A. Study data were ob-
tained from 2 independent sources, the Maccabi Healthcare Services
and the United Kingdom Health Improvement Network (THIN). Maccabi
Healthcare Services, the second largest Health Maintenance
Organization (HMO) in Israel, with ~2 million patients, provided the
Israeli dataset, which consisted of all insured individuals above age
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Figure 1: (A) Model construction and evaluation. Shown is an illustration of the different steps of our model construction procedure. For
every individual with CBC data, the input training data (top) consists of his/her age, gender, and all available sets of blood count panel pa-
rameters. In the data preparation phase (middle), the CBC data of every individual are aggregated (generating a CBC history),

tures are generated, including the values of the parameters and the change in these values in the last 18 and 36 months. Ne

model construction phase (lower middle), we automatically generate decision trees aimed at identifying CRC cases. The trees cons

the fraction of individuals classified correctly as not having CRC (specificity) at a model score threshold that corresponds to 50% S
ity (i.e., a model score for which 50% of the individuals with CRC score above it).
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40 years. All patient records were anonymized and de-identified prior to
analysis. This data source was randomly divided into a derivation data-
set (80%) and a validation (20%) dataset. The UK dataset was derived
from a subset of a de-identified UK primary care database that is
broadly representative of the UK population in terms of age, sex, and
prevalence of major medical conditions.?® We included individuals above
age 40 years from this data to construct an external, independent vali-
dation set. The subset of the full database that was selected for
the study contained all cancer cases in the years 2007-2012 and a ran-
dom sampling of the cancer-free individuals (see Supporting Methods
S1 for a detailed description of the information available in each data
source.)
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Input data

Sex and birth year were available for all individuals. We extracted all
available blood count records from the period January 2003 to June
2011 in the Israeli dataset, and until May 2012 in the UK dataset,
where blood counts were available as early as 1990, but became
more common around 2004 (see Supporting Methods S1).

CRC registry

CRC and other cancer cases in the Israeli dataset were identified from
the Israeli National Cancer Registry.?® The registry information of the
derivation set was available during the model development, while the
registry information of the Israeli validation set was made available
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only after completion of the model development. For the UK dataset,
we created an ad hoc registry by scanning available records for malig-
nancies or cancer treatment. The data were better recorded from
2007 (following the implementation of the Quality and Outcomes
Framework in the UK®®), and we therefore evaluated the model’s per-
formance on this dataset only by scores assigned after 01/2007 (see
Supporting Methods S1).

Generation of model features

For each complete blood count (CBC) record, we created a feature
vector as input to our computational classifier. The vector records the
individual’s demographics (age and sex) as well as the current CBC
and the trends of the various CBC parameters. The current CBC in-
cludes 20 parameters, while the trends are represented by evaluating
each parameter at 2 time points, viz. 18 and 36 months before the
current CBC. The evaluation is performed using a linear regression
model, which is selected from a repertoire of models according to the
availability of past CBCs for each particular individual (see Supporting
Methods S1, also for management of missing values and outliers).

Classification method

We have found that the best-performing classifiers are comprised of
ensembles of decision trees. In each tree, the score of an individual is
determined through a sequence of binary decisions on the values of
single features (Figure 1A), while the overall prediction is based on the
collected predictions of many such trees, thus avoiding overfitting. We
combine 2 methods — the Gradient Boosting Model and random for-
est® (RF). The final prediction is selected from the scores generated
by the 2 models. The learned model’s parameters consist of the num-
ber of decision trees in the ensembles, the structure of each tree, the
feature and value queried at the internal nodes of every tree, and the
value generated at each external node (see Supporting Methods S1).
We used the R implementation of RF and the C library, which is also
used in the R implementation of the Gradient Boosting Model.*?

Validation exclusion and inclusion

Individuals diagnosed with cancer other than CRC were excluded. All
other individuals were assigned a single score to avoid the bias of
overrepresenting individuals with many blood counts. Individuals diag-
nosed with CRC were assigned the most recent score within a defined
time window prior to CRC diagnosis. To assess the performance of our
model, we selected a time window of 3—6 months, and the assigned
score was that of the most recent CBC performed in that time window.
If no CBC was available within this window, the individual was ex-
cluded. For control (cancer-free) individuals, we randomly selected a
single CBC for assigning a score. We included only individuals aged
50-75 years for the validation analyses, as this age group reflects cur-
rent guidelines for CRC screening in Israel and many other coun-
tries.®*34 Performance on an additional time-window (0-30 days,
reflecting the model’s ability to detect cancers at time of diagnosis) is
described in Table S1 in Supporting Methods S1.

Measuring performance

As our model produces continuous scores, we evaluated both its over-
all performance and its performance in different clinical scenarios
(Figure 1B). First, as an overall measure of performance, we used the
standard area under the receiver operating characteristic curve (AUC).
Second, to assess our ability to identify individuals with the highest
probability of having CRC, we considered a model threshold score that
corresponds to a false positive rate of 0.5% (a low proportion of CRC-

free individuals who are incorrectly identified), and evaluated the odds
ratio for risk of harboring CRC. Finally, to examine our ability to identify
a significant fraction of the CRC cases, we evaluated the specificity of
the model (the proportion of correctly identified CRC-free individuals)
at a model score threshold that corresponds to 50% sensitivity (CRC
detection rate). We used the standard bootstrapping approach to esti-
mate 95% confidence intervals for all of the above measures (see
Supporting Methods S1).

Model calibration

To examine the calibration of our model, we translated the score pro-
duced by our model into probabilities. This was required because our
model does not produce scores that can be readily interpreted as
probabilities. To perform the translation, we performed a simplified
version of isatonic calibration®*® on our cross-validation predictions.
We divided the range of scores the model produces into 10 segments
corresponding to equal numbers of individuals in the training set
(cross-validation). For each segment, we evaluated the corresponding
expected probability of CRC diagnosis compared to the observed prob-
ability in the validation sets. As our study includes both cohort and
case-control sets, we had to normalize the overall probability of CRC
within the validation sets using the expected incidence rate.” We
used both Hosmer-Lemeshow®® and Cox-calibration®**° tests to eval-
uate the calibration of the model.

Measuring added value

The added value of our model was evaluated using the logarithmic
scoring rule*' and by comparing our model to a basic model that cor-
responds to current knowledge and practices. Due to the fact that we
use cohort and case-control sets, some normalization of probabilities
was required before applying the scoring rule. This was done by ad-
justing the observed frequencies in the case-control set to estimated
frequencies on the whole population from which it was derived using
the sampling rate.

Asymptomatic individuals

To identify scores given to asymptomatic individuals in the UK data-
base, we constructed a list of Read codes (a standard clinical termi-
nology system used in general practice in the UK) that correspond to
CRC symptoms (see Table S2) and evaluated the performance of our
model only on scores assigned before any of these symptoms were
recorded. We ignored symptoms recorded more than 1 year prior to
CRC diagnosis, as we assumed that those symptoms did not lead to
the diagnosis of CRC.

Contribution of parameters to the model

To obtain insight into the parameters that were most important for
generating the predictions, we considered the change in performance
after sequentially removing various parameters. For the CBC-related
parameters, we applied a method that considered the redundant con-
tribution of the various correlated parameters.

Fecal occult blood test

Fecal occult blood test information was available for the derivation
subset of the Israeli dataset. All tests were gFOBT (Hemoccult II
SENSA), and each test comprised 3 stool samples. A test with at least
1 positive sample was considered positive. In analyzing the potential
added value of the model to fecal occult blood test (FOBT) use in the
population, we considered individuals 50-75 years of age for whom
gFOBTs or CBCs were available during the years 2008-2009. For
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comparison, we selected a model score threshold at which the fraction
of individuals above it (i.e., the fraction of individuals classified as pos-
itive by our model) was equal to the fraction of individuals with a posi-
tive gFOBT.

RESULTS

Datasets

The derivation dataset consisted of 606403 individuals, 466107 of
whom had CBCs (53.6% women, mean age in 2011, 58.7 years). The
Israeli validation dataset consisted of 173251 individuals, 139205 of
whom had CBCs (53.1% women, mean age in 2011, 58.6 years). There
were 2437 CRC cases with CBCs before diagnosis in the derivation set,
and 698 such cases in the Israeli validation set. Unlike the Israeli cohort,
the UK external validation dataset is a case-control set that consisted of
5061 CRC cases and 20 552 individuals without cancer (all with CBCs;
50.8% women, mean age in 2011, 67.4 years). The apparent excessive
prevalence of CRC in the UK dataset is due to the way it was derived
from the complete THIN database, selecting all available CRC cases but
only a random sample of the control population (see Supplemental
Appendix for data completeness and additional details). As seen in
Table 1, there are differences in the distribution of the tumor locations
between the 2 populations. It is possible that these differences are the
result of biases in the missing UK tumor data reported by primary care
physicians in the UK dataset. About 50% of the tumor locations are
unspecified in the UK data, compared to the more complete Israeli data
collected from the mandatory National Cancer Registry, where < 10%
of the tumor location is unspecified (see Materials and Methods).

Accuracy of CRC prediction

We applied the model to the Israeli validation dataset and considered all
CBCs performed 3—-6 months before CRC diagnosis. The AUC (measuring
the overall performance of the model) was 0.82 = 0.01, the odds ratio at
a false positive rate of 0.5% (measuring the model’s ability to identify in-
dividuals with the highest probability of having CRC) was 26 + 5, and the
specificity at 50% sensitivity (a significant fraction of CRC cases detected)
was 88 + 2%. (See Table S1 for more performance measures.) As an
additional independent validation, we applied our model to an external

able 1: Characteristics of the Israeli and UK| datasets

dataset extracted from the THIN database in the UK. The population in
this dataset is different in ethnicity, environmental backgrounds, and
health care practices from the original Israeli-based dataset used to de-
velop the model. In this population, fewer blood counts are performed
(4+6 CBCs for CRC-free patients having complete follow-up data
throughout 7 years, compared to 8 = 7 CBCs in the Israeli population),
many CBCs are partial, and some CBC parameters are not measured
(e.9., Red blood cell Distribution Width (RDW); see Supplemental
Appendix). Despite these different characteristics, our model achieved a
similar performance (AUC=0.81, odds ratio =40, specificity = 94%);
Figure 2 shows the overall receiver operating characteristic of the model,
as well as the performance of the model in the high score region.

Performance on asymptomatic individuals

The potential clinical utility of our approach relies on the ability to de-
tect CRC cases earlier than in current practice. We tried to evaluate
this by analyzing the detailed medical records available in the UK data-
base and by considering only scores assigned to asymptomatic indi-
viduals. Considering CBCs in the 3—6 month time window and the
score threshold corresponding to 90% specificity, we found that 67%
of the CRC cases in this time window are asymptomatic (386 out of
568) and that sensitivity was unchanged. In addition, we considered
low hemoglobin levels (below 12 g/dl for men and 11 g/dl for women),
even when there was no recorded clinical diagnosis of anemia. With
this additional definition, 45% of the cases had CBCs in the time win-
dow that preceded any symptoms. The specificity for detecting 50%
of those cases was reduced (to 82%) but was still significantly better
than age alone (74%) and thus was of potential clinical value.

Contribution of parameters to the model

The single most important contributing parameter to the performance
of the model was age. We compared our model to age alone, and
found that our model achieved much better performance in all 3 mea-
sures (AUC=0.81 vs 0.72, odds ratio =34 vs 2, and specificity =
90% vs 79%). The predictive value of sex alone is lower for CRC — the
odds ratio for males as compared to females is 1.15 on the Israeli

Females Males
Cancer free? CRC Cancer free? CRC
Israel® UK® Israel® | UK® Israel® UK® Israel® | UK®

No. of individuals 225399 11356 1154

2323 198058 | 9224 1283 2738

Mean ageyears (stdv) 58 (13) 59 (14) 68 (12)

73(12) | 57(12) |59(12) |e8(1) |71(11)

Tumor location®

Proximal colon (%) 31 16 28 11
Distal colon (%) 35 10 33 11
Rectum (%) 26 23 30 29
Unspecified (%) 8 52 9 48

AIndividuals free of all cancer types.
®Cohort design.
‘Case control design.

USites of primary colorectal cancers were extracted from the recorded as proximal (C18.0: cecum, C18.1: appendix,
C18.2: ascending colon, C.18.3: hepatic flexure, C18.4: transverse colon), distal (C18.5: splenic flexure, C18.6: de-
scending colon, C18.7: sigmoid), and rectal (C19.9: rectosigmoid, C20.9: rectum).
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Figure 2: Performance of the model on unseen independent populations. Shown are ROC curves and other performance measures up to
1 month prior to diagnosis (2 right panels), and 3—6 months prior to diagnosis (2 left panels), for the derivation set cross-validation popu-
lation (Derivation, yellow), and the externally validated populations of the Israeli dataset (Israeli Val., purple), and of the UK dataset (UK

Val., green). Predictiops based only on age (blue) and random predictions (red) are also shown for comparison. The 2 upper panels show
the full ROC curves and the specificity corresponding to 50% sensitivity, whereas the 2 lower panels show zoomed-in views from the up-
per panels, focusing on the model behavior at the highest risk scores (at 0.5% false-positive rate).
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dataset (compared to 1.4 on the relevant age group, as deduced from
Surveillance, Epidemiology, and End Results (SEER)*").

Estimating the importance of the blood-related parameters is com-
plicated by the high correlation between various parameters. When
evaluating the importance of a parameter, we addressed both its di-
rect contribution to the performance measure, as well as its redun-
dancy with the other model parameters (i.e., the degree to which its
contribution can be replaced by other parameters). We used iterative
removal of parameters from the model and performance evaluation by
AUC to assign 2 values to each parameter — contribution and redun-
dancy. Considering hemoglobin, e.g., we observe the decrease of AUC
between the full model and the model without hemoglobin (Ag). We
then find the parameter that is most closely correlated to hemoglobin

viz. hematocrit and remove it from the full model. Now, we evaluate
the decrease of AUC between the partial model (without hematocrit)
and partial model without hemoglobin (A). We repeat the process un-
til we are left with hemoglobin alone (defining A, . .. A+g). The contri-
bution of hemoglobin is defined as the maximal decrease in AUC
(max{Ai}), while the redundancy is defined by the number of other pa-
rameters we remove until removing hemoglobin gives a significant de-
crease (e.g., the point where other parameters cannot compensate for
its contribution, min;{A; > Threshold}). We repeat the process for all
blood count parameters.

The analysis shows that age is followed in importance by various
hemoglobin-related parameters, consistent with previous findings in
CRC patients.*? See Figure 3 for a 2-dimensional representation of the
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igure 3: Contribution of parameters to our model’s performance. Shown is an evaluation of the contribution of the CBC parameters to
the performance of our model. (Specifically, to the AUC measure at the 0-30 day and 90-180 day time windows.) When evaluating the
importance of a parameter, we address both its direct contribution to the performance measure as well as its redundancy with the other
model parameters (i.e., the degree to which its contribution can be replaced by other parameters). Thus, each parameter is assigned a
point in a 2-dimensional space of redundancy (horizontal axis) and direct contribution (vertical axis). To this end, we remove other param-
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contribution-redundancy space (see Table S3 for the naive analysis of
features’ contributions according to the difference in values between
CRC cases and controls).

CRC detection rate when using our model in addition to FOBT

To assess the potential contribution of our model to the current CRC
detection rate in the Israeli dataset, we compared our method’s CRC
detection rate to that of gFOBT. The dataset contained 75 822 gFOBT
tests for 63847 individuals, compared to 210923 individuals with
CBCs. The gFOBT positive rate was 5%, and at this working point, our
model discovered 48% more CRC cases than gFOBT (252 versus
170). In addition, considering individuals who were identified either by
our model or by gFOBT allowed us to increase the number of CRC
cases detected by 115% (from 170 to 365).

Investigating the performance of our model

We examined different aspects of the performance of our model.
Since some aspects require defining subsets of the population and
such subsets resulted in small sample sizes in the validation datasets,
we performed the analyses using the larger derivation set.

884

Calibration of the model

Figure 5 shows the calibration graph of the Israeli and UK validation
sets. The model is well calibrated on the Israeli set, with Hosmer-
Lemeshow P-value 0.47, and Wald P-value for Cox calibration test
0.08. The UK validation shows slightly lesser calibration, with Hosmer-
Lemeshow and Cox calibration tests P-values of 1e-5 and 1e-6,
respectively.

Comparison to anemia guidelines

As discussed above, guidelines of several health care organizations
require further evaluation of individuals with unexplained iron deficiency
anemia.?' Such guidelines specify hemoglobin levels below 11 g/di for
women and 12 g/dl for men. The specificity for such thresholds for men
and women of ages 5075 is 97.3%. We therefore considered a thresh-
old in our model with the same specificity, and compared the sensitivi-
ties of the 2 approaches. Considering blood counts taken 3—6 months
before diagnosis, we found that the anemia guideline sensitivity was
20%, while our model’s sensitivity was 30% (P < 1e-5).

Added value over current practices
To evaluate the added value of our approach over current practices,
we developed a simple linear model that uses age, sex, and an
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Figure 4: Our model predicts CRC even using CBCs taken 2 years prior to CRC diagnosis. Shown is performance (AUC and specificity cor-
responding to 50% sensitivity) when using only CBCs taken at 60-day time windows prior to the diagnosis date. Age-only (blue) and ran-

dom (red) performance are also shown for comparison. Note that our model performs significantly better than age alone, also when
CBCs are restricted to those performed 2 years before CRC diagnosis.
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anemia indicator (defined by the guidelines above). We compared the
logarithmic scoring rule of this model to our model in the 2 validation
sets. We find that on the Israeli validation set, our method score is
—0.0071 compared to —0.0074 (AUC 0.82 compared to 0.76) of the
simple model, while on the UK validation set, it is —0.0085 compared
to —0.0091 (AUC 0.81 compared to 0.76).

Performance of our model on malignancies of other organs

To evaluate the specificity of our model to CRC, we examined the
model’s sensitivity to various malignancies. We considered the 3-6
month time window on the derivation set and examined the sensitivity
at a false positive rate of 3% (shifted from 0.5% above to allow for re-
liable results on less common cancers). Figure 6 shows that our model
is most sensitive to CRC and stomach cancers, followed by several he-
matological cancers, and less sensitive to other common cancers.
Note that there is a baseline sensitivity to most types of cancers due
to the age-dependent incidence. We focus our interest here on CRC
due to the much lower incidence of stomach cancer in the study
populations.

Clinical significance of our model
We tested the ability of the model to detect CRC at different time
points prior to the CRC diagnosis date. We evaluated its performance
when using only CBCs performed in 2-month time windows prior to
CRC diagnosis, e.g., using CBCs performed 0—2 months, 2—4 months,
etc., before diagnosis. Although performance gradually decreased with
time windows at increasing intervals prior to diagnosis, at all time win-
dows it was significantly better than age alone (Figure 4). In particular,
considering the 10—12 month time window, which is twice as early as
the previously discussed 3-6 month time window, we found
AUC = 0.79, odds ratio = 21, and specificity = 86.5%.

Second, as a test of our ability to detect CRC at an early stage, we
evaluated the model's performance on early stage (localized) CRCs

comprising 23% of CRC cases. (See Supporting Methods S1 for a de-
scription of cancer staging.) Although our performance in this subset
was lower than that achieved on all CRC cases, we still found a specif-
icity of 85%, corresponding to a sensitivity of 50%, for CBCs 3-6
months before diagnosis.

Finally, to evaluate the potential of our model to detect malignan-
cies in different parts of the colon and the rectum, we classified the
CRC cases in the Israeli derivation set according to their location, and
measured the sensitivity of our model at 90% specificity. We found
that there were significant differences of performance between differ-
ent sites (e.g., the specificity for achieving 50% sensitivity to malig-
nancies in the right colon was 96.1%, while for malignancies in the
rectum, it was 85.9%), but importantly, performance was significantly
better than age alone at all sites (Table 4).

DISCUSSION

The growing availability of large health care datasets facilitates the de-
velopment of analytic tools to help physicians and health management
organizations provide better patient care.*® Such tools can produce
actionable recommendations by analyzing real-world clinical data.
Here we describe a novel approach to identifying individuals at in-
creased risk of harboring CRC by analyzing their CBCs, thereby poten-
tially enhancing early detection of CRC in primary care.

We have developed a computational model using a large derivation
dataset of over 450 000 Israeli individuals and validated it on 2 sepa-
rate and independent datasets of primary care patients, consisting of
over 139000 Israeli and over 25500 UK individuals. Our approach
applies novel methods both in feature generation (where we use a set
of linear models to handle sparse and irregular measurements along
time) and in model construction (where we combined 2 tree-based
models — RF and Gradient Boosting). We showed that our approach
can detect 50% of CRC cases 3—6 months before diagnosis at 88%
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Figure 5: Calibration graph. The graph shows the calibration
of the model on the derivation set and the 2 validation sets.
The range of scores was divided into 10 deciles that covered
equal parts of the population in the derivation set (cross-vali-
dation) and the probability of having CRC within 3—6 months
was evaluated for each of the deciles on each set. The prob-
abilities on the derivation set are the expected ones, while

the probabilities on| the validation sets are the observed
ones. The probability was normalized according to CRC inci-
dence to account for the fact that the Israeli set is a cohort,
while the UK set is case-control. We see that the Israeli vali-
dation set is well calibrated, and that the UK set shows good
calibration for the 9 lower deciles, but higher CRC probability
in the highest decile.

Calibration graph
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specificity in the Israeli dataset and 94% specificity in the UK dataset.
Although the clinical parameters of the Israeli and UK are different
(Tables 1-3), the performance of the model is very similar in both vali-
dation sets, indicating that it is robust and applicable to populations
from different countries.

Our model was well calibrated when tested on the Israeli validation
set. The calibration is less than perfect when considering the UK vali-
dation set, due to the many differences in populations and health care
practices. The difference in calibration is also reflected in the logarith-
mic scoring rule, which shows significant added value for our model
over current knowledge in both validation sets and a better score (of
both models) on the Israeli set.

We examined the specificity of our model to CRC, and showed that
it is sensitive mainly to CRC and stomach cancer, with some sensitivity
to hematological cancers and (to a lesser degree) to lung cancer.
Our model has residual sensitivity for all malignancies, mainly due to the
age-dependent incidence and the fact that age is part of our score.

We demonstrated the potential utility of our model for early detec-
tion of CRC by showing that it achieved good performance when ap-
plied to CRC cases diagnosed at early, localized stages, and also
when restricted to CBC data collected about 1 year before diagnosis.
The model detected CRCs in asymptomatic (in particular, nonanemic)
patients, supporting the likelihood of significant clinical benefit and
possible added value over symptom-based tools mentioned above.'®

When applied to the Israeli dataset, in addition to FOBT (Hemoccult
SENSA, a higher sensitivity gFOBT) our model enabled the detection of
many more CRC cases (2.1-fold increase). Moreover, we showed that
the model can detect CRC throughout the colon with increased perfor-
mance toward proximal sites. This trend is consistent with previously
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Figure 6: Sensitivity to other cancers. The graph shows the
sensitivity of our model at 3% false-positive rate to malig-
nancies of various sites on the derivation set (cross-valida-
tion). Green bars signify gastrointestinal cancers, red bars
signify hematological cancers, and gray bars signify other
cancer types. Only sites that were sufficiently common are

shown. The score shows high sensitivity to CRC and stom-
ach cancers (other gastrointestinal tract tumors such as
those in the esophagus or small intestine are ignored due to
their very low prevalence in the Israeli population), to some
types of hematological cancers, and, to a lesser degree, to
lung cancer. The residual sensitivity to all malignancies is
due to age dependence.
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reported anemia prevalence.** This feature could enhance noninvasive
CRC screening tools (i.e., FOBT/Fecal Immunochemical Test (FIT)),
which are less sensitive for detecting right-sided compared to left-
sided colon cancer.*®

Our data concerning variable specificity of CRC in different colonic
locations is consistent with previous reports** where the prevalence of
anemia tends to diminish when malignancies are located distally to-
wards the rectum. FOBT testing, especially when used in combination
with flexible sigmoidoscopy, has been shown to be relatively insensi-
tive for the detection of right-sided CRC,***® thus supporting the po-
tential clinical contributions of our method given regional demographic
changes in CRC location, most notably a shift to the right colon, as re-
ported in national screening programs.*’

Analyses of the contributing parameters to the model showed the
significance of changes in the red blood cell line. This is in agreement
with current guidelines according to which iron deficiency anemia
warrants further evaluation. We showed that our model is superior in
performance to guidelines that consider only hemoglobin level at the
time of the test. This is achieved by using additional parameters of the
blood counts, trends in their values, and age.

Our study has several limitations. Although CBC data are widely
available in Israel, this information may be less accessible in other coun-
tries and different health care organizations due to infrequent testing or
limited data recording. A counter to this argument is the good
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Table 2: CBC characteristics of females in the Israeli and UK datasets

CRC patients Cancer-free individuals®

Israel® UK® Israel® UK®
CBC values,” median (Q1-Q3)
Red Blood Cell Count (RBC) 4.2 (3.9-4.6) 4.2 (3.8-4.5) 45 (4.2-4.7) 4.4 (4.2-4.7)
White Blood Cell Count (WBC) 7 (5.8-8.4) 8 (6.6-9.9) 6.6 (5.7-7.7) 6.7 (5.7-9)
Mean Platelet Volume (MPV) 10.6 (10-11.3) 9(8.1-10) 10.9 (10.3-11.5) 9.3(8.5-10.3)
Hemoglobin 11.7 (9.6-12.8) 11 (9.4-12.9) 12.9 (12.3-13.6) 13.3 (12.6-13.9)
Hematocrit 36.2 (31.4-39.6) 34.5(30.3-39.2) 40 (38-41.9)

Mean Corpuscular Volume (MCV)

85 (80-89)

85 (77.5-89.3)

88.7 (85.8-91.3)

90.4 (87.4-93.4)

Mean Corpuscular Hemoglobin (MCH)

27.4 (24.8-29.1)

27.5 (24.4-29.4)

(
(
39.4 (37.6-41)
(
(

29.2 (28.1-30.2)

30.2 (29-31.3)

Mean Corpuscular Hemoglobin Concentration (MCHC)

31.8 (30.8-32.7)

32.2 (30.9-33.1)

32.9 (32.3-33.4)

33.3 (32.7-33.9)

Red blood cell Distribution Width (RDW)

14.6 (13.7-16)

NA (NA-NA)

13.5 (13.1-14.2)

NA (NA-NA)

Platelets

296 (246.8-366)

362 (284-444)

253 (219-290.7)

274.3 (236.2-315.6)

Eosinophils (#)

0.16 (0.1-0.26)

0.13 (0.1-0.23)

0.15(0.1-0.22)

0.17 (0.1-0.24)

(
(

Eosinophils (%) 2.3 (1.4-3.6) 2.2 (1.7-3) 2.4 (1.7-3.3) 2.3 (1.6-3.5)
Neutrophils (#) 4.1 (3.3-5.3) 5.3 (4.2-7) 3.7 (3.1-4.5) 3.9 (3.2-4.9)
Neutrophils (%) 60 (53.7-66.5) 68.7 (63.1-72.2) 56.5 (51.7-61.2) 58.7 (53.4-64)
Monocytes (#) 0.58 (0.46-0.72) 0.6 (0.5-0.8) 0.5 (0.42-0.59) 0.48 (0.39-0.59)
Monocytes (%) 8.2 (7.1-9.9) 7.9 (6.8-9.9) 7.6 (6.6-8.7) 6.6 (5.1-8)
Basophils (#) 0.03 (0.02-0.04) 0.02 (0-0.09) 0.02 (0.01-0.04) 0.03 (0-0.06)
Basophils (%) 0.4 (0.3-0.6) 0.35 (0.2-1) 0.42 (0.3-0.57) 0.6 (0.4-0.9)
Lymphocytes (#) 1.9 (1.5-2.4) 1.7(1.3-2.2) 2.1 (1.7-2.5) 2(1.6-2.4)
Lymphocytes (%) 28.5(22.9-34) 20.3 (17-26.6) 32.4 (28.1-36.9) 29.5 (24.5-35)
Cohort design.

bCase control design.

°For calculating the median, Q1 and Q3 quartiles, CBCs were age matched between the Israeli and UK populations. For cancer-free individuals,
CBC values were represented by the average values of all available CBCs of the individual. For CRC patients, CBC values were represented by the

average values of CBCs available 1 month prior to diagnosis.
YIndividuals free of all cancer types.

performance obtained on the UK validation set, in which blood counts
are less frequent than in the Israeli dataset and are often partial. Another
limitation of our study is that we validated its results by a retrospective
analysis. We partly addressed this by carefully designing our study to be
blinded, such that the model was first developed on a derivation set, and
only then did we test it on 2 additional independent datasets, including 1
of an unrelated population from a different country. The similar perfor-
mance achieved on these 2 external datasets provides support for the
validity of the model. Nevertheless, a prospective clinical trial would pro-
vide a more accurate evaluation of our model’s performance. Finally, we
believe that the results derived from the UK database are reliable due to
its large size, which compensates for the dataset being incomplete and
containing inaccuracies. The ad hoc cancer registry derived for this data-
base is potentially partial, especially before 2007, which we addressed
by considering only scores given after January 2007.

To allow for broad applicability, we restricted our model’s input
data to CBC, age, and sex. However, incorporation of additional clinical
data such as family history, medications, and co-morbidities, when

available from medical records, should further enhance its perfor-
mance. The ability of our model to detect CRC at early stages should
be further evaluated, and information such as tumor size, grade, and
histology could be incorporated to define more precisely the resolution
at which we can detect CRC.

The ability of our model to outperform iron deficiency anemia
guidelines, to increase the number of CRC detected cases (when used
in addition to FOBT), and to detect CRC at early stages suggests that it
could enhance primary care efforts to detect CRC. Our model could be
applied in conjunction with current screening approaches, as well as
in opportunistic primary care detection. Due to its flexibility, the model
can be employed in different clinical situations. One scenario is popu-
lation-wide detection of individuals at risk of harboring CRC who do
not adhere to screening guidelines. Here, we have demonstrated the
potential increase of more than 2-fold in CRC detection when applying
our model in conjunction with gFOBT (considering individuals with ei-
ther positive gFOBT or positive scores) to the Israeli dataset. Another
potential setting focuses on the highest-scoring patients. This may be
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Table 3: CBC characteristics of males in the Israeli and UK datasets

CRC patients Cancer-free individuals

Israel® | UK® Israel® | UK®
CBC values,® median (Q1-Q3)
Red Blood Cell Count (RBC) 4.6 (4.2-4.9) 4.5 (4-4.8) 49 (4.7-5.2) 4.9 (4.6-5.1)
White Blood Cell Count (WBC) 7.5 (6.2-8.7) 7.8 (6.3-9.4) 7.1 (6.1-8.2) 6.8 (5.8-8.1)
Mean Corpuscular Volume (MPV) 10.7 (9.9-11.3) 9(8.1-10) 10.9 (10.3-11.5) 9.3 (8.5-10.3)
Hemoglobin 12.5(10.6-14.1) | 124 (10.1-141) | 14.7 (14-15.3) 14.9 (14.1-15.5)
Hematocrit 38.9 (34.1-42.7) | 38.4 (32.2-42.5) 44 (42-46)

Mean Corpuscular Volume (MCV)

86 (80-90)

86 (80.1-91.1)

88.5 (85.9-91.2)

90.9 (88-93.7)

Mean Corpuscular Hemoglobin (MCH)

28.1 (25.1-29.6)

28.3 (25.6-30.5)

29.8 (28.8-30.7)

30.7 (29.7-31.8)

Mean Corpuscular Hemoglobin Concentration (MCHC)

32.4 (31.1-33.3)

32.8 (31.5-33.7)

(
(
43.6 (41.8-45.4)
(
(
(

33.6 (33-34.1)

33.8 (33.2-34.3)

Red blood cell Distribution Width (RDW) 14.4 (13.5-16) NA (NA-NA) 13.3(12.9-13.9) NA (NA-NA)
Platelets 249 (207-318.3) | 293(239.5-370) | 224.3 (193.5-258.8) | 244 (209.5-283.9)
Eosinophils (#) 0.2 (0.12-0.3) 0.2 (0.1-0.3) 0.19 (0.13-0.27) 0.2 (0.12-0.29)
Eosinophils (%) 2.7 (1.8-4) 2.5(1.6-4.4) 2.7 (1.9-3.8) 2.8 (2-4.1)
Neutrophils (#) 4.4 (3.6-5.5) 4.9 (3.9-6.5) 4 (3.4-4.9) 4 (3.2-4.9)
Neutrophils (%) 61.6 (54.8-67) 69 (63-73.3) 57.2 (52.5-61.7) 58.4 (53-62.9)
Monocytes (#) 0.65 (0.51-0.81) 0.61 (0.5-0.8) 0.59 (0.5-0.71) 0.53 (0.43-0.67)
Monocytes (%) 8.8 (7.6-10.4) 8(6.3-10.4) 8.4 (7.4-9.6) 7.5 (6-8.9)
Basophils (#) 0.03 (0.02-0.04) 0.02 (0-0.06) 0.02 (0.02-0.04) 0.03 (0-0.06)
Basophils (%) 0.4 (0.25-0.6) 0.4 (0.1-1) 0.4 (0.29-0.54) 0.6 (0.38-1)
Lymphocytes (#) 1.9 (1.5-2.4) 1.7 (1.3-2.1) 2.1 (1.8-2.6) 2 (1.6-2.4)
Lymphocytes (%) 26.3(20.8-31.9) | 19.4(16.2-25.6) | 30.7 (26.5-35.1) 29.3 (24.6-34.2)

aCohort design.

®Case control design.

°For calculating the median, Q1 and Q3 quartiles, CBCs were age matched between the Israeli and UK populations. For cancer-free individuals,
CBC values were represented by the average values of all available CBCs of the individual. For CRC patients, CBC values were represented by the

average values of CBCs available 1 month prior to diagnosis.
9Individuals free of all cancer types.

Model performance on malignancies in different

sites of the colon

Cancer site Specificity at 50% Number
sensitivity (95% Cl) of cases

Rectum 85.9 (82.2-90.9) 177

Left colon 87.4 (81-91.5) 201

Transverse colon 93.6 (90.4-98.9) 21

Right colon 96.1 (91.3-98.2) 116

particularly useful for some individuals who are currently outside con-
ventional screening guidelines (e.g., younger than age 50 or older
than age 75) for whom the model also worked well — see Table S1.
Also, in conjunction with symptom-based CRC detection models,'®""
our model may enhance early CRC detection in primary care. It could
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assist physicians in identifying patients with CBC profiles that warrant
further clinical evaluation such as referral to a gastroenterologist.
In summary, we have described an easy-to-use, inexpensive, and flex-
ible method that could be used to enhance the detection of CRC at an
earlier stage.

CONCLUSIONS

We have described a method to enhance detection of CRC at an earlier
stage by analyzing age, sex, and CBC data, all commonly available in
EMRs. Our ability to validate the method on 2 different populations
suggests that it may be applicable to other countries.
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