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Abstract. Real-world datasets often contain many missing values due
to several reasons. This is usually an issue since many learning algorithms
require complete datasets. In certain cases, there are constraints in the
real world problem that create difficulties in continuously observing all
data. In this paper, we investigate if graphical causal models can be
used to impute missing values and derive additional information on the
uncertainty of the imputed values. Our goal is to use the information
from a complete dataset in the form of graphical causal models to impute
missing values in an incomplete dataset. This assumes that the datasets
have the same data generating process. Furthermore, we calculate the
probability of each missing data value belonging to a specified percentile.
We present a preliminary study on the proposed method using synthetic
data, where we can control the causal relations and missing values.

Keywords: Missing data · Graphical causal models · Uncertainty in
missing values

1 Introduction

Datasets of real-world problems often contain missing values. A dataset has
partial missing data if some values of a variable are not observed. Incomplete
datasets pose problems in obtaining reliable results when analyzing the data.
Many algorithms require a complete dataset to estimate models. On the other
hand, in certain real-world problems obtaining reliable and complete data can
be a tedious and costly task and can hamper the desired goal of the problem.
An example is e-health. E-health tools often contain standardized forms (i.e.
questionnaires) to capture data. Yet the questionnaires at times are lengthy and
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this imposes a burden on the patients’ time, which leads to reduced amount
of patients completing questionnaires [1] causing incomplete datasets regarding
e-health.

Since the introduction of the electronic health record (EHR) in Dutch clinical
health care, large amounts of digital data are created on a daily basis. Further-
more, due to the emerging implementation of e-health applications in Dutch
health care, large amounts of health-related data are created not only inside but
also outside clinical institutions (e.g. hospitals). For instance, MyIBDcoach, is
an e-health tool developed for home monitoring of disease activity for inflamma-
tory bowel disease, a chronic disease with a relapsing-remitting disease course [9].
Results analyzing data captured in this e-health tool have shown the potential to
predict disease activity. These results could potentially aid timely intervention
and better health care resource allocation as the frequency of outpatient clinic
visits could be scaled according to the risk of increased disease activity within a
patient [10,24]. Exploring the further potential of combined data, data captured
in the EHR and e-health tools, could lead to new insights by analyzing these
data in a meaningful way.

In clinical studies, that use observational data, the data are often obtained
by extracting information from the EHR. In addition, observational data docu-
mented in longitudinal prospective cohort studies often make use of standardized
forms to register admission data of the cohort participants and to register data of
certain variables during follow-up. Therefore datasets of prospective cohort stud-
ies can be considered complete. Since incomplete e-health datasets could lead to
unreliable prediction results, incomplete data could, therefore, be problematic
when e-health tools are used as an integral part in the care pathway [7].

In this paper we investigate if graphical causal models can be used to impute
missing values. Causal discovery aims to learn the causal relations between vari-
ables of a system of interest from data. Thus it is possible to make predictions
of the effects of interventions, which is important for decision making. Graphical
models can represent a multivariate distribution in the form of a graph. Causal
models can be represented as graphical models and represent not only the dis-
tribution of the observed data but also the distributions under interventions.

Causal inference has been applied to combine information from multiple
datasets [15,16], including observational and experimental data [13,18]. Causal
discovery algorithms have been adapted to deal with missing data [6]. For exam-
ple, [4] presents a modification of PC algorithm [20] to be able to handle missing
data, [19] and [5] present different approach to deal with mixed discrete and
continuous data. We take a different perspective.

Our goal is to use the information from a complete dataset (e.g. cohort
studies) in the form of graphical causal models to impute missing values in an
incomplete dataset (e.g. from e-health monitoring). This assumes that these
datasets represent the same population and have the same data generating pro-
cess, which is implicit in setting up cohort studies. The use of causal models
allows preserving causal relationships present in data, without strict assump-
tions of a pre-specified data generating process. Furthermore, we explore the
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stochastic uncertainty in imputing missing values with the proposed method.
We calculate the probability of each missing data value belonging to a specified
percentile. Low or high percentiles can indicate risk situations, e.g. existence of
an active disease in e-health monitoring. In this paper we present a preliminary
study using synthetic data, where we can control the causal relations and for
which there is ground truth for the missing values.

2 Preliminaries

2.1 Graphical Models and Causal Discovery

A causal structure is often represented by a graphical model. A graph G is an
ordered pair <V,E> where V is a set of vertices, and E is a set of edges [20].
The pairs of vertices in E are unordered in an undirected graph and ordered in
a directed graph. A directed graph G contains only directed edges as illus-
trated in Fig. 1(b). A directed acyclic graph (DAG) often represents under-
lying causal structures in causal discovery algorithms [17]. On the other hand,
a mixed graph can contain more than one type of an edge between to ver-
tices. A DAG contains only directed edges and has no directed cycles. We call
the skeleton of a DAG an undirected graph obtained by ignoring direction of
the edges in the DAG itself. See Figs. 2(a) and 2(b) for illustration. Further,
if there is a directed edge from X1 to X2 then X1 is called to be parent of
X2, and X2 is called to be child of X1. If two vertices are joined by an edge
they are called to be adjacent. A set of parents of a vertex X2 is denoted
by pa(X2), in Fig. 2(a) pa(X2) = {X1} while pa(X4) = {X2,X3}. The joint
distribution implied by Fig. 2(a) implies the following conditional probability
relation:

X1 X2

(a) Undirected

X1 X2

(b) Directed

Fig. 1. Undirected and directed relationship between two variables

P (V ) =
∏

X∈V

P (X|pa(X)). (1)

Causal discovery connects the graphical theoretic approach and statistical the-
ory. The DAG in Fig. 2(a) implies the following conditional distributions:

P (X|pa(X)) = P

(
X | ∪

Xj∈pa(X)
pa(Xj)

)
, (2)

e.g. P (X4|pa(X4)) = P (X4|X2,X3) = P (X4|X1).
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X1

X2

X3

X4 X5

(a) DAG

X1

X2

X3

X4 X5

(b) Skeleton

Fig. 2. Directed acyclic graph and its skeleton

A DAG encodes conditional independence relationships, which help us to
reason about causality. A criteria known as d-separation is central in this
type of inference, see for more details [20]. In particular, in any distribution P
factorizing according to G, if X and Y are d-separated given Z then X ⊥⊥ Y |Z in
P . There are multiple algorithms that use d-separation rules to learn the graph
structure; many of them are computationally intensive.

In this paper we use the PC algorithm1 for causal discovery [20]. The idea
of this algorithm is based on first forming the complete undirected graph, then
removing the edges with zero-order conditional independence, then removing
first-order conditional independence relations, etc. Thus, the PC algorithm heav-
ily relies on testing conditional independence. Pearson’s correlation is frequently
used to test for conditional independence in the Gaussian case; other popular
choices are, Spearman’s rank correlation, or Kendall’s tau. In addition, next to
the correlation matrix, the PC algorithm requires a sample size as input. The
estimate of the correlation matrix is more reliable with larger sample size, and
thus we easier can reject the null hypothesis of conditional independence [5].

PC algorithm is widely applied in causal discovery algorithms and thus has
been extended in various directions, including missing data cases. [3] consider
causal discovery in DAGs with arbitrarily many latent and selection variables
with the available R software package pcalg [11]. [8] use rank-based correlation
and extend PC algorithm to Gaussian copula models. [4] extend this approach
to mixed discrete and continuous data, while [5] further include missing data in
this approach.

2.2 Graphical Models with Missing Data

In this paper we are exploiting the idea that one can infer causal structure from
a cohort study and then use this information for imputing missing values in an
incomplete dataset. The problem of missing data in causal inference is being
studied in the literature quite extensively. [14] derive graphical conditions for
recovering joint and conditional distributions and sufficient conditions for recov-
ering causal queries. [22] consider different missingness mechanisms and present
graphical representations of those. Usually, three missing mechanisms are con-
sidered in the literature [12]: missing completely at random (MCAR), missing at

1 Named after its two inventors, Peter and Clark.
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random (MAR), and not missing at random (NMAR). MCAR missingness mech-
anism imposes the least problems for statistical inference, while NMAR imposes
most problems for statistical inference. It is important to note, that in our case
there is no problem of identifying the type of missingness mechanism, however,
it is useful to know and understand the distinction of missing mechanisms from
the literature.

Similarly to [22] let us denote by Dobs observed part of the data and Dmis

missing part of the data, and R the indicator matrix of missingness. The MCAR
mechanism states that

P (R|D) = P (R|Dobs,Dmis) = P (R). (3)

Equation (3) can be expressed in conditional independence statement as

R ⊥⊥ (Dobs,Dmis). (4)

Thus, the missingness in this case is independent of both Dobs and Dmis. Further,
MAR, a less restrictive mechanism, states that

P (R|D) = P (R|Dobs,Dmis) = P (R|Dobs), (5)

where Eq. (5) can also be expressed in terms of a conditional independence state-
ment

R ⊥⊥ Dmis|Dobs. (6)

Thus, while the dependence between the observed data and missingness is
allowed, the missingness R is independent of missing part of the data Dmis

given information about the observed part of the data Dobs. Finally, for NMAR
mechanism we have

P (R|Dobs,Dmis) �= P (R|Dobs). (7)

[22] propose a way to create m-graphs (graphs with missing data for all three
mechanisms) and discuss graphical criteria for identification of means and regres-
sion coefficients. For us it is useful in a sense that while deciding on which parts
of the data can be missing, we can impose requirement of identifiability.

3 Causal Models for Imputing Missing Data

In this paper, we propose using the causal information from a DAG, built from
a complete sample, to impute missing values in another sample. The proposed
method uses the causal discovery defined within a DAG and estimated rela-
tions between variables using the PC algorithm. The DAG and PC estimation
provide the causal relations between the missing and observed variables. Once
this relation is defined, the exact specification of causality between observed and
missing values, together with the predictions of the missing values are obtained
using nonparametric regressions. Nonparametric regressions are used to avoid
assumptions on the specific functional relationship between variables.
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As an illustration. Suppose that X1,X2,X3,X5 are observed in Fig. 2(a)
while X4 is missing. The DAG implies the following conditional probability rela-
tion:

P (X4|pa(X4)) = P (X4|X2,X3). (8)

In case both X4 and a parent, e.g. X2, are missing, we use the following
DAG-implied conditional probability relations to estimate the causal relationship
between X2 and X1 in the training data, and obtain an estimate for the missing
value of X2. Impute the missing values of X2 and X4:

P (X2|pa(X2)) = P (X2|X1) (9)
P (X4|pa(X4)) = P (X4|X2,X3) = P (X4|pa(X2),X3) = P (X4|X1,X3) (10)

The iteration over parents of DAG implied conditionals continues until all con-
ditioning variables are observed. When X2,X3,X4 are all unobserved, we use
the following DAG-implied conditional probability relation:

P (X2|pa(X2)) = P (X2|X1) (11)
P (X3|pa(X3)) = P (X3|X1) (12)
P (X4|pa(X4)) = P (X4|X2,X3) = P (X4|pa(X2),pa(X3)) = P (X4|X1). (13)

When the graph structure is more complicated than Fig. 3, the above pro-
cedure to obtain ‘observed parents’ of a missing value is more involved since
backward iterations of pa(·) are needed until none of the conditioned variables
have missing values. To avoid this computational cost, we define the iterated
parents of a missing observation. Let Xmis ⊂ pa(X) denote the set of parents of
X with missing values. The iterated parents of X, p̂a(X) are defined as:

p̂a(X) =
{

pa(X) if Xmis = ∅
(pa(X) \ Xmis) ∪ X1 otherwise, (14)

where the conditioning on variable X1 is due to the graph structure in Fig. 3.
Given the conditional probability definitions in Eqs. (8)–(13), and the parent

set definition in (14), we propose to obtain the predicted values of missing values
using nonparametric regressions. For N observed data samples Xi,j with i =
1, . . . , p and j = 1, . . . , N , local linear regressions are estimated for each variable
Xi in a training set. Each of these local linear regressions minimize the following:

min
α,β

N∑

n=1

(Xi,j − α − β (p̂a(Xi) − p̂a(X)i,j))
2
Kh (p̂a(Xi) − p̂a(X)i,j) (15)

where Xi = (Xi,1, . . . , Xi,N )′ is the vector of observations from variable Xi,
pa(Xi) = (pa(X)i,1, . . . ,pa(X)i,N ) and pa(X)i,j denotes the jth observation
from parents of Xi. In addition, Kh (pa(Xi) − pa(X)i,j) is defined as a Gaussian
kernel with h = 1, but the proposed methodology is applicable to other kernel
specifications or similar nonparametric regression methods.
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The imputation method we propose is based on estimating (15) for a DAG
based on complete data, and predicting the missing values in an incomplete
dataset. This imputation, denoted by X̂i,j for variable i in observation j is cal-
culated using the local linear regression results:

X̂i,j = α̂ + β̂ (p̂a(Xi) + p̂a(X)i,j) , (16)

where α̂ and β̂ are obtained according to the minimization in (15). In addition,
the Gaussian kernel defined for (15) implies local normality for all predicted
values. We use this property to quantify the uncertainty of the imputed value in
(16). Given a normal distribution Xi,j ∼ N(X̂i,j , σ̂

2
i,j), we calculate the proba-

bility of Xi,j belonging to a pre-specified percentile range [p1, p2] as:

pr(p1 < Xi,j ≤ p2) =
∫ p2

p1

φ
(
Xi,j ; X̂i,j , σ̂

2
i,j

)
dXi,j (17)

where φ
(
x;μ, σ2

)
denotes the probability density function with mean μ, variance

σ2 evaluated at point x and σ̂2
i,j is estimated as the variance of the regression

errors. Please note that in this preliminary study, we ignore uncertainty when
estimating the model parameters α and β.

4 Simulation Results for Imputing Missing Data

We illustrate the performance of the proposed method using a DAG with eight
variables. The random graph is defined for 8 variables with conditional Gaussian
distributions and the probability of connecting a node to another node with
higher topological ordering is set as 0.3, following [3]. The true DAG and the
estimated DAG are presented in Fig. 3. The structure of this DAG implies that
variables 2, 3, 5, 6, 7 and 8 can be explained by parent variables or variable 1.
Variable 4, on the other hand, is completely exogenous in this graph. Hence our
methodology cannot be used to impute missing values of variable 4.

We simulate 5000 training observations and estimate the DAG using these
training data. The estimated DAG is presented in the right panel of Fig. 3. Given
the test data with 2000 observations, we create 9 incomplete test datasets with
randomly missing values (MCAR) for 6 variables that have parents in the map,
i.e. variables 2, 3, 5, 6, 7 and 8. These 9 incomplete test datasets differ in the
probability of missing observations q = 10%, 20%, . . . , 90%. Each observation
can have none, one or more missing variables, hence the total number of missing
observations in each incomplete test dataset is 2000 or less, while the expected
number of missing variables is q × 2000 × 6.

For each incomplete training dataset, we use the methodology in Sect. 3 to
impute the missing values. We compare our method to other baseline models,
namely replacing missing values by the sample average of the variable in the test
data, excluding missing values; the MissForest method, a non-parametric miss-
ing value imputation based on random forests [21]; and MICE a multivariate
imputation method based on fully conditional specification [23], as implemented
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Fig. 3. True (left) and estimated (right) DAG for simulated data

in [2]. The mean squared errors of the proposed model and the baseline models
are reported in Table 1. For missing values above q = 40%, the proposed method
performs better than all other models. For values below q = 40%, the best per-
forming model is MissForest, although the results appear to be comparable. The
proposed model performance, measured by the MSE in Table 1, decreases with
increasing q. This result is expected as the number of missing values for each
observation increase with q. Since this increase implies that within an observa-
tion, it is more likely that the parents of a missing variable are also unobserved,
hence there is an additional loss of information in the causal relations.

Table 1. MSE results from the proposed method and baseline models

10% 20% 30% 40% 50% 60% 70% 80% 90%

Mean 1.47 1.49 1.56 1.51 1.48 1.52 1.50 1.51 1.52

DAG 0.92 0.99 1.03 1.06 1.10 1.15 1.19 1.26 1.32

MissForest 0.91 0.96 1.02 1.09 1.26 1.38 1.49 2.05 1.50

MICE 1.72 1.78 1.86 1.90 2.02 2.11 2.29 2.43 2.83

In addition to the overall results in Table 1, we present the errors for each
variable for q = 10% and q = 90% in Fig. 4. For a small percentage of missing
values, q = 10%, the ranges of errors are clearly smaller in the proposed method
compared to the mean baseline model. The MissForest model has some observa-
tions with a larger absolute error compared to the proposed method. Note that
the variable-specific errors present the cases where the causal relations, hence
the imputations are relatively less accurate. For variables 2 and 3, which have
a single parent and a short link to variable 1, the obtained errors are relatively
small in absolute values. Other variables, such as 6 and 8, have multiple parents,
thus a higher probability of missing values in parents. When the missing parent
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information is replaced with the value of variable 1, some information is lost and
the estimates will be less accurate. Figure 4 shows that this inaccuracy occurs
especially for q = 90% where the probability of missing observations, hence the
probability of missing parent information is high.
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Fig. 4. Errors per variable from imputed missing values using the proposed method
(DAG), the mean and MissForest baseline models.

Finally, we illustrate the uncertainty in the missing values, quantified using
the imputed values. For each variable, we set four pre-defined percentiles of 0–
10%, 10–50%, 50–90% and 90–100%, corresponding to the empirical percentiles
of the training data. We then calculate percentile probabilities for missing value
by applying Eq. 17 for the four pre-defined percentiles. Based on these per-
centile probabilities, the percentile with the highest probability is selected as
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the estimated percentile. In Fig. 5, we present the imputed data values and per-
centile estimates for variable 2 for two missing value probabilities, q = 10% and
q = 90%. For readability, we only present observations for which the estimated
and true percentiles are different. In addition, estimated percentiles are indi-
cated with the respective colors and thick vertical lines indicate the thresholds
for correct percentiles.
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(b) q = 90%

Fig. 5. Estimated percentiles for observations with different estimated and true
percentiles

In this figure, overlapping colors indicate that similar imputed values can be
classified in different percentiles according to the highest probability of belong-
ing to a percentile. I.e. probabilities of belonging to a percentile can be used
as an additional measure, with additional information, compared to the point
estimates used as imputation. In Fig. 5, the number of overlaps are higher for a
higher percentage of missing values p = 90%, since there is more missing data.
However, it appears that irrespective of the amount of missing values, both cases
show the same pattern of overlap between estimated percentiles. This is an inter-
esting result, since more missing values mean do not indicate more uncertainty in
the estimated percentiles. This is likely due to the fact that our method derives
information for imputation of missing values from causal relationships.

5 Conclusions and Future Work

In this paper we investigate if graphical causal models derived from complete
datasets can be used to impute missing values in an incomplete dataset, assuming
the same data generating process. We calculate the probability of each missing
data value belonging to a specified percentile, to provide information on the
uncertainty of the imputed values. We apply this methodology using synthetic
data, where we can control the causal relations and missing values. We show that
the proposed method performs better than a baseline model of imputing missing
values by the mean in different simulation settings with different percentages of
missing data. Furthermore, our model can still provide adequate information
on missing values for very high percentages of missing values. Our results show
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that this methodology can be used in inputting missing values while providing
information about the probability distribution of percentiles the missing value
belongs to.

This is a preliminary study which opens many questions. In the future we
want to investigate how to incorporate information on bidirectional causal rela-
tionships, different non-parametric models for imputing missing values and the
relationship of this method with fully conditional specification.
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