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Abstract: Radiomics texture analysis offers objective image information that could otherwise not
be obtained by radiologists′ subjective radiological interpretation. We investigated radiomics
applications in renal tumor assessment and provide a comprehensive review. A detailed search of
original articles was performed using the PubMed-MEDLINE database until 20 March 2020 to identify
English literature relevant to radiomics applications in renal tumor assessment. In total, 42 articles
were included in the analysis and divided into four main categories: renal mass differentiation,
nuclear grade prediction, gene expression-based molecular signatures, and patient outcome prediction.
The main area of research involves accurately differentiating benign and malignant renal masses,
specifically between renal cell carcinoma (RCC) subtypes and from angiomyolipoma without visible
fat and oncocytoma. Nuclear grade prediction may enhance proper patient selection for risk-stratified
treatment. Radiomics-predicted gene mutations may serve as surrogate biomarkers for high-risk
disease, while predicting patients’ responses to targeted therapies and their outcomes will help
develop personalized treatment algorithms. Studies generally reported the superiority of radiomics
over expert radiological interpretation. Radiomics provides an alternative to subjective image
interpretation for improving renal tumor diagnostic accuracy. Further incorporation of clinical
and imaging data into radiomics algorithms will augment tumor prediction accuracy and enhance
individualized medicine.

Keywords: radiomics; texture analysis; machine learning; deep learning; artificial neural network;
small renal mass; angiomyolipoma; oncocytoma; renal cell carcinoma; kidney cancer

1. Introduction

In 2018, renal cell carcinoma (RCC) accounted for 403,300 newly diagnosed cancer cases and
175,100 deaths worldwide [1]. In the United States alone, RCC is the sixth most common cancer in men
and eighth in women, accounting for 5% and 3% of all newly diagnosed cases annually, respectively [2].
An increasing incidental detection of renal masses with cross-sectional imaging led to the diagnosis of
more asymptomatic, small, and clinically localized renal masses. Small renal masses (SRMs), defined as
≤4 cm in diameter, account for more than 50% of all renal masses, approximately 10–30% of which result
in benign histology [3,4]. The diagnosis of SRMs carries the risk of subjecting patients to unnecessary
procedures and overtreating lesions that may not progress.
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Renal tumor biopsy (RTB) provides a means for tissue sampling to assist in tumor histological
and subtype diagnosis for risk-stratified management [4]. Although it shows high diagnostic accuracy
for RCC, RTB is an invasive procedure and it is criticized for its inability to sample tumors at
multiple sites and distinguish tumor histologic subtypes and nuclear grade [5]. Due to its improved
soft-tissue contrast, magnetic resonance imaging (MRI) outperforms computed tomography (CT) in the
evaluation of indeterminate renal masses [6], local invasion, and intravascular extension [7]. However,
the differentiation of benign lesions, particularly oncocytoma and angiomyolipoma without visible
fat (AMLwvf), from RCC can be challenging due to subjective radiological image interpretation [8].
Radiomics is a term that encompasses various techniques for the extraction of quantitative features
from medical images to improve diagnostic, prognostic, and predictive image interpretation accuracy.
It is essentially the conversion of images into metadata for subsequent mining to improve clinical
decision-making algorithms [9]. It assists physicians in identifying complex image patterns that are
not visible to the naked eye by using artificial intelligence (AI) methods [10]. Recent advancements
in AI, specifically in machine and deep learning, accelerated the application of radiomics to medical
imaging as a new beacon to guide clinical decisions.

2. Materials and Methods

2.1. Study Aims

The primary objective was to perform a comprehensive review of the literature on current
radiomics applications in renal mass assessment. The secondary objective was to provide a narrative
summary of articles evaluating the accuracy of radiomics for distinguishing benign and malignant
tumors, predicting nuclear grade, obtaining gene expression-based biomarkers, and prognosticating
RCC patients.

2.2. Literature Search

A comprehensive search of English language literature was conducted using the
PubMed-MEDLINE database up to 20 March 2020. To capture recent trends in radiomics applications,
the search was limited to articles published within the last five years. The search strategy included the
following broad terms in isolation or combination: “kidney cancer”, “renal cell carcinoma”, “machine
learning”, “deep learning”, and “radiomics”. We repeated searches on all newly identified articles
until no further relevant articles were found. Titles and abstracts of articles that were identified by the
keyword search were retrieved for full-text evaluation. Potentially eligible articles were independently
screened against the study selection criteria by two authors (R.S. and M.B.).

2.3. Inclusion and Exclusion Criteria

Two authors (R.S. and M.B.) individually determined inclusion/exclusion of all articles retrieved
in full text, and discrepancies were resolved through discussion by a third reviewer (A.M.). Studies
that met the following criteria were included: (a) renal tumor radiomics-based analysis; (b) articles
written in English; (c) peer-reviewed publications; (d) methodology documented in replicable detail.
After article selection and according to the eligibility criteria, the following types of studies were
excluded: articles not related to renal tumors, articles not written in English, review articles, editorials,
and replies from author. In accordance with the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) criteria, Figure 1 was included to delineate our article selection process.
After full-text evaluation, data were independently extracted by the authors for further assessment of
qualitative and quantitative evidence synthesis.
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Figure 1. Summary of study selection process.

2.4. Data Extraction and Quality Assessment

Data extraction from each study was independently conducted by two authors (R.S. and M.B.).
As proposed by the PRISMA guidelines, we used the population, intervention, comparator, outcomes,
and study design approach to specify the eligibility criteria. The studies were considered eligible if
patients with renal masses (population) were evaluated with CT/MRI/positron-emission tomography
(PET)-based radiomics data (intervention), compared to radiologists’ subjective image assessment
(comparator) or as a single-arm study group, to investigate the accuracy for benign and malignant
tumor differentiation, to predict nuclear grade, identify molecular biomarkers, and determine patient
outcomes (outcome). After full-text evaluation, data were independently extracted by the authors for
further assessment of qualitative and quantitative evidence synthesis. The following information was
extracted from each study: name of author, journal and year of publication, imaging method, number
of patients per study, mean age, mean lesion diameter, radiomics method, texture features extracted,
and outcome prediction accuracy.
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3. Results

3.1. Characteristics of Included Studies

A total of 94 articles were identified from the search query. Overall, 36 reports were excluded
after title and abstract review, for the following reasons: 10 not related to urology, 16 not related to
renal cell carcinoma, five review articles, four articles not in English, and one reply to authors. After
full-text evaluation, 19 articles were excluded because they did not meet the study´s objectives. Finally,
we carefully read the full text of each of the remaining 39 articles which were included in the review.
The flow chart of the study selection process is shown in Figure 1. The 39 included studies were divided
into four main categories according to study objectives: 19 for tumor differentiation, 11 for nuclear
grade prediction, six for gene expression-based molecular biomarkers, and three for patient outcome
prediction. Tumor differentiation was further subclassified into four for malignant vs. benign renal
mass diagnosis, seven for RCC vs. angiomyolipoma without visible fat, four for RCC vs. oncocytoma,
and four for RCC subtypes.

3.2. Renal Mass Differentiation

The adoption and widespread use of cross-sectional imaging increased the detection rate of renal
masses [11]. However, the diagnostic migration toward early disease stages was not translated into
improved cancer-specific mortality for localized RCC, indicating that many incidental renal masses are
unlikely to progress and pose a threat to patients in the long term [12]. These findings contributed to
the growing awareness in the overdiagnosis and overtreatment of these tumors.

The decision whether to treat patients with renal masses is often made without a definitive
histologic diagnosis. Therefore, treatment decision-making and management are heavily reliant on
clinical imaging. Although RTB can be used to differentiate malignant from benign histology, its role is
selective and limited in its ability to discern between aggressive and indolent disease. Several studies
showed an inverse correlation between renal mass radiographic size and the probability of harboring
benign or low-grade pathology in surgical specimens [13]. Although the likelihood of malignancy
increases with mass size, current imaging modalities and subjective radiological image interpretation
cannot reliably distinguish malignant tumors from certain benign tumors, such as oncocytomas and
AMLwvf [14].

Studies showed that renal masses including RCC subtypes, AMLwvf, and oncocytomas can
be portrayed with distinct gray-level imaging patterns that are traceable by radiomic analysis [15].
Radiomics includes a number of approaches designed to convert medical images to quantitative,
minable, and high-dimensional data [3]. Machine (ML) and deep learning (DL) algorithms are used to
automatically extract and analyze histogram, texture, and shape information from imaging data which
may not be evident to the naked eye. Given the limitations of conventional medical imaging, there is
increased interest to apply radiomics in oncological imaging as a tool to obtain diagnostic, predictive,
and prognostic information from routine clinical imaging [16]. However, despite its extensive use
in research and favorable results linking CT/MRI texture features to renal mass characterization,
the routine use of radiomics in clinical practice is yet to be seen. For imaging markers, including
texture-based metrics, to bridge the translational gap between an experimental research tool and
a clinically applicable diagnostic algorithm, its technical and biological validity, biological validity,
qualification, and cost-effectiveness need to firstly be established [3].

3.2.1. Benign vs. Malignant Renal Masses

Kunapuli et al. compared 11 ML methods for the development of a clinical decision support
(CDS) tool to classify renal masses. Features characterizing relevant metrics were extracted from
four-phasic contrast enhanced computed tomography (CECT) images of 150 patients with various
benign and malignant lesions. Overall, their relational functional grading boosting (RFGB) model
achieved the highest prediction accuracy and area under the curve (AUC) (0.83) from all 11 methods
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and was identified as a promising CDS tool for renal mass identification [17]. Similarly, Erdim et al.
compared eight ML algorithms to construct a prediction model for renal mass diagnosis based on
CECT imaging from both benign and malignant lesions. The random forest model showed the highest
accuracy (90.5%) and AUC (0.92) and was a suitable method to distinguish benign and solid renal
masses in nine-tenths of patients [18]. Sun et al. compared the performance of radiologic radiomic ML
models and expert-level radiologists to differentiate benign from malignant solid renal masses using
CECT examinations. The radiomic ML model yielded overall higher performance values in terms
of sensitivity and specificity for differentiating clear cell renal cell carcinoma (ccRCC) from papillary
RCC (pRCC) and chromophobe RCC (chRCC), ccRCC from AMLwvf and oncocytoma, and pRCC
and chRCC from AMLwvf and oncocytoma [15]. Similarly, Xi et al. developed a DL model based on
MRI data and compared it to four expert radiologists to distinguish benign renal tumors from RCC.
The DL model showed overall higher accuracy, sensitivity, and specificity and was comparable to
expert diagnostic opinion [19]. Table 1 summarizes articles investigating the differentiation of benign
from malignant lesions using radiomics strategies.

3.2.2. Angiomyolipoma (AMLwvf) vs. RCC Subtypes

Angiomyolipoma (AML), the most common benign solid renal tumor, is composed of varying
amounts of dysmorphic blood vessels, smooth muscle components, and mature adipose tissue [35].
Its diagnosis relies on the identification of macroscopic fat that is normally easily detected by CECT or
MRI. However, up to 5% of AMLs lack macroscopic fat, a condition known as AML without visible
fat (AMLwvf), making it challenging to differentiate them from RCC by conventional imaging [36].
Several studies described certain imaging features that are highly suggestive of AMLwvf and analyzed
them with radiomics models [20–23,25,26].

By applying artificial neural network (ANN) classifiers, Yan et al. showed that texture analysis (TA)
may be a reliable quantitative strategy to differentiate between AMLwvf, ccRCC, and pRCC with an
accuracy in the range of 90.7–100% based on three-phasic CECT scan images [20]. Other investigations
employed similar strategies, although with ML-based TA from CECT images, and they reported higher
accuracy (93.9%) and AUC (0.955) [21,24]. Moreover, Cui et al. proposed an automatic computer
identification system to differentiate AMLwvf from all RCC subtypes from whole-tumor CECT images
using an over-sampling technique to increase the sample volume of AMLwvf [23]. They showed
that morphological interpretation by radiologists achieved overall lower performance differentiating
AMLwvf from all RCC subtypes. While some studies investigated deep feature classification, by using
ML and ANN-based classifiers, to improve texture features to further enhance the differentiation
between AMLwvf and RCC [22], others built radiomics nomograms from these texture features,
showing that they outperform other models using solely clinical factors [25]. Interestingly, Ma et al.
not only showed that whole-tumor radiomics-based CECT analysis is superior to conventional CECT
analysis, but also that the unenhanced phase showed higher AUC than the corticomedullar phase
(CMP) and nephrographic phase (NP) [26]. These findings are encouraging for the future acquisition of
imaging studies without the need of contrast agents to spare patients with renal masses the associated
radiation burden of multi-phasic CECT. Table 1 summarizes studies investigating the differentiation of
AMLwvf from RCC subtypes.
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Table 1. Summary of studies applying radiomics for renal tumor differentiation.

Author Imaging Patients Mean Age Mean Lesion
Diameter (cm)

Radiomics
Method Texture Features Predicted Outcome Accuracy

Benign vs. Malignant Tumor Differentiation

Kunapuli et al.
2018 [17]

Four-phasic CECT

150 patients

NA NA 11 ML-based
classifiers

40 features extracted per phase from
all patients (Gray-level histogram,

GLCM, GLDM)

Decision support tool for renal
mass classification

70 ccRCC

20 pRCC

10 chRCC RFGB methods showed the best performance
for dealing with class imbalance, accuracy

(0.83) and AUC (0.83) from all
11 methods tested.

20 AMLvwf

30 oncocytoma

Sun et al. 2019 [15] Three-phasic
CECT

290 lesions

ML-based SVM
classifiers

35 features for ccRCC vs. pRCC,
22 features for ccRCC vs. AMLwvf

and oncocytoma, 11 features for
pRCC/chRCC vs.

AMLwvf/oncocytoma

Radiomics ML models for benignvs.
malignant tumor differentiation and
comparison with expert radiologists

190 ccRCC 59 (23–85) 4.00

26 pRCC 54 (19–76) 4.16

38 chRCC 51 (24–83) 4.61 Radiologists performance were as follows:
sensitivity 73.7–96.8% and specificity of

48.4–71.9% for differentiating ccRCCs from
pRCCs and chrRCCs; sensitivity of 73.7–96.8%
and specificity of 52.8–88.9% for differentiating

ccRCCs from AMLwvf and oncocytomas;
and sensitivity of 28.1–60.9% and specificity of

75.0–88.9% for differentiating pRCCs and
chrRCCs from AMLwvf and oncocytomas.
Radiomic ML model yielded sensitivity of
90.0%, 86.3%, and 73.4% and specificity of

89.1%, 83.3%, and 91.7%, respectively.

26 AMLwvf 47 (24–68) 2.99

10 oncocytoma 42 (28–56) 3.95

Xi et al. 2020 [19]
MRI T2 weighted

and T1
post contrast

1162 renal lesions

NA NA
Ensemble deep
learning model

Images randomly divided into
training set of 816 lesions with

408,000 augmented images,
validation set of 234 lesions, and test

set of 112 lesions.

Deep learning model distinguishing benign
tumors from RCC655 malignant

507 benign

Compared to four expert radiologists,
the ensemble DL model had higher test

accuracy (0.70 vs. 0.60, p = 0.053), sensitivity
(0.92 vs. 0.80, p = 0.017), and specificity

(0.41 vs. 0.35, p = 0.450).
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Table 1. Cont.

Author Imaging Patients Mean Age Mean Lesion
Diameter (cm)

Radiomics
Method Texture Features Predicted Outcome Accuracy

Erdim et al.
2020 [18]

Two-phased CECT

63 malignant
masses 57.2 ± 12.6 5.84 ± 3.3

Eight ML-based
algorithms
for model

development

198 features from unenhanced phase
and 24 from CMP

ML prediction of benign and malignant
renal masses

25 ccRCC

The accuracy and AUC were 90.5% and 0.915,
respectively. After eliminating the highly

collinear features from the analysis,
the accuracy and AUC values slightly

increased to 91.7% and 0.916, respectively.

23 pRCC

15 chRCC

21 benign 54.9 ± 15.5 3.6 ± 1.4

11 AMLwvf

10 oncocytoma

Angiomyolipoma without visible fat (AMLwvf) vs. RCC subtypes

Yan et al. 2015 [20] Three-phasic
CECT

Pathologically
proven:

ANN classifier
Image histogram, gradient, GLRL
matrix, autoregressive model and

wavelet transform

Differentiation between AMLwvf, ccRCC
and pRCC

18 AML 44.5 (26–61) 2.85 (range,
0.8–5.1)

Excellent classification results (0% to 9.3%
error) were obtained for all three groups,

independently of CT phase used. Unenhanced
phase showed better trend for classification.

18 ccRCC 53.9 (36–79) 3.3 (range,
1.5–4.9)

14 pRCC 57.6 (34–77) 3.3 (range,
1.4–5.1)

Feng et al.
2018 [21]

Three-phasic
CECT

58 SRM patients:
ML-based SMV

classifier for
quantitative

texture analysis

Image histogram and GLCM

Differentiating AMLwvf from ccRCC

41 ccRCC 56.2 ± 12.3 3.2 ± 0.7 SMV classifier discriminated between
AMLwvf and ccRCC with accuracy, sensitivity,
specificity and AUC of 93.9%, 87.8%, 100% and

0.955, respectively.
17 AMLwvf 48.7 ± 10.8 2.8 ± 0.9

Lee et al. 2018 [22] CECT

41 ccRCC

NA NA

Deep feature
classification with

CNN and
ML-classifiers

- Hand-crafted texture and
shape features

Deep feature classification of AMLwvf
and ccRCC

39 AMLwvf - Deep feature extraction Improved texture features enhance AMLwvf
and ccRCC differentiation.

Cui et al. 2019 [23] Three-phasic
CECT

171 pathologically
proven

renal masses

NA

ML-based SMV
established

differentiation
classifiers

Shape, GLCM, GLRL matrix,
gray-level-size zone matrix,

gray-tone difference matrix, and
gray-level-dependence matrix

Differentiation of AMLwvf from all
RCC subtypes

82 ccRCC 55.3 ± 11.6 Differentiating AML from all-RCC
(AUC = 0.96) and ccRCC (AUC = 0.97) was

higher than AML from non-ccRCC
(AUC = 0.89). Radiologists´ interpretation

achieved lower performance differentiating
AML from all-RCC (AUC= 0.067), ccRCC

(AUC = 0.68), and non-ccRCC (AUC = 0.64).

22 pRCC 49.3 ± 12.9

26 chRCC 55.0 ± 11.8

41 AMLwvf 48.6 ± 12.9
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Table 1. Cont.

Author Imaging Patients Mean Age Mean Lesion
Diameter (cm)

Radiomics
Method Texture Features Predicted Outcome Accuracy

Yang et al.
2019 [24]

Four-phasic CECT

163 SRM patients (median, IQR)

ML-based SMV,
LR and RF
classifiers

Extracted features: 1. shape, 2.
histogram analysis, and 3.

texture features

Differentiation of AMLwvf from
RCC subtypes

95 ccRCC Features extracted from unenhanced phase are
sufficient to generate accurate differentiation
between AMLwvf and RCC using ML-based
classification model. Two models achieved

classification AUC of 0.90.

10 pRCC 52.9 ± 13.1 2.9 (2.5, 3.3)

13 chRCC

45 AMLwvf 48.6 ± 13.7 2.5 (2.1, 3.3)

Nie et al. 2019 [25] Four-phasic CECT

63 ccRCC 58.6 ± 11.5 2.2 (0.8–8.8)
Radiomics feature

extraction for
signature and

nomogram

- Fourteen texture features built
radiomics signature Differentiating ccRCC from AMLwvf

36 AMLwvf 50.1 ± 8.3 2.7 (1.3–6.2) - Rad-score/clinical factors for
nomogram

Decision curve analysis demonstrated the
nomogram outperformed the clinical factors
model and radiomics signature in terms of

clinical usefulness.

Ma et al. 2020 [26] Three-phasic
CECT

62 ccRCC 57.9 ± 10.8 3.7 ± 1.6

Four radiomics
logistic classifiers

Radiomics feature parameters:
Histogram, texture, form factor,

GLCM and RLM

Differentiating ccRCC from AMLwvf

22 AMLwvf 50.5 ± 12.8 3.2 ± 0.9

Whole-tumor radiomics-based CT analysis
was superior to conventional CT analysis.

Cyst degeneration, pseudocapsule, and sum
rad-score were the most significant factors.

Unenhanced phase radiomics showed higher
AUC than CMP and NP groups.

Oncocytoma vs. RCC Subtypes

Yu et al. 2017 [27] Two-phasic CECT 119 RCC patients NA NA
CT TA with

ML-based SVM
classifier

43 texture features extracted from
renal tumor segments:

14 histogram-based, 5 GLCM,
11 GLRL, 4 GLGM,

and 9 Laws’ features.

Oncocytomavs. RCC subtypes

Excellent tumor discriminators were identified
with AUC of 0.91 and 0.93 (p < 0.0001)

respectively for differentiating ccRCC from
oncocytoma. AUC of 0.99 (p < 0.0001) for

differentiating pRCC from oncocytoma and an
AUC of 0.92 for differentiating oncocytoma

from other tumors. The ability of ML to
distinguish ccRCC from other tumors and

pRCC from other tumors showed AUC of 0.91
and 0.92, respectively.

Coy et al. 2019 [28] Four-phase CECT

128 ccRCC 62 (22–91) 3.8 (0.8–14.6)

ANN trained with
4000 iterations

ML-based texture extraction

Oncocytomavs. ccRCC

51 oncocytoma 69 (38–87) 3.9 (1.0–13.1)

Excretory phase of entire tumor volume
achieved highest 74.4% accuracy, 85.8%

sensitivity and 80.1% PPV. When combined
with tumor mid-slices of all phases then PPV

was 82.5%.
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Table 1. Cont.

Author Imaging Patients Mean Age Mean Lesion
Diameter (cm)

Radiomics
Method Texture Features Predicted Outcome Accuracy

Li et al. 2019 [29] Four-phase CECT

44 chRCC 50.8 (22–79)

NA
Five ML-based

classifiers (kNN,
SVM, RF, LR, MLP)

- Intensity statistics: peak value,
mean value and variance Chromophobe RCCvs. oncocytoma

- Shape features: Volume, surface
area, spherical value

All five classifiers had good diagnostic
performance, with AUC values greater than

0.85. SVM classifier showed the highest
diagnostic accuracy with 0.945.

17 oncocytoma 54.9 (35–79) - Texture features: GLRL and
size matrices

Accurate preoperative differential diagnosis of
chRCC and oncocytoma can be facilitated by a

combination of CT enhanced quantitative
features and ML.

Baghdadi et al.
2020 [30]

Three-phasic
CECT

212 renal masses
from 192 patients NA NA

CNNs
deep-learning

structure based on
TensorFlow

Semi-automated tumor-to-cortex
peak early-phase enhancement

ratio (PEER)

Chromophobe RCCvs. oncocytoma

PEER evaluation achieved 95% accuracy in
tumor type classification (100% sensitivity and

89% specificity) compared to the final
pathology results.

RCC Subtype Differentiation

Li et al. 2018 [31] Three-phasic
CECT

Training: - 170
patients 58.5 (21–84)

NA ML-based RF
classifier

For each tumor 156 texture features
extracted from triphasic CECT

Differentiation of clear cell and non-clear cell
RCC and radiomics link to VHL

gene mutation

Validation: - 85
patients

58.9 (33–81)

255 in total

118 ccRCC Eight all-relevant features from CMP were
selected. Model showed AUC of 0.95 and an

accuracy of 92.9% in the validation cohort.
Five out of eight all-relevant features were

significantly associated with VHL mutation.

36 pRCC

31 chRCC

Kocak et al.
2018 [32]

Three-phasic
CECT

68 RCC patients

5.9 (3.3–8.1) 5.9 (2.0–12.3)
ANN and

ML-based SVM
classifiers

275 texture features extracted:

Distinguishing the three main RCC subtypes

48 ccRCC

ANN discrimination of non-ccRCC from
ccRCC subtypes with an external validation
accuracy, sensitivity, and specificity of 84.6%,

69.2%, and 100%, respectively.

13 pRCC SVM discrimination of pRCC from other RCC
subtypes with an external validation accuracy,

sensitivity, and specificity of 69.2%, 71.4%,
and 100%, respectively.

7 chRCC
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Table 1. Cont.

Author Imaging Patients Mean Age Mean Lesion
Diameter (cm)

Radiomics
Method Texture Features Predicted Outcome Accuracy

Yin et al. 2018 [33] PET/MRI
23 specimens from
8 primary ccRCC NA NA

Sparse and
generalized partial

least squares
discriminant

analysis

168 radiomics features for each tumor

ccRCC molecular subtype prediction

The correct classification rate (CCR) for
molecular subtype classification using only

radiomics features was 86.96%. When
combining messenger RNA (mRNA),

microvascular density, and clinical parameters
from each specimen with radiomics features

the best CCR was 95.65%.

Han et al.
2019 [34]

Three-phasic
CECT

169 patients

NA NA GoogLeNet CNN ROI selection in each phase image

Distinguishing the three main RCC subtypes
57 ccRCC

56 pRCC When compared to a biopsy-proven dataset,
CNN showed 0.85 accuracy, 0.64–0.98

sensitivity, 0.83–0.93 specificity, and 0.90 AUC.56 chRCC

ML-based classifiers refer to the insertion of a new observation into the appropriate category among others that were based on trained datasets of known observations. Support vector
machines (SVM) are supervised learning methods for classification that learn the optimal difference between features of each class. Random forest (RF) is a supervised learning method for
a classification that is based on decision trees. AMLwvf, angiomyolipoma without visible fat; ANN, artificial neural network; AUC, area under curve; ccRCC, clear cell renal cell carcinoma;
CECT, contrast-enhanced computed tomography; chRCC, chromophobe RCC; CMP, corticomedullar phase; CNN, convoluted neural network; DL, deep learning; GLCM, gray-level
co-occurrence matrix; GLGM, gray-level gradient matrix; GLRL, gray-level run-length; LR, logistic regression; ML, machine learning; MRI, magnetic resonance imaging; NA, not available;
NP, nephrographic phase; PET, positron-emission tomography; PPV, positive predictive value; pRCC, papillary RCC; RF, random forest; RFGB, relational functional grading boosting; ROI,
regions of interest; SMV, support vector machine; SRM, small renal mass; TA, texture analysis.
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3.2.3. Oncocytoma vs. RCC Subtypes

Renal oncocytoma is a benign renal tumor, accounting for approximately 3–7% of all renal
tumors [37]. Although it is widely believed that a central stellate scar is its main characteristic,
it was reported present in only 46% of cases and may also appear in 26% of chRCC [38]. Moreover,
there are overlapping imaging features between ccRCC and oncocytoma making their differentiation
challenging [39]. Therefore, a reliable radiomics method that is non-reliant on the presence of a central
scar to characterize oncocytomas would be an invaluable diagnostic tool.

Yu et al. evaluated the utility of TA for the distinction of oncocytoma from RCC subtypes. The ML
model’s ability to distinguish both ccRCC and pRCC from oncocytoma was excellent with AUC of
0.93 and 0.99, respectively [27]. Li et al. explored the clinical value of radiomics-based approaches,
by combining TA with five ML-based models, to differentiate oncocytoma from chRCC. They found
that all five classifiers performed well at differentiating between the two with AUC values over 0.85 and
concluded that their approach provides valuable preoperative diagnostic accuracy [29]. Other studies
used DL approaches such as convolutional neural networks (CNN) to accurately classify chRCC and
oncocytoma while also achieving 100% sensitivity in comparison with final pathology results [30].
Coy et al. investigated the diagnostic value and feasibility of a DL-based renal lesion classifier to
differentiate ccRCC from oncocytoma in 179 patients with pathologically confirmed renal masses on
routine four-phasic CECT [28]. When using the entire tumor volume in combination with tumor
mid-slices, the excretory phase showed the best classification performance with 74.4% accuracy, 85.8%
sensitivity, and a positive predictive value of 82.5%. Table 1 summarizes articles investigating the
distinction between oncocytoma and RCC subtypes.

3.2.4. RCC Subtype Differentiation

According to cell appearance, RCCs can be largely categorized into three major subtypes: ccRCC,
pRCC, and chRCC, which constitute more than 90% of all RCCs [40]. The clear cell variant is the most
lethal subtype, being most likely to metastasize, whereas the pRCC and chRCC subtypes show better
survival rates [41]. Therefore, RCC subtyping is clinically important due to the increased use of novel
molecular targeted therapeutic agents.

Kocak et al. developed models to distinguish between the three major RCC subtypes using
ML-based quantitative CECT TA. Although texture features derived from CMP performed better than
those from unenhanced phase, ML-based TA was relatively poor for distinguishing between the three
major RCC subtypes with overall 69.2% accuracy. However, when using CMP images with an ANN
boosting algorithm, accuracy improved to 84.6% [32]. Similarly, Han et al. exploited a DL framework
to distinguish between RCC subtypes using CECT images. Three-phasic input images were fed to an
ANN; its performance was tested with a dataset of 169 biopsy-proven cases and showed an AUC of
0.90 regardless of subtypes [34]. Li et al. developed ML-based radiomics models with CECT images
for differentiating ccRCC from non-clear-cell variants and investigated a potential radiogenomics
link between imaging features and the von Hippel–Lindau gene mutation. The eight most relevant
CMP features were selected to build a ML-based model which achieved a validation AUC of 0.95 and
92.5% accuracy. Five out of the eight all-relevant features were significantly associated with the von
Hippel–Lindau gene mutation [31].

Yin et al. combined positron-emission tomography (PET)/MRI-based radiomics as a surrogate
biomarker for intratumoral disease risk of molecular subtype ccA and ccB in patients with primary
ccRCC [33]. The sparse partial least squares discriminant analysis method was applied to 168 radiomics
features selected from 23 specimens of eight patients. Using radiomics features only, the correct
classification rate for molecular subtype classification was 86.96%. When combining radiomics features
with clinical parameters, mRNA, and microvascular density from each specimen, the best classification
rate was 95.65%.
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3.3. Nuclear Grade Prediction

The International Society of Urological Pathology (ISUP) and Fuhrman grading systems categorize
patients’ risk based on pathological features, discriminating between high- and low-risk tumors, which
correlate with prognosis. The heterogeneity of tumor images quantitatively assessed by radiomics
may enhance proper patient selection for surveillance avoiding RTB, and in decision-making between
nephron-sparing and radical approaches. RTB carries risks of invasiveness and sampling bias; therefore,
it is reasonable to search for accurate, safe, and non-invasive methods. Moreover, 16% of nuclear grade
upstaging was reported on surgical pathology, resulting in an accuracy between 51.5% and 75.9% for
grade discrimination [13].

Several retrospective studies evaluated the performance of radiomics for predicting RCC
nuclear grade and showed satisfactory accuracy (Table 2). Two studies assessed the accuracy of
non-enhanced-CT scan images to differentiate between low- and high-grade tumors. An 85.1%
accuracy was reported using ML-based TA, similar to the 81.5% accuracy reported when using ANN
algorithms [42,43].



Cancers 2020, 12, 1387 13 of 25

Table 2. Summary of studies applying radiomics to predict nuclear grade in ccRCC.

Author Imaging Patients Mean Age Mean Lesion
Diameter (cm) Method Texture Features Predicted Outcome Accuracy

Bektas et al. 2018 [42] Single-pase CECT

23 high-grade

59 (35–81) 5.0 (range 1.6–14.5)

ML-based SMV, MLP, naïve
Bayes, k-nearest neighbors,

and random forest
classifiers for quantitative
two-dimensional (2D) TA

Histogram, gradient,
GRLM, and

autoregressive model

High-grade (Fuhrman 3–4)
tumor detection

31 low-grade

SMV model predicted high-grade
pathology with 85.1% overall accuracy,

91.3% sensitivity, 80.6% specificity,
and AUC of 0.860.

Ding et al. 2018 [44] Three-phasic
CECT

Training: 74
low-grade 59.5 (50–65)

NA
ML-based LASSO to select

features and build a
texture-score

Histogram, GLCOM,
and GRLM

Detection of high-grade (Fuhrman 3–4)
and prediction models

40 high-grade 62 (52–68) Training cohort

Validation: 71
low-grade 58 (52–65) Texture-score AUC 0.843 (0.765–0.920).

Non-TA features (round mass, diameter,
artery tumor, relative tumor

enhancement value) were compared to
TA features and round mass was similar

(AUC: 0.723 (0.632–0.803)). Prediction
model including both texture and

non-texture features did not outperform
that including solely TA features in

both cohorts.

21 high-grade 59 (47–64)

Shu et al. 2018 [45] Three-phasic
CECT

161 low-grade 55.8 ± 10.7 4.8 ± 1.6

LASSO for feature selection.
Models built by LR

First-order statistics,
shape, GLCOM,

GRLM, and gray-level
size zone matrix.

High-grade (Fuhrman 3–4)
tumor prediction

99 high-grade 59.3 ± 10.8 6.3 ± 2.1

Three models were created using
features from CMP, NP, or CMP + NP.

CMP model’s accuracy was 71.9%, AUC
0.766 (0.709–0.816), sensitivity 0.602,

and specificity 0.838; NP model’s
accuracy was 73.8%, AUC 0.818
(0.765–0.838), sensitivity 0.693,

and specificity 0.838; and CMP + NP
model’s accuracy was 77.7%, AUC 0.822

(0.769–0.866), sensitivity 0.677,
and specificity 0.839. The CMP + NP

model’s AUC was significantly higher
than that of CMP alone and all other
AUCs were similar between them.
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Table 2. Cont.

Author Imaging Patients Mean Age Mean Lesion
Diameter (cm) Method Texture Features Predicted Outcome Accuracy

Gill et al. 2019 [46] Four-phasic CECT

54 low-grade 61.5 3.40 ± 1.80

Radiomics panel of
tissue characterization

Histogram analysis,
GLCOM, gray-level

difference matrix, 2D
Fourier-transform

analysis, and
spectral analysis

Differentiating juxtatumoral
perinephric fat of high-grade (ISUP

3–4)vs. low-grade (ISUP 1–2)

30 high-grade
(ISUP) 61.7 4.33 ± 2.24

All TA methods but gray-level difference
matrix showed differences and increased

heterogeneity index in high-grade
juxtatumoral perinephric

fat.The measure of correlation coefficient
form GLCOM had the best accuracy

(AUC 0.746 (0.63–0.86)).

Goyal et al. 2019 [47] Multi-phasic MRI

19 low-grade

50.3
(including
5 non-ccRCC)

6.63 ± 3.2
(including 5
non-ccRCC)

ML-based TexRAD
arranging according to size

in SSF
Filtration histogram.

High-grade (Fuhrman 3–4)
tumor detection

10 high-grade

The best performance was found in
Entropy (at SSF 6 on diffusion-weighted

image) AUC: 0823 (0.618–1.0), mean
(at SSF 3 on CMP) AUC: 0.889 (0.655–1.9),
and mean of positive pixels (at SSF 5 on

NP) AUC: 0.870 (0.712–1.0)

He et al. 2019 [48] Three-phasic
CECT

136 low-grade

57.3 ± 12.9

NA

ML-based on ANN fed with
radiomics signatures

prediction models

Gray-level histogram,
GLCOM, GRLM,

histogram of oriented
gradient, wavelet
transformations,

and autoregressive
models

Prediction accuracy of high-grade
(ISUP 3–4) tumors by 5 TA-based models

91 high-grade
(ISUP)

Five models based on features with the
best performance had a predictive mean
value of 92.46% ± 1.83%. The top-ranked
model was a combination of minimum

mean squared error of conventional
image features and CMP phase

(94.06% ± 1.14%)

Kocak et al. 2019 [43] NECT

25 low-grade

62
7.59 (range

2.5–16.4)
ANN and binary LR with

and without SMOTE

First order, GLDM,
GLCOM, GRLM,

gray-level size zone
matrix, neighboring
gray-tone difference

matrix, and
wavelet-based features

High-grade (Fuhrman 3–4)
tumor detection

56 high-grade
(Fuhrman)

The ANN algorithm (based on 5 TA
features) outperformed that of logistic
regression (based on 6 features). ANN

algorithm detected 81.5% of high-grade
tumors accurately (AUC: 0.714).

Lin et al. 2019 [49] Three-phasic
CECT

189 low-grade 54.9 ± 11.9

NA ML-based CatBoost

First-order, shape,
GLCOM, GRLM,

gray-level size zone
matrix, and GLDM

features.

High-grade (Fuhrman 3–4)
tumor detection

43 high-grade
(Fuhrman) 53.1 ± 12.6

The ML model based on three-phase CT
images detected high-grade tumors with
an AUC 0.87, outperforming those based

on single-phase images.
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Table 2. Cont.

Author Imaging Patients Mean Age Mean Lesion
Diameter (cm) Method Texture Features Predicted Outcome Accuracy

Shu et al. 2019 [50] Three-phasic
CECT

164 low-grade

57.3 ± 10.9

4.7 ± 1.5

LASSO for feature selection.
The k-nearest neighbor, LR,

MLP, random forest,
and SVM as ML-based

classifiers

First-order statistics,
shape, GLCOM,

GRLM, and gray-level
size zone matrix.

High-grade (ISUP 3–4) tumor prediction

107 high-grade
(ISUP) 6.2 ± 2.0

The best model was achieved by the
combined classifier (CMP + NP features)
with 91.7%–93.5% accuracy and an AUC

of 0.96–0.98 in the validation cohort
compared to the training cohort with
86.5%–90.8% accuracy and an AUC of

0.95–0.97.

Sun et al. 2019 [51] Three-phasic
CECT

155 low-grade 53 (47–62)

NA
ML-based SMV. Variant
selection and LASSO for

feature selection

First-order statistics,
shape and size, GRLM,

GLCOM, and
higher-order statistics

(from wavelet
transformation)

High-grade (ISUP 3–4) tumor prediction

72 high-grade
(ISUP) 57 (51–65)

A model combining features of both
phases (CMP and NP) with SMV

classifier achieved best performance in
the training and validation datasets, with

an AUC of 0.88 (0.77–0.95; sensitivity
0.85 and specificity 0.89) and 0.91

(0.65–0.99, sensitivity 0.83 and specificity
0.89), respectively.

Cui et al. 2020 [52]
Three-phasic

CECT and
multiphasic MRI

Internal cohort:
347 CTE, 93 MRI,

284 low-grade
44.4 (28–88)

NA ML-based CatBoost

First order features,
shape features,

GLCOM, GLDM,
gray-tone difference

matrix, GRLM,
gray-level

size-zone matrix

Comparison between CECT- and
MR-based high-grade (ISUP 3–4)

prediction

156 high-grade 57.4 (24–85)

MRI ML-TA accuracy did not
outperform that of CT either in the

internal (79% vs. 73%) or in the external
(69% vs. 74%) cohorts’ datasets.

External cohort:20
CECT + MRI, 10

low-grade
54.3 (38–70) High-grade accuracy prediction and

external validation

10 high-grade
(ISUP) 60.8 (42–76)

CECT and MRI multiphase TA improved
accuracy prediction 2–10% compared to

single-phase. Similar results between
cohort datasets were reported.

Classifiers in ML refer to the insertion of a new observation into the appropriate category among others that were based on trained datasets of known observations. Support vector
machines are supervised learning methods for classification that learn the optimal difference between features of each class. Random forest is a supervised learning method for classification
that is based on decision trees. CatBoost is a gradient boosting decision library based on decision trees. k-Nearest neighbor in non-parametric statistic algorithm for classification. SMOTE
is synthetic minority over-sampling technique and serves as a classification model. ANN, artificial neural network; ccRCC, clear cell renal cell carcinoma; CECT, contrast enhanced
compute tomography; CMP, corticomedullary phase; CT, computed tomography; GLCOM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GRLM, gray-level
run-length matrix; ISUP, International Society of Urological Pathology; LASSO, the least absolute shrinkage and selection operator; LR logistic regression; ML, machine learning; MLP,
multilayer perceptron; MRI, magnetic resonance imaging; NCCT: non-contrast enhanced compute tomography; NP, nephrographic phase; ROC, receiver operating characteristics; SMV,
support vector machine; SSF, spatial scaling factors; TA, texture analysis.
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Moreover, most studies built models with texture features retrieved from different phases of
CECT scans. Models combining texture features from several phases outperformed those using
single phase-based TA. Lin et al. used ML classifiers to extract texture features from every CT scan’s
phase (pre-contrast phase, CMP, and NP) and compared each phase alone to three-phase CT images.
The model combing all phases achieved the best accuracy (74%), positive predictive value (91%),
negative predictive value (59%), and AUC (0.87). The top-ranked models were reported by He et al.
with a predictive mean value of 92.5% ± 1.83% using ANN-based radiomics. The best accuracy
(94.1% ± 1.14%) was achieved by combining texture features from conventional image which were
calculated from manually selected regions of interest (ROI), such as mean attenuation, parenchyma
attenuation and absolute enhance attenuation, and CMP [45,48–51].

MRI has the advantage of fine soft-tissue characterization while avoiding radiation exposure;
therefore, Goyal et al. aimed to identify texture features from multiphasic MRI in a small cohort of
patients (n = 29) and found several features that provided excellent radiomics performance, where
the top three features held AUCs >0.82 [47]. Likewise, Cui et al. performed TA from multiphasic
CECTs (n = 347) and MRIs (n = 93) with an external validation of patients (n = 20) who underwent both
modalities. Interestingly, ML classifiers based on all-sequence MRI images (71% to 73% in internal and
64% to 74% in external validation) and all-phase CT images (77% to 79% in internal and 61% to 69% in
external validation) had significant increases in accuracy [52].

The creation of risk assessment scores for personalized medicine is promising, and radiomics is a
step forward in such a pathway by adding TA-based scores that might improve prediction accuracy.
A predictive score beyond textures features was reported by Ding et al., integrating ML-based texture
and non-texture features. Overall, a round-shape was a good discriminator of high-grade tumor (AUC:
0.723 (0.632–0.803)) similar to TA features; however, a model including both texture and non-texture
features did not outperform the TA-based model’s accuracy [44].

Similarly, image TA beyond the tumor was investigated by Gill et al. who compared TA from
juxtatumoral perinephric fat between low- and high-grade tumors and found that the majority of
features were significantly different, and the gray-level co-occurrence matrix had the best accuracy
(AUC 0.746 (0.63–0.86)) [46].

The clinical utility of radiomics to discriminate between low- and high-grade tumors is yet to
be determined; however, high accuracies were reported especially when using multi-phase images.
MRI was not proven to be better for discrimination, but this was based only on small patient
samples. Moreover, including texture feature analysis from tissues beyond the tumor and adding other
quantitative data based on the standard radiological features commonly used might improve radiomics
performance. Unifying radiomics to personalized medicine algorithms using clinical features and even
genomic data might help build more robust prediction scores.

3.4. Gene Expression-Based Molecular Biomarkers

Predicting molecular biomarkers by radiomics entails potential clinical utility, as TA-derived
scores might achieve appropriate accuracy and serve as surrogate biomarkers. Studies addressing this
topic are enlisted in Table 3.
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Table 3. Summary of studies applying radiomics and gene expression-based models to identify molecular biomarkers.

Author Source Patients Mean Age Method Biomarker(s) Texture Features Predicted Outcome Accuracy

Ghosh et al. 2015 [53] Four-phasic CECT
14 ccRCC

BAP1-mutant and 64
non-mutant

NA

Image-genomics pipeline.
Texture features from

3D-tumor images. Random
forest classifiers. Data

from TCGA

BAP1
Histogram, Haralick,

GRLM, GLCOM, mean
gray-level intensity

Prediction of BAP1 mutation status
by ML-based 3D-TA

Best rated model was that based on
NP, with an AUC of 0.71.

Kocak et al. 2018 [54] CMP of CECT

16 ccRCC mutant
PBRM1 and 29

non-mutant. (12 low-
and 33 high-grade)

60

ANN and ML-based TA
from images using random

forest classifiers. Data
from TCGA

PBRM1

Firs-order, GLDM,
GLCOM, GRLM,

gray-level size zone
matrix, neighbor

gray-tone difference
matrix, and

wavelet-based features.

Prediction of PBRM1 mutation
status by ANN and ML-based TA

ANN algorithm’s accuracy: 88.2%;
AUC: 0.925. The random forest

model’s accuracy: 95%; AUC: 0.987.

Li et al. 2018 [55]
Genes expression

panel 533 ccRCC NA

Genes whose expression
was associated with OS

were selected and
downsized by RF variable

selection, then were
categorized as high/low risk

groups according mean
genes’ expression

COL7A1, ARFGAP1,
BRD9, MC1R,

ATP13A1, POFUT2,
OTOF, ANAPC5,
CDCA3, IL20RB,

CDC7, FBXO3, ZIC2,
KL and CCDC137

None

Correlation between genes’
expression-based risk score and OS

Low-risk group had better prognosis
and recurrence-free survival. AUC

for the risk score and 3-year OS
was 0.784

Park et al. 2019 [56]

cDNA extracted
from

paraffin-embedded
tumor tissue

40 aggressive
t1 ccRCC 58.0 ± 11.3

Complementary DNA
(cDNA) extracted from

paraffin-embedded tumor
samples. Genes whose

expression was different in
aggressiveness were IHQ

stained. DNN and LR
model algorithms

FOXC2, CLIP4,
PBRM1, BAP1, SETD2,

and KDM5C
None

Association of biomarkers
with aggressiveness

137 non-aggressive
T1 ccRCC 58.7 ± 11.8

Lower FOXC2, PBRM1, and BAP1
expression was associated with
aggressiveness. DNN model’s

accuracy based on gene expression
was: 0.537 (AUC: 0.736), and LR:

0.555 (AUC: 0.651). Accuracy was
significantly increased by adding

IHQ data: DNN 0.852 (AUC: 0.796);
LR: 0.759 (AUC: 0.760)
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Table 3. Cont.

Author Source Patients Mean Age Method Biomarker(s) Texture Features Predicted Outcome Accuracy

Azuaje et al. 2019 [57] Histopathology
and proteomics

110 proteomics
524 histology

Proteomics- and
histology-based ML models.
RF for proteomics data and

DL for histology
images data

NA
Raw pixel intensity data

from thumbnails of
whole slides

Modelaccuracy detectingccRCC

Proteomic-based model’s accuracy
0.98, sensitivity and specificity of 0.97

and 0.99, respectively.
Histology-based model’s prediction
0.95, sensitivity and specificity of 1

and 0.93, respectively.

Yin et al. 2017 [58] PET-FDG/MRI 9 ccRCC NA Analysis of sparse
canonical correlation

VEGF expression
and MVD

SUV, spatiotemporal
association and
texture features

Correlation between vascularity and
radiomics features

PET/MRI combination had the
strongest correlation to MVD.

No association of VEGF expression
and radiomic features.

Classifiers in ML refer to the insertion of a new observation into the appropriate category among others that were based on trained datasets of known observations. Random forest
is a supervised learning method for classification that is based on decision trees. ANN, artificial neural network; AUC, area under the curve; ccRCC, clear cell renal cell carcinoma;
CECT, contrast-enhanced compute tomography; CMP, corticomedullary phase; CT, computed tomography; DNN, deep neural network; FDG, fluorodeoxyglucose radiotracer; GLCOM,
gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GRLM, gray-level run-length matrix; IHQ, immunohistochemistry; LR logistic regression; LR, logistic regression;
ML, machine learning; MVD, microvascular density; NP, nephrographic phase; OS, overall survival; ROI, regions of interest; SUV, standardized uptake value; TA, texture analysis; TCGA;
The Cancer Genome Atlas; VEGF, vascular endothelial growth factor.
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BRCA1-associated protein (BAP1) gene mutations are found in ~15% of ccRCC and are associated
with high-grade tumors and poor prognosis as reported in genome-wide association studies. Therefore,
Ghosh et al. tested radiomics to predict BAP1 mutation status on ccRCC and found an AUC of 0.71
for features retrieved from the NP phase of CECT scans. Similarly, Kocak et al. aimed to predict
the presence of gene PBRM1 mutations by creating an ANN algorithm and ML-based TA from CMP
images; they found that the former outperformed the latter, upholding 95% accuracy and 0.987 AUC for
PBRM1 mutation status. This tumor suppressor gene’s mutation was associated with advanced-stage
and higher grade ccRCC, and it was also suggested to influence response rates to immune checkpoint
inhibitors [53,54].

Angiogenesis is a largely known pathway in the pathophysiology of RCC, to such an extent that
several targeted therapies used in RCC aim to halt its development. Therefore, Yin et al. tested the
feasibility to predict tumor vascularity using radiomics features from PET and MRI in a small cohort
(n = 9). Tumor vascularity, vascular endothelial growth factor (VEGF) expression, and microvascular
density were measured from fresh frozen tissue specimens. A correlation between VEGF expression
and radiomics features was not found (p = 0.539); however, the microvascular density did correlate with
radiomic features, and the conjunction of image datasets from both modalities, PET/MRI, displayed
the highest correlation (r = 0.639, p = 0.044). This proof-of-concept study highlights the possibility to
predict pathological findings by radiomics alone, which is of utmost utility when such findings can
serve as biomarkers [58].

These data can aid in the construction of nomograms that can exert an influence over clinical
decision-making. Thus, some authors paved the path toward personalized medicine by assessing
quantitative genomics data as predictors. Park et al. predicted T1 ccRCC aggressiveness with 85%
accuracy (AUC: 0.796) by utilizing a model built on deep neural network algorithms and comprising
data from FOXC2, PBRM, and BAP1 gene and protein expression [56]. Similarly, Li et al. constructed a
gene panel including 15 genes (Table 3) and developed an expression-based prediction score which
accurately differentiated between low- and high-risk ccRCC and predicted three-year overall survival
(AUC: 0.784). In fact, the authors created a nomogram which included clinical and biochemical data,
and which may prove to be a clinically indispensable tool after further validation is obtained [55].
Azuaje et al. conducted a study where data from proteomics, gene expression, and DL-based TA
of histology samples were examined to discriminate between ccRCC samples and normal tissue.
Interestingly, the image-based data correlated with that of proteomics, and the biological processes and
pathways of the proteins involved correlated with extracellular organization activities and immune
response. Furthermore, complementary RNA (cRNA) expression and gene expression also strongly
correlated with image-based data (r = 0.76). Despite no radiological TA being performed in these studies,
the relevant information obtained can be applied to further develop prediction scores comprising
quantitative image data [57].

3.5. Disease Progression and Patient Outcome Prediction

The timely identification of patients who are at risk of developing worse outcomes is paramount
for treatment clinical decision-making. Furthermore, predicting responses to targeted therapies or
resistance profiles would lead to personalized medical algorithms, saving time and resources while
avoiding adverse effects of unfruitful therapies, thereby also improving survival rates and RCC patients’
quality of life. Recently, investigators explored these possibilities, and their findings are presented in
Table 4.
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Table 4. Summary of studies applying radiomics and gene expression-based models to predict progression in ccRCC.

Author Source Patients Method Features Predicted Outcome Accuracy

Antunes et al. 2016 [59] PET -FLT and multiphase MRI 2 patients with
advanced ccRCC

Radiomics analysis of
test/retest images

First- and second-order
statistical features, ADC
Haralick, entropy and

difference average features.

Detection of changes in test/retest images
after 3 weeks of sunitinib in

metastatic RCC.

Low variability between test/re-test images.
SUV, ADC energy, and T2-weigthed average
differences were found, and these might be
able to detect early structural and functional

changes in response to treatment.

Singh et al. 2018 [60]
RNA sequencing and

microarray dataset form
from GDC

32 normal 289 pRCC:

ML-based algorithms with
random forest, naïve Bayes,
SVM, KNN, and shrunken

centroid classifier

Upregulated and
downregulated genes.

Prediction of progression between early
(I–II) and late (III–IV) pRCC stages

172 stage I Gene expression alone discriminated
between normal tissue and tumor,

and between early and late stage samples by
means of PCA. For most features selected,
accuracy ranged from 82.5–88%, PR-AUC

0.69–0.79, and MCC 0.60–0-68

22 stage II

51 stage III

15 stage IV

Tabibu et al. 2019 [61] Histopathology slides
from TCGA

1027 ccRCC

CNN model to develop a risk
index using LASSO

Tumor and nuclei shape
features (area, perimeter, etc.)

from tumor region

Survival probability between high and
low grade

303 pRCC Samples were dichotomized in high- and
low grade according the risk score

constructed form tumor and nuclei features.
High-grade group was associated with a

lower survival rate (p = 3.86 × 10−6)
254 chRCC

Classifiers in ML refer to the insertion of a new observation into the appropriate category among others that were based on trained datasets of known observations. Support vector machines
are supervised learning methods for classification that learn the optimal difference between features of each class. Random forest is a supervised learning method for classification that is
based on decision trees. ADC, apparent diffusion coefficient; AUC, area under the receiving operator characteristics curve; ccRCC, clear cell renal cell carcinoma; chRCC, chromophobe renal
cell carcinoma; CNN, convolutional neural network; FLT, fluorothymidine radiotracer; GDC, Genomics Data Commons data portal; KNN, k-nearest neighbor; LASSO, the least absolute
shrinkage and selection operator; MCC, Matthews correlation coefficient; MRI, magnetic resonance imaging; PCA, principal component analysis; PET, positron-emission tomography;
PR-AUC, precision and recall area under the curve; pRCC, papillary renal cell carcinoma; SMV, support vector machine; SUV, standard uptake value; TCGA, The Cancer Genome Atlas.
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Antunes et al. reported a pilot study on predicting the response to sunitinib treatment in two
patients with metastatic RCC. The authors sought to evaluate the feature differences between test and
retest images retrieved from multiphasic MRI and PET scans using fluorothymidine as radiotracer at
baseline and three weeks after administering sunitinib. The changes in image texture features were
analyzed with ROIs from tumor and normal tissue images to assess any changes in both. Overall, a low
variability between test and retest images for both modalities was found. Moreover, 63% difference was
found in the top-ranked texture features of tumor regions from pretreatment images and after three
weeks of sunitinib treatment, whereas only a 17% difference was found in the normal tissue regions.
The authors concluded that MRI and PET texture features can detect early structural and functional
changes of treatment response. Naturally, further studies with larger population are warranted [59].

Data extracted from RNA sequencing (RNA-seq) and gene expression profiles were processed
and classified using ML-based methods by Singh et al. to discriminate patients with early stages (I–II)
and late stages (III–IV) of pRCC. The principal component analysis solely based on gene expression
accurately discriminated between normal and tumor samples and between early and late stages.
Furthermore, the different algorithms used for most selected features yielded satisfactory accuracy
rates, ranging between 82.5% and 88%, along with a precision and recall AUC of 0.69–0.79 and
correlation coefficient of 0.60–0.68. Tracing the biological pathways and protein interaction revealed
that most expression differences were in processes related to microtubules, chromosomes, and the
cell cycle. Interestingly, late stages of pRCC had higher expression of kinetochore and centromere
proteins, which are well-known alterations and distinctive neoplastic features leading to chromosome
instability [60]. Tabibu et al. classified a TCGA (The Cancer Genome Atlas) dataset into high- and
low-risk ccRCC according to a risk index based on tumor and nuclei shape features on histopathology
slices constructed by a CNN. After grade discrimination, survival probability was tested, and the
high-grade group was associated with a lower survival rate [61]. Clearly, radiomics-based progression
prediction in RCC is only in its initial stages; however, if such a goal is reached, it will prove to be a
major breakthrough for RCC management.

3.6. Limitations/Challenges of Radiomics

Although radiomics is attracting substantial attention in medicine and the field of oncology in
general, its real-life implementation in the clinical scenario still faces obstacles. Firstly, the variability
in study design, radiomic methods employed, texture features extracted, and recorded endpoints
make it difficult to compare any two techniques and to perform quantitative analysis. Secondly, most
ML and DL algorithms utilized in these studies were validated with their own dataset; therefore,
without external validation, result generalizability and reproducibility cannot be applied to other
datasets and populations [62]. Thirdly, repeatability, reproducibility, sample size, statistical power,
and standardization are still vital factors to be considered in future investigations [63]. Fourthly,
gene-based changes may result in significantly different radiomics features which are not consistent
across all imaging phases [64]. Therefore, the link between image tumor properties and tumor
biology is not straightforward, correlation does not imply causation, and a statistical relationship
between radiomics and genetic footprints or prognosis should be established [65]. Lastly, if dataset
heterogeneity is not addressed for the conduction of future studies, bridging the translational leap from
an experimental research tool to an essential clinically applicable diagnostic and predictive instrument
will be challenging [3].

3.7. Future Perspectives

The focus of future research should be constructing larger unified medical registries and databases
to further enhance the accuracy of radiomics techniques. The use of improved algorithms should not
be limited to large computer analyzing centers but extended to mobile devices and access by cloud
services ensuring the protection of users’ personal data. For individualized AI-based software to
function with robotic platforms across operating rooms worldwide and take intraoperative decisions
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in real time, dedicated transnational regulatory approvals will have to be accorded. Additionally,
there are major concerns regarding the reliability of diagnoses coming from algorithms and the role of
programming biases interfering with patient management. Clearly, human intelligence will continue
being the cornerstone in shaping future AI advances to ensure that these systems prioritize patient
care and to develop mechanisms that prevent undesired use.

4. Conclusions

By further including data and making models more robust, the predictive precision of radiomics
will continue contributing toward personalized medicine. Instant predictive analytics can be obtained
from large semi-automated patient datasets and electronic medical records to be used for delivering
insights into various disease processes. The diagnostic accuracy, however, is highly dependent
on the quality of data and its efficient integration with different sources to generalize it. Shared
decision-making will certainly not be replaced by these methods, although they may serve as an
important accessory to the information patients obtain from traditional medical care. Undoubtedly,
we are beginning a new era in medicine, and the future applications that radiomics may bring
are limitless.
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