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An increasing number of studies demonstrate that cells can activate apoptotic caspases
but not die and, instead, display profound changes in cellular structure and function. In this
minireview, wewill discuss observations in the nervous system ofDrosophila melanogaster
that illustrate non-apoptotic roles of apoptotic caspases. We will preface these examples
with similar observations in other experimental systems and end with a discussion of how
apoptotic caspase activity might be constrained to provide non-lethal functions without
killing the cell.
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INTRODUCTION

Caspases are proteases that exist as multi-member families in metazoan numbering, for
example, twelve in human and seven in Drosophila melanogaster (Denton et al., 2013;
Kesavardhana et al., 2020). Caspase-like proteins have been identified also in fungi and
plants (Minina et al., 2017). Some members of the caspase family, for example human
caspases 1 and 4 and Drosophila Death related ced-3/Nedd2-like caspase (Dredd), have
dedicated roles in non-apoptotic processes such as inflammation and immunity. Other
members, for example human caspases 3 and 9 and Drosophila Death regulator Nedd2-like
caspase (Dronc) and Death related ICE-like caspase (Drice), are essential for apoptosis and will
be referred to as “apoptotic caspases.” An increasing body of literature, however, documents
non-apoptotic functions of apoptotic caspases, in altering cell identity, sub-cellular remodeling,
and production of extra-cellular signals, to name a few. Such apoptotic caspase-driven
alterations in cellular structure and function are found in different cell types and across
diverse organisms. Here, we will use examples from the Drosophila nervous system to illustrate
multiple non-apoptotic roles of apoptotic caspases. We will spring-board off excellent reviews
on the subject [for example, (Yamaguchi and Miura, 2015; Melzer and Broemer, 2016;
Nakajima and Kuranaga, 2017)], to focus on primary papers published since the
publications of these reviews and provide an up-to-date summary.

ACTIVATION OF APOPTOTIC CASPASES

Caspases are cysteine proteases, that is, they require a cysteine in the active site for activity.
Caspases are produced as inactive proenzymes that become activated upon proteolytic cleavage.
Activation of apoptotic caspases occurs in a cascade that begins with internal or external death
stimuli such as DNA damage. In Drosophila, exposure to ionizing radiation (IR) leads to
transcriptional activation of pro-apoptotic proteins Head Involution Defective (Hid) and
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Reaper (Rpr) (Brodsky et al., 2004; Wichmann et al., 2006)
(Figure 1). These proteins antagonize Death-associated
inhibitor of apoptosis 1 (Diap1) to result in the release and
activation by cleavage of Dronc at the apoptosome, a multi-
protein structure formed by Death-associated APAF1-related
killer (Dark) [reviewed in White et al. (2017)]. Dronc is an
apical/initiator caspase that in turn cleaves to activate
effector/executioner caspases Drice and Death caspase 1
(Dcp1). Genetic analysis demonstrates that Dronc and
Drice are required for DNA damage-induced apoptosis
while Dcp1 finetunes this process to accelerate the onset of
apoptosis (Florentin and Arama, 2012). Viral caspase
inhibitor p35 inhibits effector caspase activity but not
initiator caspase activity (Meier et al., 2000; Yoo et al.,
2002), and has been used to distinguish the requirements
for these two classes of apoptotic caspases.

DROSOPHILA NERVOUS SYSTEMS

The Central and Peripheral Nervous Systems (CNS and PNS)
of a newly hatched Drosophila larva are generated from the
embryonic neuroectoderm through sequential cell fate
specification events (Singhania and Grueber, 2014; Crews,
2019). Briefly, clusters of cells in the embryonic ectoderm first
acquire neuronal competence through the expression of pro-
neural transcription factors. Neurogenic factors such as Notch
and Delta then specify a single neuronal precursor cell within
each cluster. Neuronal precursor and selector genes then allow
neuronal precursors to differentiate into neuronal progenitor
cells. Neuronal progenitors are known by different names
depending on whether they are in the CNS or PNS and what
types of neurons they produce. For example, CNS progenitors
are called neuroblasts while PNS progenitors that produce

FIGURE 1 | Apoptotic and related proteins discussed in this review. (A) The names of Drosophila and mammalian homologs, along with the known functions. (B)
The apoptotic signaling pathway. Only the components discussed in this minireview are shown.
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extrasensory organs are called Sensory Organ Precursors
(SOPs). Neuronal progenitor cells undergo stereotypical
asymmetric cell divisions to produce two different daughter
cells. Ensuring different identities in the cellular progeny
requires Numb protein, which is partitioned to just one of
the two products of cell division (Rhyu et al., 1994). Numb is a
membrane-bound protein with no known biochemical
activity that functions through protein-protein interactions.
In the progeny of a neuroblast that received Numb, for
example, it inhibits Notch signaling to allow differentiation
while the other progeny retains the neuroblast identity. Thus,
Numb helps limit the number of progenitor cells to prevent
hyperproliferation in the CNS. Neuronal cell number is
further limited by Programmed Cell Death, an integral part
of CNS development that kills by apoptosis approximately one
third of CNS cells that are ever born (Crews, 2019). In this
context of massive apoptosis, apoptotic caspases provide
activities that do not result in cell death as described next.

Changing Cellular Identity
Metazoan development requires cells to go through several
identity changes as they transition from progenitor to a fully
differentiated state. Given that the genome remains unchanged,
developmental changes in cellular identity must occur through
interconnected changes in the transcriptome and in the
proteome. As proteases, apoptotic caspases can alter the
proteome as seen in numerous examples. Transcription factor
Paired Box 7 (Pax7) maintains muscle stem cell identify but its
cleavage by apoptotic caspases allows differentiation into
myoblasts, a step inhibited by a caspase resistant form of Pax7
(Dick et al., 2015). Caspase 3 null mutant (caspase 3−/−) mice that
survive to near-birth stages show reduced skeletal muscle mass.
Isolated myoblasts from such mice failed to differentiate into

myotubes in culture, indicating a requirement for caspase activity
also in a late step in muscle differentiation (Fernando et al., 2002).
This requirement may be through Mammalian Sterile Twenty-
like kinase (MST1) because it includes caspase consensus sites
and a shortened MST1 that mimics the cleaved product rescued
differentiation in caspase 3 null mutant cells (Fernando et al.,
2002; Murray et al., 2008). Additional instances of cellular
differentiation, in either normal development or regeneration,
show a requirement for apoptotic caspase activity without
accompanying evidence for apoptosis [for example, (Fernando
et al., 2002; Fernando et al., 2005; Koto et al., 2009),]. Caspase
substrates that must be cleaved to allow differentiation include
pluripotent factors such as Nanog Homeobox (Nanog) in mouse
embryonic stem cells (Fujita et al., 2008) and Abnormal Cell
Lineage 29 (Lin-29) during C. elegans larval development
(Rougvie and Moss, 2013; Weaver et al., 2014). Likewise,
apoptotic caspases contribute to two instances of cellular
identity change in the Drosophila nervous system as seen in
the following examples.

In the first example, apical caspase Dronc binds Numb to
prevent the hyperproliferation of neuroblasts (Ouyang et al.,
2011) (Figure 2A). As described above, partitioning of Numb
to just one of two cells produced during an asymmetric
neuroblast division allows the said recipient to differentiate.
Without Numb, both daughter cells retain their progenitor
status, leading to ectopic neuroblast formation (ENF) and
hyperplasia. A yeast 2-hyrid screen identified Dronc as an
interactor of Numb, and Dronc overexpression rescued the
ENF phenotype caused by the expression of a dominant-
negative numb mutant. This rescue required the presence of
wild type Numb, suggesting that the rescue occurs through
sequestration of mutant Numb to allow the wildtype Numb to
work. The rescue did not require effector caspase activity or the
catalytic activity of Dronc, suggesting that Dronc acts in a non-
apoptotic manner. Full length Dronc binds Numb as well as
cleaved active Dronc, suggesting that any activity provided by
Dronc to limit neuroblast number can occur without fear of
killing the cell. dronc loss-of-function mutants do not have extra
neuroblasts but exacerbate the milder ENF phenotype of weak
dominant negative numb mutants. Therefore, Dronc appears to
provide an important but redundant function to limit neuroblast
number.

Apoptotic caspase activity also limits the number of SOPs,
progenitor cells in the PNS (Figure 2A). A subset of SOPs
produce external sensory organs called macrochaetes that are
readily visible on the back of the adult fly, specifically, in a
triangular region called the scutellum. Mutations in dark or
dronc as well as inhibition of caspase activity with a
dominant-negative Dronc (DroncDN) or p35 in the scutellum
produced extra SOPs and extra macrochaetes. One possible
explanation for this phenotype is that caspases normally
reduce SOP cell numbers through apoptosis. But this
possibility was rendered unlikely by the absence of TUNEL-
positive cells in the pro-neural clusters that produce the SOPs.
Instead, caspases may suppress Wingless (Wg, DrosophilaWnt1)
signaling to limit the SOP number; a mutant allele of wg
suppressed the extra macrochaetes phenotype that results from

FIGURE 2 |Cellular processes in theDrosophila nervous system that are
affected by non-apoptotic activities of apoptotic caspases. These include (A)
limiting neuronal progenitor cell number by ensuring the fidelity of cell fate
specification in the PNS or asymmetric divisions in the CNS, (B)
subcellular remodeling during the pruning of dendrites, and (C) facilitating the
release of Eiger/TNF from UV-damaged epidermis to result in sensitization of
nociceptor neurons.
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DroncDN while null mutants in Wg inhibitor shaggy (sgg,
encoding Drosophila GSK3 kinase) enhanced this phenotype.
Sgg contains two caspase 3/7 consensus sites. Expression of
Sgg with caspase consensus sites mutated produced extra SOPs
and macrochaetes, leading to the model that caspases cleave to
activate Sgg, which then opposes Wg to limit the SOP number
(Kanuka et al., 2005). As the non-cleavable Sgg produced a
phenotype in the presence of endogenous wild type Sgg, the
former was proposed to act as a dominant negative against the
latter. How might caspase activity finetune SOP number without
killing the cells? Additional studies provide evidence that
Drosophila I-kappaB kinase (IKK)-like kinase regulates the
turnover of Diap1 to temper caspase activity and enables it to
provide a developmental role without inducing cell death
(Kuranaga et al., 2006; Koto et al., 2009).

While these studies provide compelling evidence for a non-
apoptotic role of apoptotic caspases in Drosophila PNS, the data
also suggest complexities. For instance, non-cleavable Sgg was
less effective than inhibition of Dark or Dronc in producing extra
macrochaetes, leading the authors to suggest additional substrates
besides Sgg at play (Kanuka et al., 2005). A more recent paper
addressed this possibility directly by using CRISPR to replace
endogenous Sgg with non-cleavable Sgg (Wang and Baker, 2019).
The resulting flies, surprisingly, show normal SOP and
macrochaete numbers. These results can be reconciled if non-
cleavable Sgg acts not by opposing endogenous Sgg but another
protein that is the bona fide caspase substrate in controlling SOP
number. In other words, while the data support the conclusion
that apoptotic caspases play a non-apoptotic role in controlling
SOP number, we may not yet know their relevant substrates in
this process. The newer study identified an additional upstream
regulator of non-apoptotic caspase function in limiting SOP
number. Inhibition with mutations or RNAi of expanded (ex),
which encodes for a signal transducer in the Hippo (Hpo)
pathway, produced extra macrochaetes as did over-expression
of transcription factor Yorki (Yki,Drosophila YAP), an inhibitory
target of Hpo signaling. The macrochaetes phenotype of ex
mutants was rescued by reducing diap1, a known
transcriptional target of Yki (Wang and Baker, 2019). These
results suggest that Hpo/Yki tumor suppressor pathway
regulates Diap1 transcriptionally in SOP number
determination. This mechanism could operate in parallel with
the IKK-mediated mechanism that controls Diap1 protein
turnover (Kanuka et al., 2005).

Sub-Cellular Sculpting
During apoptosis execution, caspase activity helps destroy organelles
such as the nucleus and the Golgi (Chiu et al., 2002; Al-Ghorbani
et al., 2016). Likewise, caspase activity helps eliminate organelles in
some instances of cellular remodeling that accompany differentiation.
The removal of the nucleus from the lens cells for light transmission
and from red blood cells for efficient oxygen transport requires
caspases (Wride et al., 1999; Zermati et al., 2001). InDrosophila, Drice
is needed to reduce the cytoplasm and associated organelles during
the final step of sperm differentiation (Arama et al., 2003). Inhibiting
effector caspase activity with p35 prevented cytoplasm elimination
and produced sterile males, illustrating the importance of caspase

activity in sperm development. The following examples from two sets
of neurons illustrate that subcellular sculpting by apoptotic caspases
occurs also in the Drosophila PNS (Figure 2B).

Larval PNS neurons prune their dendrites as the larva
metamorphoses into an adult. A genetic screen identified
ubcD1, an E2 ubiquitin-conjugating enzyme, as a
requirement for pruning in C4da neurons (Kuo et al., 2006).
A relevant target of this degradation system appears to be
Diap1; a diap1 mutant that was an inefficient substrate for
degradation acted as a dominant negative to inhibit pruning.
dronc mutants show pruning defects, suggesting that
degradation of Diap1 allows Dronc activation and pruning.
How is cell death avoided in such a scenario? An antibody
against cleaved human caspase 3 shows signal only in dendrites
and not in axons and only during the period of dendrite
severing. Thus, Diap1 may be degraded locally to produce
localized caspase activity that affects localized subcellular
remodeling without endangering the cell. Interestingly,
expression of p35, which inhibits effector caspases, did not
affect pruning, suggesting that apical caspase activity but not
effector caspase activity promotes pruning in C4da neurons. In
ddaC neurons, a genetically encoded caspase activity reporter
shows spatially-restricted caspase activation in dendrites
undergoing pruning (Williams et al., 2006). Overexpression
of Diap1, DroncDN or p35 inhibited pruning in ddaC neurons
suggesting that both apical and effector caspase activities are
needed to prune these neurons. Global caspase activation by
overexpression of hid resulted in ddaC cell death (Williams
et al., 2006), providing a contrast to localized caspase activation
that allows pruning without cell death.

A more recent study shows that apoptotic caspases play a non-
apoptotic role in a phenomenon called neuroprotection that
occurs during axonal regeneration (Chen et al., 2016). Briefly,
severing of an axon (axotomy) in Drosophila sensory or motor
neurons results in neuroprotection (NP) that acts through Jun
N-terminal kinase (JNK) and Mitogen-Activated Protein kinase
(MAPK). NP can be visualized as preservation of severed
dendrites following axotomy and is proposed to buy neurons
time to maintain structure and function through the period of
axon regeneration. RNAi against dronc or mutations in drice
increased the fraction of dendrites protected in ddaE neurons,
suggesting that these caspases normally contribute to the removal
of severed dendrites, much like in pruning, andmust be overcome
for NP. The authors then tested the hypothesis that uncontrolled
NP might interfere with subsequent axon regeneration. Indeed,
neurons with dronc RNAi showed reduced regeneration, leading
to the conclusion that Dronc activity promotes axon regeneration
by limiting NP.

Neuronal pruning by localized apoptotic caspase activity in
Drosophila has parallels in mice where proteasome activity and
localized expression of an IAP protein keep the activity of
caspases 3 and 9 away from the cell body and restricted to
axons to be pruned (Cusack et al., 2013).

Sub-Cellular House-Cleaning
Fungi and plants encode metacaspases, which are proteases that
share similar tertiary structure and an active-site cystine with
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caspases but cleave after Arg or Lys instead of Asp [reviewed in
(Minina et al., 2017)]. Budding yeast metacaspase YCA1 is
dispensable for cell death (Hauptmann et al., 2006; Kang
et al., 2008; Palermo et al., 2013) but yca1 mutants show
elevated stress response proteins, cytoplasmic protein
aggregates and reduced replicative lifespan (Lee et al., 2010;
Hill et al., 2014). These data suggest a non-lethal role for a
metacaspase in removing harmful protein aggregates from the
cytoplasm. Paradoxically, apoptotic caspases may provide an
opposite function, to clutter rather than to clean, in
Alzheimer’s disease (AD) where microtubule-binding protein
Tau forms aggregates called neurofibrillary tangles (NFT)
(Medeiros et al., 2011). Several lines of data suggest that
cleavage of Tau by apoptotic caspases leads to NFT. Tau bears
a caspase 3-consensus site and the caspase-cleaved form of Tau as
well as cleaved (active) caspase 9 are detected with specific
antibodies in neurons from AD patients but not non-AD
controls (Rohn et al., 2002; Gamblin et al., 2003). In mouse
disease models, activation of effector caspases precedes NFT
formation and caspase-cleaved Tau is sufficient to promote
NFT formation in wild type brains (De Calignon et al., 2010).
Finally, caspase-cleaved Tau forms fibrils more rapidly than full
length Tau in vitro (Gamblin et al., 2003). Collectively, these data
lead to the model that apoptosis caspase activity that is not
immediately followed by cell death results in Tau NFTs and
disease.

A Drosophila model of AD demonstrates a non-lethal role of
apical caspase Dronc in Tau cleavage and enabled an investigation of
the observed correlation between circadian dysregulation and
susceptibility to neurodegeneration (Means et al., 2015).
Disruption of circadian rhythm by RNAi-mediated knock-down
of circadian kinase encoded by double time (dbt) or its genetic
interactor spaghetti in Drosophila clock neurons led to Dronc
activation as detected with an antibody against the cleaved form.
Dronc activation in these experiments was observed only during
daytime or after light exposure during the night, could spread to
nearby non-clock cells, and increased with fly age. Expression of a
dominant-negative dbt in the Drosophila eye led to Dronc activation
in this tissue, cleavage of co-expressed human Tau in a Dronc-
dependent manner, and neurodegeneration phenotypes. These
results in Drosophila parallel the relationship between apoptotic
caspase activity, Tau and neurodegenerative disease observed in
mammals as described in the preceding paragraph. Furthermore,
Drosophila studies add to this picture by identifying Dronc activation
as a possible mechanism that links circadian dysregulation with
susceptibility to neurodegeneration.

Signaling to Other Cells
Studies in mice and Drosophila show that dying cells send
mitogenic signals that promote tissue homeostasis. In
Drosophila larval wing imaginal discs, Dronc promotes
Apoptosis-induced Proliferation (AiP) through different
mechanisms. First, Dronc acts together with JNK to
produce Wg that acts as a secreted mitogen (Perez-Garijo
et al., 2004; Ryoo et al., 2004; Kondo et al., 2006). Second,
Dronc activation leads to the elevation of extracellular
Reactive Oxygen Species, which recruits macrophages that

secrete Eiger/Tumor Necrosis Factor (TNF) to activate JNK
and sustain mitogenic signaling (Fogarty et al., 2016; Khan
et al., 2017). The role of Dronc in AiP is distinct from its role
in activating effector caspases for apoptosis because AiP still
occurs when the effector caspases are inhibited. In mice,
effector caspases 3/7 cleave and activate Calcium-
independent phospholipase A2 to result in the generation
and release of prostaglandin E, a known promoter of cell
proliferation (Li et al., 2010; Huang et al., 2011). Thus,
apoptotic caspase activity produces non-cell autonomous
mitogenic signaling in both Drosophila and mammals,
albeit through different downstream targets.

A parallel story has emerged recently in Drosophila thermal
nociception (sensing painful heat) where Dronc and Eiger
function in a non-apoptotic manner to promote sensitization
to pain (Jo et al., 2017) (Figure 2C). The exposure of
Drosophila larval epidermis to UV results in both apoptosis
and allodynia (extreme sensitivity to pain). The latter
outcome can be observed as an adverse response to thermal
stimuli that would not elicit a response in non-irradiated
animals. Dronc is required for both UV-induced apoptosis
and thermal allodynia while effector caspases Drice and Dcp1
are required only for apoptosis, suggesting that Dronc plays a
non-apoptotic role to induce allodynia. This idea is supported
by the finding that doses of UV that are too low to induce
apoptosis still induced thermal allodynia in a Dronc-
dependent manner. Dronc, it was found, acts in the
epidermis to produce Eiger/TNF that then signals through
TNF Receptor (TNFR) on sensory neurons to induce thermal
allodynia. Induction of Dronc in the epidermis, even when
effector caspases are inhibited to prevent Dronc-induced
apoptosis, results in thermal allodynia in an Eiger-
dependent manner without UV exposure, further lending
evidence to a non-apoptotic role for this apoptotic caspase.

REMAINING QUESTIONS

Given that activation of apoptotic caspases can lead to apoptosis,
how do cells restrict this activity for other purposes without being
killed? Two mechanisms emerge from the examples described
here: keeping caspase activity too low for apoptosis or restricting
it spatially. For both mechanisms, regulatory inputs appear to
integrate at the level of Diap1, an E3 ubiquitin-ligase that inhibits
Dronc viamono- or poly-ubiquitination (Lee et al., 2011; Kamber
Kaya et al., 2017). For the first mechanism, IKK-dependent
regulation of Diap1 degradation and Hpo/Yki-dependent
regulation of Diap1 transcription could keep caspase activity
below the threshold for apoptosis yet sufficient to regulate
SOP number. For the second mechanism, spatial restriction of
Diap1 degradation in C4da neurons may be what allows localized
caspase activation and dendrite pruning without killing the cell.
Other mechanisms besides regulation of Diap1 likely exist but a
comprehensive identification of such mechanisms would require
the ability to identify cells that activated apoptotic caspases
but did not die. Two recently-described biosensors are helping
in this regard. Caspase Tracker and CasExpress rely on
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caspase-mediated recombination events that result in permanent
GFP expression, marking cells with past apoptotic caspases
activity as well as their clonal descendants (Tang et al., 2015;
Ding et al., 2016). These reporters reveal many cell types,
including those in the neuronal lineage, that activate apoptotic
effector caspases but do not die during Drosophila development.
An RNAi screen using a version of the CasExpress reporter
identified genes that altered the number of living cells with
past caspase activity (Sun et al., 2020). Some of these genes act
downstream of or in parallel to caspase activation to decide
whether a cell that activated apoptotic caspases will survive or
not. One of these genes encodes a homolog of human CDKN1A-
interacting zinc finger protein 1 (CIZ1); how CIZ1 functions to
preserve cells that activated caspases remains to be determined. It
would be interesting to see if CIZ1 or other regulators of cell
survival after caspase activation identified using the CasExpress
reporter play a role in the nervous system.
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