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The study was aimed to introduce a design of a DICOM-RT-based tool box to 
facilitate 4D dose calculation based on deformable voxel-dose registration. The 
computational structure and the calculation algorithm of the tool box were explicitly 
discussed in the study. The tool box was written in MATLAB in conjunction with 
CERR. It consists of five main functions which allow a) importation of DICOM-
RT-based 3D dose plan, b) deformable image registration, c) tracking voxel doses 
along breathing cycle, d) presentation of temporal dose distribution at different time 
phase, and e) derivation of 4D dose. The efficacy of using the tool box for clinical 
application had been verified with nine clinical cases on retrospective-study basis. 
The logistic and the robustness of the tool box were tested with 27 applications 
and the results were shown successful with no computational errors encountered. 
In the study, the accumulated dose coverage as a function of planning CT taken 
at end-inhale, end-exhale, and mean tumor position were assessed. The results 
indicated that the majority of the cases (67%) achieved maximum target coverage, 
while the planning CT was taken at the temporal mean tumor position and 56% 
at the end-exhale position. The comparable results to the literature imply that the 
studied tool box can be reliable for 4D dose calculation. The authors suggest that, 
with proper application, 4D dose calculation using deformable registration can 
provide better dose evaluation for treatment with moving target.
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I. INTRODUCTION

Lung cancer remains the leading cause of cancer-related mortality. Conventional radiotherapy 
for early-stage non-small cell lung cancer (NSCLC) with or without concurrent chemotherapy 
is associated with the cancer specific survival rate of below 40% at five years.(1,2) Dose escala-
tion and hyprofractional dose delivery have demonstrated an improvement in local control and 
patients’ survival.(3,4) However, the substantial breathing-induced tumor motion limits their 
applications. Studies have reported that up to 40% of lung tumors move by more than 5 mm, 
of those 10% to 12% move more than 1 cm.(5,6) Since conventional radiation therapy accounted 
for no tumor motion during treatment simulation, the planning target volume (PTV) thus formed 
with extensive margin to avoid geometrical misses of the target. This results in excessive lung 
tissue irradiation and restricts the ability of dose escalation. In attempt to attain more focusing 
irradiation to a moving target, several sophisticated treatment delivery methods such as gating, 
tracking or tumor immobilization with breath-hold have been developed.(7-9) Those advanced 
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delivery techniques, however, require patients’ compliance with the equipment to achieve the 
desired outcomes; otherwise the results could be adversely affected.(10)

The most consistent and stable tumor movement is expected with natural breathing of the 
patient. Therefore, despite the availability of the advanced delivery techniques, recent studies 
have re-employed the free-breathing technique with the treatment margin carefully determined 
to account for the tumor motion. The concept of internal target volume (ITV) to account for 
geometric uncertainties due to tumor movement has been suggested by the International 
Commission on Radiation Units and Measurements (ICRU) Report 62.(11) The ITV is defined 
with the combination of clinical target volumes (CTV) delineated on each of the binned phases 
of the four-dimensional computed tomography (4D CT) image dateset. Since the microscopic 
region of CTV is not visualized, to make the determination of the ITV more applicable, 
studies(12) introduced the internal gross tumor volume (IGTV), which combined the GTVs 
contoured on each binned phase of the 4D CT dataset. The ITV was then defined by the IGTV 
plus a margin that accounts for microscopic disease. Both concepts of ITV and IGTV account 
for the dosimetric effect in tumor motion from the geometrical aspect but not the temporal: 
this leads to the potential delivery of excessive irradiation to the neighboring healthy tissue. 
For instance, tumor coverage shown on each phase of the respiratory cycle occurs during only 
a fraction of the time, but according to the definition of ITV/IGTV, radiation dose is assigned 
over the whole breathing cycle. Recent studies(13-14) proposed to use computation modeling 
for 4D dose calculation, in which static dose distribution was convoluted with the probability 
distribution function of organ motion to evaluate the resultant temporal-spatial dose distribu-
tion over the moving target. However, the possible change of the target dose volume due to 
deformable anatomical displacement (i.e., nonrigid anatomical change) was not attended with 
this later technique.

To obtain the resultant dose on the effect of spatial and temporal movement, as well as to 
account for the possible deformable anatomical change, the accumulated dose distribution of 
a moving target could be evaluated based on deformable image registration (DIR). The DIR 
tracked the displacement of each voxel of the CT image during a respiratory cycle, the ana-
tomical changes in shape, volume, position, and density during respiration being taken into 
account. Summation of the dose along the trajectory of each voxel provides the resultant 4D 
dose. Since the 4D dose calculation is complex and involves considerable quantities of dose 
data, a DICOM-RT-based tool box would be desirable for performing automated dose calcula-
tion. A few commercially available software products such as MIM Maestro (MIM Software 
Inc., Cleveland, OH)(15) facilitate adaptive dose calculation in which the voxel dose is traced 
between two different time phases based on DIR. Yang et al.(16) recently developed an open-
source software tool called DIRART, which is also used for deformable image registration and 
adaptive radiation therapy calculation. However, with this software users might be limited by the 
preselected DIR algorithms. Moreover, data of deformable vector fields are usually concealed 
within the software so that further validation for end-users may not be possible. In this study, 
a computational tool box was designed to enable accumulated dose calculation of a moving 
target in a complete periodic cycle. The tool box facilitates dose plan transformation from 3D- 
to 4D-based. Compared to the currently available software, the studied tool box allows any 
kind of DIR algorithm to be implemented for 4D dose calculation with the coordinate-based 
deformation vector field provided. Moreover, the tool box was designed specifically for 4D 
dose calculation in which deformable dose calculation is performed with images obtained in 
multiple time phases (usually 10 phases), instead of 2 phases dose transformation applied in 
adaptive radiation therapy. The computational structure and the dose calculation algorithm of 
the tool box are presented in this study. The advantages of the special structural arrangement 
of the tool box that permits flexible data manipulation for utilization is also discussed in the 
latter section. To examine the efficacy of the 4D tool box for clinical applications, the 4D dose 
accumulation was retrospectively computed in nine clinical cases of lung cancer.
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II. MATERIALS AND METHODS

A.  A design of nonrigid 4D dose calculation tool box
A tool box that consists of five main functions was developed for this study. This was writ-
ten in the MATLAB (Version 7.6, R2008a, MathWorks, Inc., Natick, MA) scientific software 
environment, in conjunction with CERR,(17) an open source computational environment for 
radiotherapy research for DICOM images and DICOM-RT data access and analysis. The 4D 
dose calculation was performed using Image Morphing (IM),(18) a deformable image registra-
tion tool provided by Brainlab (Brainlab AG, Munich, Germany). This allows the displacement 
of each voxel to be tracked during a respiratory cycle and consequently the accumulated dose 
along the trajectory of each voxel to be generated.

A.1 Treatment planning data import
A full set of 4D CT images and the dose plans in DICOM-RT format were imported into CERR 
where the dose value and its corresponding position were contained in a 3D array. The positions 
of the dose points in the transverse plane were defined according to the CT pixels in a 512 × 
512 matrix (Fig. 1(a)). The position along the craniocaudal direction was indicated by the CT 

Fig. 1. DE-DOSE-REG function: (a) description of 3D array dose point in CERR; (b) the morphing process (M denotes 
the deformation matrix); (c) combination of the 3D dose array and M matrix for 4D dose calculation.
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slice number. For example A (1, 2, 1) indicates dose point located at the 1st row, 2nd column, 
and 1st CT slice. The spatial dose resolution (grid interval) defined by the pixel size and the 
size of the scanning field was 1.01 mm in the lateral and the anterioposterior directions and 
3 mm in the caudal–cranial direction as determined by the CT slice thickness.

A.2 Deformable image registration — image morphing
To identify the displacement trajectory of each voxel during breathing, the deformable image 
registration tools, image morphing (IM) provided by the iPlan (Brainlab AG) treatment plan-
ning system was used. IM employs a knowledge-based segmentation approach(19) in which the 
anatomical structures are morphed from the source images to the target images by comparing 
the image data. The source data are deformed based on similarity calculation using mutual 
information and cross-correlation algorithm to improve the similarities in voxel density until 
a match is found. Once the similarity measure is defined, the registration algorithm optimises 
the similarities by adjusting the transformation vectors in an iterative process. When the point-
to-point correspondence of the two datasets is identified, the software automatically transfers 
all outlined structures of the source onto the target dataset. As a result, the deformation vector 
field, which defines a unique mapping from the source onto the target data set, is generated. 
Figure 1(b) illustrates the morphing process: IM creates a virtual grid of points in the source 
data set and matches them with a grid of points on the target dataset. Since each grid point 
is indexed and its location is recorded in 3D coordinates, the voxel displacement caused by 
breathing can be traced by the position of the corresponding grid point. The output file gener-
ated by IM is formatted into a 6D array with the 3D CT coordinates of the corresponding grid 
point for the source data set and the target dataset recorded in the 1st to 3rd components and 
4th to 6th components of the array, respectively. For example, M denotes the morph array, and 
M(1) = [1, 2, 3, 4, 5, 6] implies that the first voxel (or grid point) with the CT coordinates of 
(1, 2, 3) in the source image was displaced to the CT coordinates of (4, 5, 6) in the target image 
(Fig. 1(b)). The 3D spatial resolution of the grid point was 1 mm.

A.3 DE-DOSE-REG function
The function of DE-DOSE-REG is to register each voxel of the reference CT with the temporal 
dose received by the corresponding voxel of each individual 4D CT set. The corresponding 
voxels were acquired with the morphed vectors contained in the M matrix (n × m) generated 
by IM, where n denotes the number of voxels and m their coordinates. In accordance with the 
displaced position of the voxel, the temporal dose at each voxel was traced with the 3D dose 
array (Fig. 1(a)) obtained from the individual 4D  CT plans. In order to match the positioning 
format between the 3D dose array and the M matrix, the 3D dose array containing dose points 
in grid order was converted into 3D CT coordinates. Moreover, the spatial dose resolution along 
the craniocaudal direction, which was defined by the slice thickness, was refined from 3 mm 
to 1 mm by linear interpolation between point doses. The temporal doses at each bin of phase-
sorted 4D CT images were finally stored in a 1D dose array, namely TDx (where x denotes the 
phase bin; the percentile of the period of the corresponding breathing cycle of the patient), in 
the order of voxels presented in the source data of M matrix (i.e., M1-n, 1-3). The procedures 
for determining the DE-DOSE-REG function are illustrated in Fig. 1(c).
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A.4 AUTO-CERR-DOSE function
This function permits the temporal dose received by each voxel at each respiratory phase to 
be revealed visually on the reference CT. This is done by replacing the 3D dose array of the 
reference plan with TDx, and superimposing the new doses on the reference CT (Fig. 2(b)).

Fig. 2. An example of 4D dose calculation: (a) dose distribution shown at end-inhale phase with the planning CT taken 
at the end-exhale phase; (b) target doses received at different phases and the corresponding DVHs; (c) accumulated target 
dose for a complete respiratory cycle; (d) the DVH of the accumulated target dose.
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A.5 ADD-ALL-DOSE function
This function derives the complete 4D dose distribution over the entire respiratory cycle by 
the time-weighted dose summation of TDx for all phases (Fig. 3). Together with the function 
AUTO-CERR-DOSE, the resultant 4D dose is displayed and assessed geometrically under 
the CERR environment. The complete process of 4D dose calculation using the tool box is 
illustrated in Fig. 4.

Fig. 3. TD′
X% denotes dose received at the x% breathing phase by multiplying a time weighting factor to TDx.

Fig. 4. A flowchart of the 4D tool box.
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B.  Evaluation of deformable image registration, IM
The performance of image morphing using IM was evaluated by calculating the Matching  
Index.(20) The Matching Index is defined as the ratio of the intersected volume between the mor-
phed contour and the manual contour to the union of the two volumes. Using CT lung window, 
the GTV was manually delineated and the lung volume using autosegmentation (iPlan) with 
manual correction where necessary. The contours were initially delineated on the planning CT 
selected at end-inhale (PLCTin) as the source contours and were morphed onto the planning CT 
selected at end-exhale (PLCTex) defining the morph_contour, which was then compared with 
the contours manually delineated on the PLCTex. The contouring was performed by a physicist, 
and confirmed by an oncologist if any uncertainty was found.

 Matching Index =  (1)

C.  4D dose study on clinical cases

C.1 Case selection
From 2008 to 2010, 10 patients who were diagnosed with stage 1 lung cancer underwent 4D 
CT simulation for hypofractionated radiation therapy in Tuen Mun Hospital (TMH), Hong 
Kong. 4D CT imaging was applied to assess the tumor movement and consequently to process 
4D dose calculation based on DIR. Stable and consistent breathing is a prerequisite for the 
control of qualitative reconstruction of 4D CT images, which also substantially affects the DIR 
performance. In this study, cases with low-noise and artifact-free (induced by abrupt breath-
ing) images were selected according to the breathing regularity. To assess the regularity of the 
breathing rate, the mean breathing rate and the standard deviation (SD) were calculated. Cases 
with variation of breathing rate (i.e., the percentage SD from mean breathing rate) less than 
10% would be selected for the study. Two additional cases (cases 8 and 9) were provided by 
the Clatterbridge Cancer Centre (CCC), UK. To ensure a regular breathing pattern, patients of 
CCC group were coached during CT scanning. All studied cases were chosen with well-defined 
GTV, which was usually the case with adenocarcinoma confirmed by histology.

C.2 Implementation of 4D dose calculation
In principle, the 4D dose over the tumor volume can be calculated by converting the 3D spatial 
dose to the 4D spatial-temporal dose. With 4D dose planning, the receiving dose by a mov-
ing target could be evaluated by summing the 3D spatial dose of the planning target volume 
recorded at various time phases. Such a dose-calculation algorithm was exercised in this study. 
The 4D spatiotemporal dose was retrospectively calculated in nine clinical cases with the 4D 
tool box. In clinical application, dose prescription is usually applied to planning target volume 
(PTV), which is defined with the target volume plus the setup margin. Since the accuracy of 
IM for deformable image registration was verified by comparing the volumes of the planning 
targets before and after image deformation, the GTV which can be visually localized on the 
CT images was therefore employed as the planning target volume in the study. The GTV was 
manually delineated using a lung window (500–1000 Hounsfield units). To process 4D dose 
calculation, the 3D dose planning was performed on the reference CT selected from the 4D CT 
images. In the study, the 4D CT was acquired with a Philips Brilliance multislice CT scanner 
(Philips Healthcare, Andover, MA). The respiratory phase was tracked using an infrared opti-
cal system (RPM system, Varian Medical Systems, Palo Alto, CA). An infrared marker was 
placed on the xiphoid of the patient for respiratory tracking. A spiral scan was performed to 
cover the whole lungs. The scan was acquired at a sufficiently low table speed (low pitch) for 
any scanned voxel to remain within the detector collimation throughout the complete  breathing 
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cycle. The source data and the respiratory signal were retrospectively sorted by phase and 
reconstructed to produce the 4D CT images. Each 4D CT dataset was comprised of 10 3D CT 
images spaced equally among the respiratory cycle. Conformal dose plan was obtained with 
single or multiple coplanar conformal arc/arcs delivered with micromultileaf collimators (M3, 
Brainlab AG). Dose planning was performed with a prescription dose of 20 Gy at 85% isodose 
to enclose ≥ 99.5% of the planning target volume. To process 4D dose calculation, the 3D dose 
plan at each respiratory phase was recalculated by reapplying the planning parameters and 
the monitor units obtained from the reference plan to each of the 4D CT bins. The complete 
set of 3D dose data was imported into the tool box for 4D dose processing as described in the 
previous sections.

The procedure for 4D dose calculation is illustrated in Fig. 2. An example is shown with the 
planning CT taken at the end-exhale phase (50%). Figure 2(a) shows the 3D dose distribution 
obtained at the end-inhale phase (0%), the blue contour indicates the original location of the 
GTV captured on the reference CT (50%). The large discrepancy in location between the dose 
color-wash and the GTV shown on the CT image clearly demonstrates the effect of tumor motion 
on the accumulated dose. Using the functions IM, DE-DOSE-REG, and AUTO-CERR-DOSE, 
the 4D doses acquired at each individual temporal phase from 0% to 90% (TD 0%–90%) and the 
GTV dose-volume histogram of each are shown in Fig. 2(b). The accumulated dose over the 
tumor in a complete respiratory cycle is presented in Fig. 2(c). Figure 2(d) demonstrates the 
difference on dose coverage of GTV between the original 3D dose plan and the resultant 4D 
dose using dose volume histogram. Due to the significant tumor movement, the V20Gy, which 
denotes the amount of target dose coverage at 20 Gy, was 60% of the GTV volume. And the 
minimum dose (Dmin) received by the GTV was 70% (14.02 Gy) of the original planning  
dose (20 Gy).

C.3 Target dose coverage as a function of planning CT
The difference in accumulated dose coverage as a function of the planning CT taken at dif-
ferent breathing phase was studied. The V20Gy was evaluated with the planning CT taken at 
end-exhale (50%), end-inhale phase (0%) and the temporal-mean tumor position for all cases. 
Twenty-seven applications were applied altogether, in which the logistics and robustness of 
the tool box for 4D dose calculations were examined.

To enable unbiased comparison of the dose studies, similar dose planning parameters were 
attempted for all plans of each study. Since the shape, size, and location of the planning target 
were not the same because of the nonrigid transformation of the tumor during the breathing 
cycle, the planning parameters (e.g., beam aperture margin, number of conformal arcs) inevi-
tably had to vary in order to achieve the optimal dose plan for each study. Similarity in dose 
properties between the studied dose plans was however confirmed by employing the following 
dosimetric indices: target coverage index (TCI), conformity index (CI), and dose heterogeneity 
index (HI).(21,22) The TCI specifies the percentage coverage of the prescription dose, whereas the 
CI indicates the amount of prescription dose volume as a function of the planning target. The 
HI defines the ratio of the maximum target dose to the prescription dose. Since the target dose 
distribution in terms of dose conformity and dose heterogeneity could be affected by the beam 
aperture, similar aperture margins ranging from 1.0–1.5 mm (a larger margin would be required 
for a less-regular-shaped target) were applied for all cases. The pencil beam algorithm imple-
mented in the iPlan planning system (v.4.1.2, Brainlab AG) was applied for dose calculation. An 
algorithm that accounts for lateral electronic disequilibrium would be preferable, but was not 
available at the time of this study. However, since dose plans for comparison were performed 
under the same conditions, the influence of lateral electronic disequilibrium on the radiation 
planning using pencil beam between the dose plans was considered to be comparable.
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III. RESULTS 

The disease characteristics in terms of tumor size, location, and magnitude of movement are 
listed in Table 1. The GTV volumes were defined in different breathing phases (i.e., inhale, 
exhale, and mean tumor position). The mean volumes ranged from 1.42 cc to 17.89 cc (2nd 
column, Table 1) were shown to have small standard deviations (SD) in all cases. The resultant 
tumor movements defined by the quadratic sum of the maximum movement along the three 
axes ranged from 1.2–10.5 mm. Cases with variation of breathing rate over the period of CT 
scan ranged from 6.1%–9.7% were included in the study (4th column, Table 1).

A.  Evaluation of deformable image registration of IM
The matching indices between the manual_contour and the morph_contour of lung volume 
and of the GTV for all cases were found to be between 0.93 and 0.98 (mean = 0.95 ± 0.01) 
and between 0.74 and 0.98 (mean = 0.84 ± 0.08), respectively. The index values are listed in 
Table 2. The matching indices for lung mapping were comparable with those (range: 0.94–0.95) 
reported in the study by Lin et al..(20) The lower matching index for the GTV may be due to 
the limitation of image spatial and contrast resolution which would affect manual contouring 
and as well as the results of morphing when the tumor volume is small.

Table 1. The disease characteristics.

  Gross Tumor  Breathing rate
  Volume  variation
  mean ± SD   Tumor Displacement (pk-pk)
 Patient (cc) Location  (mm)

 1   1.42±0.07 LUL 3.4% 5.8 (LAT)  1.6 (AP)  0.3 (CC)   6.0 (RES)
 2  1.93±0.06 LUL 9.5% 0.5 (LAT)  2.6 (AP)  3.5 (CC)   4.4 (RES)
 3   3.00±0.14 RLL 9.8% 0.5 (LAT)  2.6 (AP)  3.0 (CC)   4.0 (RES)
 4   6.74±0.19 LUL 8.5% 1.1 (LAT)  0.5 (AP)  0 (CC)     1.2 (RES)
 5  4.06±0.18 RUL 6.4% 1.1 (LAT)  3.2 (AP)  3.0 (CC)   4.5 (RES)
 6  17.89±0.33 RLL 9.7% 2.1(LAT)  1.6 (AP)  6.0 (CC)   6.6 (RES)
 7   12.80±0.54 LUL 3.3% 1.5(LAT)  3.5 (AP)  0 (CC)     3.8 (RES)
 8 5.5±0.47 LUL unknown 1.5 (LAT)  1.5 (AP)  9.0 (CC)   9.2 (RES)
 9 12.40’±1.47 LLL unknown 2.4(LAT)  8.3 (AP)  9.2 (CC)   10.5 (RES)

LUL: left upper lobe; RLL: right lower lobe; RUL: right upper lobe; LLL: left lower lobe; LAT = lateral; AP = anterio-
posterior; CC = craniocaudal; RES = resultant displacement.

Table 2. Matching indices between the manual_contour and the morph_contour of lung volume and of the GTV for 
all cases.

 Matching Indices
 manual_contour (PLCTex)  vs.  morph_contour (PLCTin → PLCTex)
  GTV Lung

 1 0.79 0.95
 2 0.81 0.98
 3 0.74 0.96
 4 0.94 0.93
 5 0.75 0.95
 6 0.94 0.93
 7 0.90 0.95
 8 0.84 0.96
 9 0.98 0.96
 Mean ± SD  0.84±0.08 0.95±0.01
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B.  Dose coverage as a function of planning CT
For dosimetry comparison between dose plans, the similarity in dose properties among the 
three phase-specific dose plans was verified with the dosimetric indices. The mean and stan-
dard deviation of CI, HI, and TCI of the three phase-specific dose plans of all cases are listed 
in columns 2–4 of Table 3. The small standard deviation of the TCI indicates that the target 
coverages between the studied dose plans were comparable. In addition to equivalent target 
coverage, the small standard deviations of CI and HI were 2%–3% and 0%–1% of their respec-
tive mean values, suggesting that the dose properties and the dose distributions were similar 
among all dose plans.

The percentage of target dose coverage V20Gy as a function of phase-specific planning CT for 
all cases was calculated using the tool box. The results are listed in Table 3. The maximum dose 
coverage was obtained in 67% of the cases, while the planning CT was taken at the temporal 
mean tumor position, 56% at the end-exhale position, and 11.1% at the end-inhale position. 
Sixty-six percent of the cases recorded with minimum target dose coverage, while the planning 
CT was taken either at the end-inhale or end-exhale phases.

 
IV. DISCUSSION

The efficacy of applying the “deform” dose along with deformable image registration in adap-
tive radiotherapy has long been debated due to the lack of comprehensive validation methodol-
ogy in DIR.(23) Validation of DIR’s accuracy is difficult especially for clinical study because 
of the frequent lack of identifiable physical landmarks. Phantom-based validation would 
however omit the factors that existed only clinically. Brock et al.(24) assessed the accuracy of 
several underdeveloped DIR algorithms in 21 centers on a common set of patients’ data at the 
anatomical sites of lung, liver, and prostate. The study reported that all algorithms performed 
well for the cases of lung and liver, as the image contrast at those deformation fields was often 
consistent with stable breathing. However, artifacts caused by the presence of rectal gas and 
the substantial deformation of the prostate posed the challenge. The findings indicated that, 
no matter how meticulous the DIR algorithm is, the accuracy of DIR can be significantly 
affected by the characteristics of deformation field. Since IM, the algorithm of DIR employed 
in this study, is based on image intensity matching, stable CT images to improve spatial and 
contrast resolution of image are therefore considered important. Hence, efforts to select “reli-
able” images with minimal artifacts are a prerequisite and the primary means of maximizing 

Table 3. The mean conformity index (CI), the mean homogeneity index (HI), and the mean target coverage index 
(TGI) of the three phased-specific dose plans. CI was evaluated at 99.5% target coverage. The amount of dose cover-
age as a function of planning CT taken at end-exhale, end-inhale, and mean tumor position is shown in the 5th to  
7th columns. 

  CI  of HI of TCI (%) of Target Dose Coverage
  3 Dose Plans 3 Dose Plans 3 Dose Plans Vex 20Gy Vin 20Gy Vmean 20Gy
 Patient (mean ± SD) (mean ± SD) (mean ± SD) (%) (%)  (%)

 1   1.80±0.04   1.21±0.01 99.7±0.1 57.4b 63.1 71.5a

 2  1.95±0.18   1.22±0.02 99.8±0.2 85.2b 91.0 95.9a

 3   1.86±0.04   1.20±0.01 99.5±0.0 80.0 73.0b 89.2a

 4   1.65±0.04  1.19±0.00 99.8±0.0 97.7a 96.6 97.7a

 5  1.84±0.04   1.22±0.01 99.8±0.0 94.6a 92.8 92.9
 6  1.50±0.03  1.21±0.01 99.8±0.2 96.7a 90.7b 96.7a

 7   1.67±0.05   1.20±0.01 99.6±0.1 99.1a 95.7 95.6
 8 1.69±0.01  1.22±0.00 99.8±0.1 60.4b 83.2a 79.5
 9 1.53±0.01   1.24±0.02 99.8±0.2 90.4a 66.9b 84.0

a Indicates the maximum target dose coverage.
b Indicates minimum coverage.
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registration accuracy. In this study, the image artifacts induced from abrupt breathing, which 
could significantly affect the image registration accuracy, were avoided by carefully selection 
of cases with stable breathing.

Despite there being no conclusion on the robustness of the DIR algorithms for advanced 
radiotherapy up to date, their contribution to improving the accuracy of dose distribution for 
deformable targets is evident. Studies(25-27) have evaluated the performance of DIR registra-
tion and showed that deformable image registration not only improves the accuracy of image 
localization but also the accumulated target dose distribution as compared to the ridge-based 
image registration. Janssens et al.(27) verified the accuracy of DIR for 4D dose accumulation at 
deformation field based on phantom-based dosimetric measurement. The difference between 
the estimated and measured doses was found significantly to decrease using DIR. Janssens et al. 
also reported that the maximum error in dose estimation was reduced from 96% to 3.5% with the 
DIR as compared to no registration. In this study, the efficacy of nonridge 4D dose calculation 
using DIR was evaluated, in which the target coverage as a function of phase-specific planning 
CT was calculated. The results were found to be consistent with the literatures’ expectations. 
Studies(28-30) have suggested if the tumor is irradiated at its average position during the respira-
tory cycle, optimal dose coverage would be obtained even if the tumor is not fully within the 
high-dose region for a small part of the breathing cycle due to the presence of the wide-beam 
penumbra. Moreover, dose planning performed at the end-exhale phase was also suggested 
to maximize the target coverage with the most stable or reproducible target position. Both 
hypotheses were well verified in this study. As shown by the results of the study, in most of the 
cases (88.9%), planning CT taken at either the temporal mean tumor position or the end-exhale 
position obtained the maximum target coverage. Moreover, the dose plan which obtained the 
maximum target coverage would also provide the best dose conformity as the dose volume of 
all the studied dose plans was meant to be equivalent (similar CI). In the past the ITV has often 
been defined in the space domain; the results of this study show that, if the temporal factor is 
also considered in defining the ITV, more optimum dose coverage can be obtained.

There were a few commercially available software products providing 4D dose calcula-
tion. The limitations of applications are often not addressed by the vendors. In this study, the 
limitations and complexity of the DIR for clinical implementation had been well attended to. 
Moreover, the 4D dose tool box is designed in several discrete levels, enabling quality assur-
ances to be performed at different time phases for DIR and accumulated dose verification. The 
database is structured in “stack-up” arrangement, permitting data generated from each individual 
process (e.g., IM, DE-DOSE-REG) to be assessed and confirmed via visual examination (e.g., 
AUTO-CERR-DOSE). The concise and systematic designs in data storage facilitate efficient 
and flexible data manipulation for 4D dose calculation. For instant, the voxel doses at each 
time phase are sequentially stored in a single array (TDx), thus allowing the accumulated target 
dose at any periods of the breathing cycle to be easily summated and analyzed. Thus, for the 
cases of respiratory-gated treatment, the duty-cycle can be effectively selected according to 
the estimated resultant dose calculated with the 4D tool box. The 4D tool box could be a useful 
tool to estimate the therapeutic gain for the selection of treatment technique.

 
V. CONCLUSIONS

Accurate deformable image registration is often a challenging clinical problem to tackle; its 
limitations and applicability should be within our grasp before application. The efficacy of 
using the studied tool box for clinical application was confirmed with the retrospective studies 
of nine patients. The logistic and the robustness of the 4D tool box were shown to be feasible 
for nonridged 4D dose calculation. With the qualitative 4D CT images acquired under stable 
breathing, the studied tool box was proved to be useful and reliable for 4D dose calculation.
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