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miR-133a-3p promotes apoptosis and induces cell cycle 
arrest by targeting CREB1 in retinoblastoma

Jianchang Li, Xiuming Liu, Wenqi Wang, Chaopeng Li

A b s t r a c t

Introduction: Retinoblastoma (RB) is a malignant tumor that is derived from 
photoreceptors. It is common in children under 3 years old with a  family 
genetic predisposition. MicroRNA-133a-3p (miR-133a-3p) is one of the tu-
mor-related miRNAs that interprets a  critical function in the genesis and 
development of various tumors. This study investigated the effects and un-
derlying mechanisms of miR-133a-3p in RB. 
Material and methods: Quantitative reverse-transcription polymerase chain 
reaction (qRT-PCR) analysis was used to assess the miR-133a-3p expression 
in RB tissues and a cell model. MTT assay, western blot, flow cytometry and 
luciferase reporter assay were performed to evaluate the effect of miR-133a-
3p on cell viability, apoptosis and the cell cycle. An RB xenograft model was 
established to assess the in vivo influence of miR-133a-3p on RB growth. 
Results: MiR-133a-3p level was reduced in RB tissues and the cell model 
(p < 0.01 or p < 0.001). Addition of miR-133a-3p reduced cell viability, and 
increased apoptosis and cell cycle arrest (p < 0.001). Additionally, CREB1 
was identified to be the target of miR-133a-3p in RB cell lines (p < 0.001). 
Cell viability reduction, apoptosis and cell cycle arrest increases mediated 
by miR-133a-3p were attenuated by CREB1 overexpression (p < 0.001). MiR-
133a-3p inhibited tumor growth of RB in vivo (p < 0.001).
Conclusions: Our results reveal that miR-133a-3p exhibits anti-cancer ef-
fects by targeting CREB1 in RB. This study provides a new direction for effec-
tive targeted treatment of this disease.
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Introduction

Retinoblastoma (RB) is a  type of malignant intraocular cancer with 
a relatively constant incidence in children globally [1]. The conventional 
treatments of RB are laser therapy and eyeball removal [2]. Chemore-
duction, a new treatment of RB, aims to save children’s lives by protect-
ing their eyes and visual  functions [3]. However, these treatments are 
prone to adverse effects on the children and have various limitations [4]. 
Therefore, it is imperative to explore new treatments for RB based on the 
intrinsic mechanism of tumorigenesis. 

MicroRNAs (miRNAs) are usually composed of 22 nucleotides that 
are paired with complementary sequences of mRNA molecules [5]. They 
silence target genes by inhibiting mRNA translation or causing mRNA 
degradation [5]. Aberrant miRNA expression has been observed in 
various pathological conditions including solid tumors, indicating that  
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miRNAs play an important part in tumor develop-
ment [6–8]. Thus, miRNAs have been widely stud-
ied as potential biomarkers in various tumors, es-
pecially in RB [5, 9]. Recently, it has been reported 
that miR-1792, miR-365b-3p and miR-101 regu-
late the formation, apoptosis and cell cycle of RB 
in vitro and in vivo [9–11]. As a common tumor-as-
sociated miRNA, miR-133a-3p is down-regulated 
in various cancers and acts as a tumor suppressor 
to prevent cancer development by regulating tar-
get genes in breast cancer, gastric cancer, pancre-
atic cancer and glioma [12–15]. However, the reg-
ulatory mechanism of miR-133a-3p in RB remains 
unclear. Cyclic AMP responsive element binding 
protein 1 (CREB1), encoded by the CREB gene, 
is a  member of the leucine zipper transcription 
factor family [16]. It binds to cAMP response ele-
ment (CRE) to stimulate transcriptional activation, 
which in turn regulates cell survival, proliferation 
and differentiation [17]. Numerous  studies have 
shown an increased expression level of CREB1 
in non-small cell lung cancer (NSCLC), melanoma 
and breast cancer compared to normal tissues 
[18–20], and down-regulation of CREB1 has been 
speculated to have anti-cancer potential [21]. 
However, the roles of CREB1 in RB have not been 
investigated. As an important proto-oncogene in 
the human body, CREB1 has been predicted to be 
the target of multiple miRNAs such as miR-27b, 
miR-34b, miR-181b, miR-182 and miR-200b [21, 
22]. Interestingly, we identified CREB1 as a poten-
tial target of miR-133a-3p by bioinformatic anal-
ysis. Thus, in this study, we aimed to explore and 
validate the regulatory mechanisms of miR-133a-
3p and CREB1 in RB.

Material and methods

Tissue collection and ethics statement

Fresh RB tissue and adjacent non-tumor tis-
sue samples were taken from patients diagnosed 
with RB according to clinical and pathological ev-
idence, who underwent surgery in the Affiliated 
Huaian No. 1 People’s Hospital of Nanjing Medical 
University from June 2016 to May 2018. Informed 
consent was obtained from all patients. All exper-
imental procedures and protocols were approved 
by the Institutional Research Ethics Committee of 
the Affiliated Huaian No. 1 People’s Hospital of 
Nanjing Medical University.

Cell culture

Human RB cell lines WERI-RB1 (HTB-169) and 
Y79 (HTB-18) were purchased from ATCC (Manas-
sas, USA). SO-RB50 and normal retinal cells in chil-
dren were obtained from the Cell Bank of the Chi-
nese Academy of Sciences (Shanghai, China). Cells 
were maintained in Roswell Park Memorial Insti-

tute (RPMI)-1640 medium (Thermo Fisher Scien-
tific, Waltham, USA) supplemented with 10% fetal 
bovine serum (FBS) and 1% penicillin-streptomy-
cin in a humidified incubator at 37°C with 5% CO

2. 
The culture medium was changed every 3 days.

Cell transfection

WERI-RB1 and Y79 were transfected with hsa-
miR-133a-3p mimics or hsa-miR-133a-3p inhib-
itor (Thermo Fisher Scientific, Waltham, USA), 
pBabe-puro-CREB1 or pLKO.1-CREB1 (BlueGene 
Biotech, Shanghai, China) or their corresponding 
negative control (NC). Briefly, cells were seeded 
at 2 × 105 cells/well in 6-well plates for 24 h. Cell 
transfection was carried out using Lipofectamine 
2000 (Invitrogen, Carlsbad, USA) according to the 
manufacturer’s instructions. Six hours after trans-
fection, cell media were replaced and cells were 
grown for an additional 48 h before carrying out 
downstream experiments.

Cell viability assay

Transfected cells were seeded at a  density of  
2 × 103 cells/well in 96-well plates. After 1, 2, 3,  
4, 5 or 6 days of incubation, 11 μl of MTT buffer  
(5 mg/ml, Sigma-Aldrich, St. Louis, USA) was add-
ed to each well and further incubated for 4 h. After 
the culture medium was removed, the precipitat-
ed formazan was dissolved in 150 μl of dimethyl 
sulfoxide (DMSO). The absorbance was measured 
at 490 nm (OD490) using a  spectrophotometer 
(Thermo Fisher Scientific, Waltham, USA).

Flow cytometry analysis

Transfected cells were trypsinized with tryp-
sin (Thermo Fisher Scientific, Waltham, USA) and 
fixed with 70% ethanol after washing in ice-cold 
phosphate buffer saline (PBS) at 4°C overnight. 
PI/RNase  Staining Buffer (RUO; BD Biosciences, 
San Jose, USA) was used to stain treated cells in 
cell cycle assessment at room temperature for  
20 min. Binding buffer containing 5 μl of propidi-
um (PI) and 5 μl of Annexin V-FITC (BD Bioscienc-
es, San Jose, USA) was used to assess the apop-
tosis rate. Cell cycle and apoptosis were observed 
using a FACSCalibur instrument (BD Biosciences, 
San Jose, USA) and analyzed using the FlowJo soft-
ware (FlowJo LLC, Ashland, USA).

Western blot analysis

Transfected cells were lysed in ice-cold RIPA 
buffer with a protease inhibitor cocktail to extract 
the total proteins. The concentrations of protein 
were tested using the Pierce BCA protein assay 
kit (Thermo Fisher Scientific, Waltham, USA). 
Subsequently, samples containing equivalent 
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protein were subjected to 10% sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and electrophoretically transferred onto 
a polyvinylidene fluoride (PVDF) membrane (Mil-
lipore, Billerica, USA). Membranes were blocked 
with 5% (w/v) skim milk in Tris buffered saline 
with Tween-20 (TBST) for 2 h at room tempera-
ture, and were incubated with primary antibod-
ies: brain-derived neurotrophic factor (BDNF), 
cyclin B1, cyclin D1, glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), Bcl-2, Bax and cleaved 
caspase-3 (1 : 1000; Cell Signaling Technology, 
Danvers, USA), CREB1, pCREB1 and cAMP-re-
sponsive element modulator (CREM) (1 : 1000; 
Sigma-Aldrich, St. Louis, USA) at 4°C overnight. 
After washing in TBST, membranes were then 
incubated with goat-anti-rabbit IgG-horseradish 
peroxidase (HRP) secondary antibody (1 : 1000; 
Cell Signaling Technology, Danvers, USA) for 1 h at 
room temperature, and visualized via the Immo-
bilon Western Chemiluminescent HRP Substrate 
(Millipore, Boston, USA). Densitometry analysis 
was performed using the Image J software (NIH 
Image, Bethesda, USA). GAPDH was used as the 
control [23].

Quantitative reverse-transcription 
polymerase chain reaction (qRT-PCR)

Total RNA from human RB tissues, adjacent 
non-tumor tissues and RB cell lines were extract-
ed by Trizol reagent (Invitrogen, Carlsbad, USA). 
cDNA was synthesized via One Step PrimeScript 
miRNA cDNA Synthesis Kit (TaKaRa, Tokyo, Japan), 
according to the manufacturer’s protocols. qRT-
PCR was performed in an ABI7500 real-time PCR 
instrument (Applied Biosystems, Waltham, USA). 
All data were analyzed using the 2–ΔΔCt method 
[13]. MiR-133a-3p expression was normalized to 
U6, whereas CREB1 expression was normalized to 
GAPDH. Primer sequences were as follows: miR-
133a-3p 5′-UUU GGU CCC CUU CAA CCA GCU G-3′ 
(forward), 5′-UAA ACC AAG GUA AAA UGG UCG 
A-3′ (reverse); U6, 5′-CGC TTC GGC AGC ACA TAT 
AC-3′ (forward), 5′-TTC ACG AAT TTG CGT GTC AT-3′  
(reverse); CREB1, 5′-CTT TTC TCC GGA ACA CAG 
ATT TC-3′ (forward), 5′-GAT TTG CCA AGT GGG AGG 
GA-3′ (reverse); GAPDH, 5′-CAC TCC TCC ACC TTT 
GA-3′(Forward); 5′-CCA CCA CCC TGT TGC TG-3′  
(reverse). 

Luciferase reporter assay

CREB1 3′UTR wild-type (wt) or mutant (mut) was 
cloned into the pMIR-firefly luciferase reporters 
(Invitrogen, Carlsbad, USA), and named as pMIR-
CREB1 3′-UTR-WT or pGL3-CREB1 3′-UTR-MUT, 
respectively. pMIR-CREB1 3′-UTR-WT contained 
predicted miR-133a-3p binding sites, whereas 

pGL3-CREB1 3′-UTR-MUT was constructed using 
the site-directed mutagenesis kit (TaKaRa, Tokyo, 
Japan) to encompass a  mutated miR-133a-3p 
binding site. pRL-TK Renilla plasmids (Promega, 
Madison, USA) and miR-133a-3p mimics or NCs 
were co-transfected into cells using Lipofectamine 
2000 (Invitrogen, Carlsbad, USA) according to the 
manufacturer’s protocols. Dual Luciferase Assay 
System (Promega, Madison, USA) was used to 
measure luciferase activities 48 h after transfec-
tion according to the manufacturer’s instructions. 

Tumor xenograft models

Nude mice (Lab animal center of Air Force Mil-
itary Medical University, Xian, China), 4–5 weeks 
old, weighing 60–80 g, were subcutaneously in-
jected with Y79 cells (2 × 107 cells/ml) transfect-
ed with miR-133a-3p mimics or its NC into the 
right eye anterior chamber. The eyes of mice were 
painted with 1% atropine eye ointment after in-
jection. Tumor volumes were measured every  
10 days from day 10 to day 40. The tumor weight and 
volume were measured after mice were sacrificed. 

Statistical analysis

All data were analyzed using the SPSS 21.0 
software (IBM, Corporation, Armonk, USA) and 
are presented as mean ± standard deviation (SD). 
Groups were compared using Student’s t-test or 
one-way analysis of variance (ANOVA). The values 
of p < 0.05 were considered statistically signifi-
cant.

Results

miR-133a-3p expression is reduced in RB 
tissues and RB cell lines

To determine the expression profile of miR-
133a-3p in RB, qRT-PCR was used to assess the 
expression levels of miR-133a-3p in RB tissues 
and cell lines. miR-133a-3p was found to be low-
er in RB tissues compared to non-tumor tissues  
(p < 0.0001) (Figure 1 A). In addition, miR-133a-3p  
levels were reduced in RB cell lines, including  
SO-RB50, WERI-RB1 and Y79 cells compared with 
the normal retinal cells (p < 0.01 or p < 0.001) 
(Figure 1 B). Hence, WERI-RB1 and Y79 cells were 
selected for subsequent experiments.

miR-133a-3p reduces cell viability, and 
increases cell apoptosis and cell cycle arrest

After transfection of miR-133a-3p mimics or 
inhibitor in Y79 and WERI-RB1 cells, the transfec-
tion efficiencies were examined by qRT-PCR. The 
expression of miR-133a-3p was increased in the 
miR-133a-3p mimic group compared with the NC 
mimic group, whereas decreased miR-133a-3p 
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expression was observed in miR-133a-3p inhibi-
tor-transfected cells compared with the NC inhibi-
tor group (p < 0.001) (Figure 2 A).

We subsequently explored the effects of miR-
133a-3p on the cell viability of Y79 and WERI-RB1 
cells. As shown in Figure 2 B, overexpression of miR-
133a-3p reduced cell viability while the suppres-
sion of miR-133a-3p resulted in the opposite effect 
(p < 0.001). Furthermore, apoptosis of transfected 
cells was measured using flow cytometry, which 
showed that the percentage of apoptotic cells in 
the miR-133a-3p mimic group was significantly 
higher than that in the NC mimic group, whereas 
inhibition of miR-133a-3p significantly decreased 
apoptosis (Figure 2 C, p < 0.001). In addition, the 
effects of miR-133a-3p mimics or inhibitor on the 
cell cycle were also tested using flow cytometry. 
After 48 h of transfection, the number of cells in 
the G0/G1 phase was increased in the miR-133a-
3p mimic group compared to the NC mimic group, 
whereas transfection with miR-133a-3p inhibitor 
led to the opposite effects (Figure 2 D).

CREB1 enhances cell viability and reduces 
apoptosis

To explore the role of CREB1 in RB, we trans-
fected pBabe-puro-CREB1 plasmids, pLKO.1-CREB1 
plasmids or their corresponding negative controls 
into Y97 and WERI-RB1 cells. pBabe-puro-CREB1 en-
hanced the mRNA and protein expression levels of 
CREB1 in both cells, while pLKO.1-CREB1 decreased 
the CREB1 expression levels (Figures 3 A  and B,  
p < 0.001). Next, cell viability was measured by 
MTT assay following overexpression or inhibition of 
CREB1. As shown in Figure 3 C, pBabe-puro-CREB1 
promoted Y79 and WERI-RB1 cell viability, whereas 
pLKO.1-CREB1 reduced cell viability (p < 0.01 or p < 
0.001). Similarly, the apoptosis rate was decreased 
when CREB1 was overexpressed, but was higher in 
the pLKO.1-CREB1 group compared with the pLKO.1 

group (Figure 3 D, p < 0.001). These results demon-
strated that CREB1 may be closely related to the 
survival of RB cells.

miR-133a-3p targets CREB1 in RB cell models

TargetScan (http://www.targetscan.org/) and 
miRanda (http://www.microrna.org) databases 
were used in miR-133a-3p target prediction, which 
identified CREB1 as the potential target. The con-
served binding regions between miR-133a-3p 
and CREB1 are shown in Figure 4 A. To further 
validate the interaction between miR-133a-3p 
and CREB1, CREB1 3’ UTR-wt or CREB1 3’ UTR-
mut was transfected with miR-133a-3p mimics 
or NC mimics into Y79 and WERI-RB1 cells. miR-
133a-3p mimics induced luciferase activity when 
co-transfected with CREB1 3’ UTR-wt (p < 0.001). 
However, CREB1 3’ UTR-mut and miR-133a-3p 
mimics’ co-transfection had no effect on rela-
tive luciferase activity, demonstrating that miR-
133a-3p could directly target CREB1 (Figure 4 B).  
In addition, western blot results showed that 
miR-133a-3p overexpression led to reduction in 
expression of CREB1, pCREB1, CREM and BDNF in 
Y79 and WERI-RB1 cells (Figure 4 C, p < 0.001).

miR-133a-3p promotes apoptosis  
and induces cell cycle arrest by targeting 
CREB1 in the RB cell model

The effects of miR-133a-3p and CREB1 on cell 
survival were assessed after Y97 and WERI-RB1 
cells were co-transfected with miR-133a-3p mim-
ics and pBabe-pur-CREB1 plasmids. Our results 
demonstrated that CREB1 overexpression rescued 
miR-133a-3p mimic-induced cell viability reduc-
tion in both cell lines (Figure 5 A, p < 0.001). The 
number of cells in G0/G1 phase was also reduced 
and S phase cell numbers were increased when 
CREB1 and miR-133a-3p were co-overexpressed 
(Figure 5 B). Moreover, cyclin B1 and cyclin D1 (cell 

Figure 1. miR-133a-3p is down-regulated in retinoblastoma tissues and cell lines. qRT-PCR results show miR-133a-
3p levels in (A) cancerous and non-tumor tissues of retinoblastoma patients (n = 60), as well as (B) normal retinal 
cells in children and retinoblastoma RB50, WERI-RB1 and Y79 cells (n = 6)

Data are presented as mean ± SD. **p < 0.01, ***p < 0.001.
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Y79

Y79

WERI-RB1

WERI-RB1

cycle related proteins) expression levels were re-
duced in the miR-133a-3p mimic group compared 
with NC mimics, which were abolished when 
CREB1 and miR-133a-3p were overexpressed (Fig-
ure 5 C, p < 0.001). 

Furthermore, the flow cytometry results indi-
cated that pBabe-puro-CREB1 diminished apopto-
sis mediated by miR-133a-3p mimics (Figure 6 A, 
p < 0.001), suggesting that CREB1 may be involved 
in the anti-apoptotic effect of miR-133a-3p. In ad-

dition, we found that miR-133a-3p overexpression 
resulted in the reduction of CREB1 and Bcl-2, as 
well as increase in Bax and cleaved caspase-3, 
which were counteracted by transfection with 
pBabe-puro-CREB1 (Figure 6 B, p < 0.001).

miR-133a-3p inhibits tumor growth in vivo

In order to study the effects of miR-133a-3p on 
the growth of RB in vivo, the RB xenograft mouse 
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Figure 2. Cont. Flow cytometry assay explored the influence of miR-133a-3p mimics and inhibitors in apoptosis 
(C) and cell cycle (D)

Data are presented as mean ± SD, n = 6. ***p < 0.001.

models were established by injecting Y79 cells 
transfected with miR-133a-3p mimics or NCs. We 
found that the average weight and volume of tu-
mors were significantly lower in the miR-133a-3p 
group compared to the control group (Figure 7,  
p < 0.001). These findings demonstrated the poten-
tial anti-tumor properties of miR-133a-3p in vivo.

Discussion 

Although the biological functions of miR-133a-
3p remain unclear, miR-133a-3p has been report-
ed to play an anti-tumor role in the development 
of cancers, including bladder cancer, breast can-
cer and gastric cancer [12, 13, 24]. In a study by 
Huang et al., they reported that miR-133a-3p pro-
motes apoptosis and inhibits cell proliferation and 

migration in gallbladder carcinoma [25]. Li et al. 
also described the inhibitory action of miR-133a-
3p in gastric cancer cell proliferation [13]. On the 
basis of these findings, we hypothesized that miR-
133a-3p overexpression may be a promising op-
tion in cancer therapy. However, the function and 
mechanism  of  miR-133a-3p  in RB remain to be 
elucidated. Hence, we investigated the effects of 
miR-133a-3p on RB in this study, and found the 
down-regulation of miR-133a-3p level in RB tis-
sues and cell models. Furthermore, miR-133a-3p 
overexpression reduced RB cell viability and pro-
moted apoptosis. Similarly, miR-133a-3p overex-
pression also suppressed tumor size and weight 
in vivo. These results are consistent with previous 
findings. A  large number of studies have shown 
the regulatory role played by miR-133a in cell de-
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Data are presented as mean ± SD, n = 6. ***p < 0.001.

velopment in tumors through regulating target 
genes such as LASP1, RBP-J and ERBB2 [12, 13, 
25]. In this study, CREB1 was predicted to be the 
potential target gene of miR-133a-3p by bioin-
formatic analysis. As a transcription factor of the 
basic leucine zipper (bZIP) family, CREB1 is a well-
known key proto-oncogene that has recently been 
identified as a direct target of other miRNAs, in-
cluding miR-200b miR-1224-5p, miR-34b, miR-9 
and miR-373 [21, 22, 26, 27]. In our study, lucif-
erase  reporter assay further verified the specific 
binding between CREB1 and miR-133a-3p. More-
over, western blot results showed that miR-133a-
3p inhibited the expression of CREB1, CREM and 
its downstream protein BDNF, indicating that miR-
133a-3p may inhibit the CREB pathway.

A  previous study showed that aberrant acti-
vation of oncogenes leads to cancer cells being 
exposed to apoptotic stress during malignant 
transformation [28]. In order to prevent cell death, 
cancer cells up-regulate anti-apoptotic signals 
to suppress apoptosis [28]. Analogously, studies 
have reported that inositol-6 phosphate (IP-6) and 
lncRNA UBE2CP3-001 inhibit apoptosis in some 
cancers [29, 30]. Furthermore, CREB1 overexpres-
sion is associated with increased cell proliferation 
and decreased apoptotic sensitivity [31, 32]. In our 
study, cell viability was increased and apoptosis 
was decreased when CREB1 was overexpressed 
in the RB cell model, which is consistent with the 
findings from Qian et al. on malignant glioma cells 
[26]. Interestingly, we revealed that the pro-apop-
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totic function of miR-133a-3p was reversed by 
CREB1 overexpression. The overexpression of 
CREB1 attenuated the miR-133a-3p-induced in-
crease in apoptosis, Bax and cleaved caspase-3, as 
well as decreasing Bcl-2. These results illustrated 
that the pro-apoptosis of miR-133a-3p was target-
ed by CREB1. Previous studies have demonstrat-
ed that CREB1 regulates cell proliferation through 
cell-cycle arrest [24, 33]. Zhang et al. reported that 
CREB1-induced histone H3 acetylation facilitates 
the transition of G0 to S phase cells in prostate 

cancer [34]. In addition, CREB1 has been report-
ed to be able bind to the promoters of cell cycle 
genes, including cyclin A, B1, D1, D2 and Wnt10b 
and regulates the transcription of these genes, 
thereby regulating cell proliferation [31, 35]. Sim-
ilarly, this study revealed that miR-133a-3p pre-
vented the transition from G1 to S phase in Y97 
cells, causing cell cycle arrest and down-regulation 
of cyclin B1 and D1. Subsequently, CREB1 over-
expression abolished miR-133a-3p0-mediated 
effects, suggesting that miR-133a-3p regulates 
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Y79 WERI-RB1

Y79
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Figure 4. miR-133a-3p targets CREB1 in retinoblastoma cell model. A – The predicted binding sequences of miR-
133a-3p and CREB1. B – Dual luciferase reporter assay confirmed the binding between miR-133a-3p and CREB1. 
C – Western blots show CREB1, pCREB1, CREM and BDNF protein expression levels

Data are expressed as mean ± SD, n = 6. ***p < 0.001.
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Figure 5. miR-133a-3p inhibits cell viability and induces cell cycle arrest by targeting CREB1 in retinoblastoma cell 
model. A – The influence of co-transfection with miR-133a-3p mimics and pBabe-pur-CREB1 plasmids in cell via-
bility determined by MTT assay. B – The effects of co-transfection with miR-133a-3p mimics and pBabe-pur-CREB1 
plasmids on cell cycle determined by flow cytometry

Data are expressed as mean ± SD, n = 6. ***p < 0.001. 
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Figure 5. Cont. C – Western blots show the protein expression levels of CREB1, cyclin B1 and cyclin D1

Data are expressed as mean ± SD, n = 6. ***p < 0.001. 
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the CREB1-mediated cell cycle. These findings are 
consistent with the report from Pigazzi et al. that 
miRNAs function as tumor suppressors via nega-
tively regulating CREB1 and its targets including 
Bcl-2, cyclin B1 and cyclin D1 [36].

In conclusion, these results indicate that miR-
133a-3p overexpression inhibits tumor develop-
ment, promotes apoptosis and induces cell cycle 
arrest by targeting CREB1 in vivo and in RB cell 
models. This study has improved our understand-
ing of the pathogenesis of RB, and provides a new 

direction for effective targeted treatment of RB. 
However, one of the  limitations  of  this  study 
is that we have just preliminarily explored the  
anti-tumor influence of miR-133a-3p in the nude 
mouse model of RB. Further in vivo studies are 
required to further validate the inhibitory effects 
and the underlying mechanisms of miR-133a-3p 
in RB.
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Figure 6. miR-133a-3p promotes cell apoptosis by targeting CREB1 in retinoblastoma cell model. A – The effect of 
co-transfection with miR-133a-3p mimics and pBabe-pur-CREB1 plasmids on cell apoptosis determined by flow 
cytometry

Data are expressed as mean ± SD, n = 6. ***p < 0.001.
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Figure 6. Cont. B – Western blots showing protein levels of CREB1, Bcl-2, Bax and cleaved caspase-3

Data are expressed as mean ± SD, n = 6. ***p < 0.001.
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Figure 7. miR-133a-3p inhibits RB growth in vivo. Y79 cells transfected with miR-133a-3p mimics or the negative 
control were subcutaneously injected into nude mice for 40 days. The average weight and volume of tumor were 
measured

Data are presented as mean ± SD, n = 4. ***p < 0.001.
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