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Abstract

It has become apparent that glial cells, especially astrocytes, not merely supportive but are integrative, being able to

receive inputs, assimilate information and send instructive chemical signals to other neighboring cells including neurons.

At first, the excitatory neurotransmitter glutamate was found to be a major extracellular messenger that mediates these

communications because it can be released from astrocytes in a Ca2+-dependent manner, diffused, and can stimulate

extra-synaptic glutamate receptors in adjacent neurons, leading to a dynamic modification of synaptic transmission.

However, recently extracellular ATP has come into the limelight as an important extracellular messenger for these

communications. Astrocytes express various neurotransmitter receptors including P2 receptors, release ATP in response

to various stimuli and respond to extracellular ATP to cause various physiological responses. The intercellular

communication BCa2+ wave^ in astrocytes was found to be mainly mediated by the release of ATP and the activation of

P2 receptors, suggesting that ATP is a dominant Bgliotransmitter^ between astrocytes. Because neurons also express

various P2 receptors and synapses are surrounded by astrocytes, astrocytic ATP could affect neuronal activities and even

dynamically regulate synaptic transmission in adjacent neurons as if forming a Btripartite synapse^. In this review, we

summarize the role of astrocytic ATP, as compared with glutamate, in gliotransmission and synaptic transmission in

neighboring cells, mainly focusing on the hippocampus. Dynamic communication between astrocytes and neurons

mediated by ATP would be a key event in the processing or integration of information in the CNS.

Abbreviations: [Ca2+]i – intracellular Ca2+ concentration; CFTR – cystic fibrosis transmembrane conductance regulator;

CNS – central nervous system; InsP3 – inositol 1,4,5-trisphosphate; SNARE – soluble N-ethylmaleimide-sensitive fusion

protein (NSF) attachment protein receptor

Introduction

In the mid-19th century, Rudolph Virchow, a German

anatomist, first found non-neuronal cells in the central

nervous system (CNS) and called them Bglia^, a Greek for

Bglue^. The name reflects the original view that glia played

merely a structural or supportive role for neurons. They

occupy over 70% of the total cell population in the CNS

and are classified into microglia, oligodendrocytes and

astrocytes. Now it has become apparent that glia, especial-

ly astrocytes, are much more than Bglue^ but rather are

integrative, being able to receive inputs, to assimilate

information and to send instructive chemical signals both

to neurons and to other neighboring cells. Although rapid

neurotransmission was believed to be restricted solely to

neuron-to-neuron communication, it has been found to

include glial cells [1, 2]. The first evidence for dynamic

communication from astrocytes to neurons came from the

discovery of temporally related changes in the intracellular

Ca2+ concentration ([Ca2+]i) in glial and neuronal cells.

Various stimuli which selectively elevate [Ca2+]i in

astrocytes lead to delayed elevations in [Ca2+]i in neurons

in culture [3]. In hippocampal slice preparations, activation

of metabotropic glutamate receptors in astrocytes evokes

Ca2+ signals in astrocytes, which are followed by a delayed

elevation of neuronal Ca2+ levels [4, 5]. Evidence suggests

that such Ca2+-mediated extracellular signaling between

astrocytes and neurons may be involved in the regulation

of synaptic transmission. Stimulation of Ca2+ waves in
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astrocytes can increase both excitatory and inhibitory post-

synaptic currents in hippocampal cultures [6]. In the retina,

astrocytic Ca2+ waves can modulate the light-induced ex-

citation of ganglion cells [7]. Glutamate appears to be an

important mediator for these astrocyte-to-neuron signals.

There is an increasing body of evidence however, that

ATP, the predominant extracellular signaling molecule

among astrocytes [8Y12], may also mediate signaling be-

tween neurons and glial cells [13]. Neurons are known

to express a wide variety of ionotropic (P2X) and met-

abotropic (P2Y) receptor subtypes in the pre- and post-

synaptic regions, and ATP could directly mediate synaptic

transmission as a fast neurotransmitter in the rat medial

habenula [14] and in the spinal cord dorsal horn [15]. In

addition, exogenously applied ATP potentiates [16Y19] or

inhibits [20, 21] synaptic transmission in the CNS. Given

that astrocytic Ca2+ waves can evoke changes in neuronal

synaptic activity and that Ca2+ waves are mediated by the

release of ATP, ATP released from astrocytes may be in-

volved in astrocyte-to-neuron signaling in synaptic regions

of the CNS.

In this review, we summarize the role of astrocytic ATP,

as compared with glutamate, in gliotransmission and syn-

aptic transmission in neighboring cells, mainly focusing on

the hippocampus. This finding of a novel ATP-mediated

signaling system between astrocytes and neurons comple-

ments a growing body of evidence, suggesting that, in addi-

tion to their various supportive roles for neurons, astrocytes

are actively involved in the control of synaptic transmission.

Astrocyte-to-astrocyte communication BCa2+ wave^

The development of video imaging techniques allowed the

observation that neurotransmitters elicit increases in

[Ca2+]i even in glial cells. Since unlike neurons, astrocytes

do not produce action potentials, they were thought to be

quiet. However, they have rather found to be busy or noisy

in terms of BCa2+ excitability^. About 15 years ago, eleva-

tions in [Ca2+]i in individual cultured astrocytes in response

to neurotransmitters were first reported [22Y24]. After ini-

tial observations demonstrated the presence of Ca2+ excit-

ability within astrocytes, it became apparent that many

neurotransmitters stimulate Ca2+ elevations in glial cells

by activating specific receptors expressed on these cells.

Astrocytes express metabotropic glutamate receptors [3],

dopamine receptors [25, 26], noradrenaline receptors [27],

serotonin receptors [28Y31] and P2 receptors [8, 9, 32Y36],

whose activation results in elevations in [Ca2+]i astrocytes.

Subsequently, it was demonstrated that these Ca2+ eleva-

tions could in turn stimulate the release of chemical

transmitters from glial cells, which mediates a communi-

cation between astrocytes and even neurons (see other

section). Cornell-Bell (1990) showed that glutamate can

elicit [Ca2+]i not only in individual cells, but also inter-

cellular waves of increased [Ca2+]i that are propagated

from single cells to multiple neighboring cells [24]. Dani

et al. (1992) showed that neuronal activity can directly

initiate such a Ca2+ wave in astrocytes [37]. Other stimuli

such as local mechanical or electrical stimulation were

subsequently observed to initiate similar intercellular Ca2+

signaling in astrocytes. Mechanical stimulation with a

micropipette reliably evokes spreading Ca2+ waves in as-

trocytes [38], and has been used extensively as a stimulus

for the focal initiation of Ca2+ waves, allowing us to

analyze their characteristic spatiotemporal features. To

evoke Ca2+ wave, the mechanical stimulus need not be as-

sociated with cell damage, since repetitive stimulation of

the same cell can evoke repetitive Ca2+ waves with re-

covery of the [Ca2+]i to baseline levels between stimuli and

with no leakage of intracellular Ca2+ indicator dyes. For

some years, such Ca2+ waves have been thought to

propagate via gap junctions [39Y42], through which the

internal messenger inositol 1,4,5-trisphosphate (InsP3) can

be diffused to mobilize Ca2+ release [42, 43]. Stimulating a

single glial cell leads to the production of InsP3, triggering

the release of Ca2+ from internal stores in the stimulated

cell as well as in adjacent cells. More recently, experiments

in culture have shown that Ca2+ waves can be propagated

between astrocytes, even when the cells do not contact

each other directly, and the extent and direction of the Ca2+

wave propagation are significantly influenced by move-

ment of the extracellular medium [8, 44]. Subsequent

publications have confirmed that astrocytes do not abso-

lutely require functional gap junction coupling for the

spreading of Ca2+ waves in astrocytes [45, 46]. These more

recent reports suggest that substances released from astro-

cytes can activate receptor systems on astrocytes, evoking

the release of additional substances (either the same or

different compounds), and thus producing a propagating

Ca2+ wave of activity. Recently, it has been found that

extracellular ATP is the major messenger for this event.

First, ATP is released from astrocytes during Ca2+ wave

propagation [8, 11]. Second, the propagation can be

reduced or abolished by a purinergic antagonist [8,

10Y12, 35, 47] or the ATP degrading enzyme apyrase [8,

47, 48]. In addition, visualization of the release of ATP

demonstrated that the velocity of ATP release well cor-

relates with that of the Ca2+ wave in astrocytes [47]. All

these findings suggest that the extracellular molecule ATP

could be a primary signal for the Ca2+ wave propagation,

and highlight the importance of ATP in cross-talk among

astrocytes and even other cell types in the CNS.

So far, the physiological consequences of the ATP-

evoked increase in [Ca2+]i in astrocytes themselves have

received only limited attention. Stimulation of astrocytes

with ATP enhances mitogenic signaling via the ERK-

mediated pathway, increases proliferation [49, 50], and

protects astrocytes against oxidative stress [51]. Further

comprehensive studies will reveal the importance of ATP-

mediated Ca2+ responses in astrocytes.

Astrocyte-to-microglia communication

Intercellular Ca2+ waves in astrocytes also trigger micro-

glial Ca2+ responses in a manner dependent on extracellu-
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lar ATP. As described above, astrocytes release ATP upon

mechanical stimulation [8], electrical stimulation [8] or

glutamatergic receptor activation [52], and respond to

locally applied ATP with a propagating Ca2+ wave.

Microglia have been shown to express functionally active

P2 receptors in culture and in situ [53Y60], suggesting the

possibility that ATP could also mediate astrocyte-to-

microglia communication. In fact, Verderio and Matteoli

demonstrated that mechanical and bradykinin stimulation

resulted in the release of ATP from astrocytes, which, in

turn triggered delayed Ca2+ responses in adjacent microglia

via P2X7 receptors in a mixed culture of astrocytes and

microglia [61]. Schipke et al. showed that electrical

stimulation of astrocytes produced Ca2+ waves that trig-

gered Ca2+ responses in microglia in an extracellular ATP-

dependent manner in a slice preparation of mouse. Thus,

it appears that extracellular ATP-dependent Ca2+ waves

could occur in situ and are not restricted to astrocytes but

broadly activate different glial cell types. The astrocytic

ATP-mediated intercellular communication was also ob-

served in meningeal cells [62] and Muller cells [35].

Recently, Tsuda et al. have reported that the expression of

P2X4 receptors in the spinal cord is enhanced in spinal

microglia after peripheral nerve injury, and that block-

ing pharmacologically and suppressing molecularly P2X4

receptors cause a reduction of the neuropathic pain be-

havior [55, 63]. Thus, P2-receptor mediated microglial

Ca2+ excitability may be of great consequence for path-

ological events such as chronic pain. In addition, peripheral

sensory axons release ATP that activates P2 receptors in

neighboring Schwann cells, leading to the spreading of

Ca2+ waves in the cells and regulation of their prolifera-

tion/differentiation [13]. It seems that extracellular ATP

may function as a ubiquitous autocrine/paracrine in central

and peripheral tissues.

Mechanisms of ATP release from astrocytes

Although several excitable and non-excitable cells release

ATP, the mechanism underlying the release of ATP is

controversial, especially in non-excitable cells such as

astrocytes. With regard to glutamate release from astrocytes,

recently some important findings have been reported.

Astrocytes express SNARE proteins [64Y67], have a

vesicular structure expressing the vesicular glutamate

transporters [65, 66], and the release of glutamate is

dependent on Ca2+ [68, 69], sensitive to SNAREs [65, 67,

70]. These findings strongly suggest that exocytotic ma-

chinery is involved in glutamate release in astrocytes

although non-vesicular mechanisms for glutamate release

are also proposed [71Y74]. In contrast, mechanisms

underlying the release of ATP from astrocytes are still a

matter of debate. The release of ATP is reduced by

inhibitors for several anion channels [75, 76], ATP binding

cassette proteins or CFTR [77Y81], gap junction [10, 82],

suggesting the involvement of multiple pathways for the

release. In addition, the release of ATP is partly dependent

on Ca2+ [10, 79, 83], and SNARE proteins [84, 85], and

astrocytes seem to possess vesicles that contain ATP inside

[84, 86]. Inhibition of ATP release by vesicular ATPase

inhibitors was also reported [86]. These findings suggest

that the mechanisms of ATP release could include

exocytosis. Furthermore, the nature of the signals released

from astrocytes may differ under varying physiological and

pathological conditions [86]. Exocytotic mechanisms for

ATP have been reported in other non-excitable cells. For

example, in vascular endothelial cells, the shear stress-

evoked ATP release is vesicular and dependent on Ca2+

[87]. It would be very important to elucidate the mecha-

nisms by which astrocytes release ATP in response to

distinct stimuli, which would further establish the position

of astrocytes as an important partner of neurons in forming

the Btripartite synapse^ [88].

Astrocyte-to-neuron communication

As described above, astrocytes lack the ability to prop-

agate regenerative electrical signals but are nonetheless

responsive to a variety of extracellular stimuli and produce

regenerative Ca2+ waves that spread within astrocyte net-

works [8, 12, 35, 47]. Ca2+ excitability in astrocytes can

evoke the release of neuroactive substances such as glu-

tamate and ATP.

Glutamate is the predominant signaling molecule among

the previously reported mechanisms through which astro-

cytes can actively regulate synaptic transmission. In cultured

hippocampal neurons, the stimulation of astrocytes evokes a

regenerative, Ca2+-dependent release of glutamate from

astrocytes which, in turn, can enhance excitatory synaptic

transmission via N-methyl-D-aspartate receptor-mediated

mechanisms [6]. Glutamate-mediated astrocyte-to-neuron

signaling has also been observed in hippocampal slices

[89Y91], visual cortical slices [3] and in the retina [7],

although the subclass of responsible glutamate receptors

varied among the different preparations. However, astro-

cytic ATP has recently been shown to decrease the

excitability of neurons in the retina [92], and mediate

presynaptic inhibition in cultured hippocampal neurons

[47, 93]. Cultured hippocampal neurons reveal synchro-

nous spontaneous Ca2+ oscillation, which is extracellular

Ca2+-dependent, tetrodotoxin-sensitive and inhibited by in-

hibitors of ionotropic glutamate receptors, suggesting that

the neuronal Ca2+ oscillation is mediated by glutamatergic

synaptic transmission [20, 47, 94, 95]. Endogenous ATP

released from astrocytes dynamically downregulates the

spontaneous neuronal Ca2+ oscillation [47] and EPSCs in

the hippocampal culture [93] by inhibiting presynaptic

functions of glutamatergic neurons. Similar astrocytic

ATP-mediated presynaptic inhibition was observed in the

hippocampus in situ [93] although adenosine, a metabolite

of ATP degraded by ecto-nucleotidases, also functioned as

an inhibitory molecule in the slices. ATP would differ from

glutamate as a signaling molecule between astrocytes and

neurons in that it inhibits rather than potentiates synaptic
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transmission. We hypothesize that the opposing actions of

glutamate and ATP released from astrocytes represent a

means by which astrocytes can dynamically modulate

neuronal activity by releasing distinct transmitters which

can either excite or inhibit synaptic transmission. Very

recently, Bowser and Khakh (2004) have demonstrated that

electrical stimulation of Schaffer collaterals and perforant

path in hippocampal slices evoked both an increase in

[Ca2+]i in astrocytes and facilitation of GABAergic IPSCs

onto interneurons in the CA1 stratum radiatum [96], both

of which were mediated by P2Y1 receptors. Similar

responses were observed in the CA3 region of the

hippocampus [97]. Endogenously released ATP from

neurons and astrocytes can activate P2Y1 receptors on

astrocytes and postsynaptic interneurons to activate [Ca2+]i

elevations and facilitation of synaptic inhibition, respec-

tively. This might be another form of astrocyte-to-neuron

communication in the hippocampus because astrocytes may

release and propagate a wave of ATP, which activates P2Y1

receptors on postsynaptic GABAergic interneurons, leading

to increased synaptic inhibition in interneuron networks in

situ [96, 97].

In addition to mediating inhibitory rather than excitatory

effects on synaptic transmission, ATP-mediated astrocyte-

to-neuron signaling further differs from glutamate-depen-

dent signaling mechanisms by the fact that it occurs in a

tonic fashion [47, 93]. Application of the ATP-degrading

enzyme apyrase induces a potentiation of spontaneous

neuronal Ca2+ oscillations or EPSCs in the absence of any

astrocytic stimulation, suggesting the presence of a

constitutive ATP-dependent inhibition of synaptic trans-

mission. Furthermore, spontaneous astrocytic Ca2+ res-

ponses occur in both purified astrocyte cultures and mixed

cultures of astrocytes and neurons. The spontaneous Ca2+

signals in astrocytes were inhibited by apyrase but

persisted in the presence of TTX. Therefore, astrocytes

constitutively release ATP in the absenceof neuronal activity,

which exerts tonic down-regulation of excitatory synaptic

transmission [47, 93]. ATP mediates astrocytic Ca2+ waves

and can evoke neuronal Ca2+ responses in various parts of

the CNS such as the habenula [14], suggesting that ATP

may be an ubiquitous mediator of astrocyte-to-neuron

signaling in the modulation of synaptic activity. Such a

tonic modulation by astrocytic ATP might be a mechanism

by which neurons tune their communications in the CNS.

The ATP receptor subtype(s) implicated in the ATP-

mediated inhibition of presynaptic transmission in hippo-

campal neurons remains unknown [47, 93]. Although

apyrase abolished the ATP-mediated inhibition, the non-

selective P2 receptor antagonists suramin and PPADS were

only able to partially attenuate the effects of exogenously

applied ATP [20]. Similarly, these antagonists only slightly

affected the decrease in neuronal Ca2+ oscillations evoked

by mechanical stimulation of an astrocyte [47] but reactive

blue 2 reduced the effect of ATP [93]. Thus, involvement

of P2Y receptors in the inhibitory action was suggested

[93] although reactive blue 2 could also affect P2X

receptors. Adenosine, a metabolite of ATP, is also involved

in the inhibitory action via adenosine A1 receptors [20, 21,

98]. Released ATP might exhibit its inhibitory action by

being metabolized into adenosine. However, the ATP-

evoked inhibition did not disappear even in the presence of

several antagonists to adenosine receptors, A1 receptors or

adenosine deaminase in hippocampal neurons [20, 99,

100]. In addition, the effect of astrocytic ATP on the

synaptic transmission almost disappeared in the presence

of apyrase (grade III), which degrades ATP and ADP into

ADP and AMP, respectively but does not affect the

metabolism of adenosine [20, 47]. All these findings

suggest that ATP itself is involved in the inhibition of

synaptic transmission, but we cannot identify the respon-

sible receptor subclasses so far. Recently, the oligomeric

association of A1 receptors with P2Y1 receptors (A1/P2Y1

receptors) generating A1 with P2Y1 receptor-like agonistic

pharmacology has been reported [101, 102]. Such an

oligomeric association occurs in hippocampal neurons

[103] and the pharmacological characteristics of A1/P2Y1

receptors are similar to those involved in the inhibition of

neuronal Ca2+ oscillations [20]. However, the discovery of

specific antagonists for such oligomeric A1/P2Y1 receptors

is required to determine if they are involved in ATP-

mediated inhibition of neuronal activity.

Conclusion

Astrocytes release ATP, glutamate or other active sub-

stances in response to various stimuli or even spontane-

ously, by which the activities of adjacent astrocytes or

even neurons are positively and dynamically controlled

(Figure 1). Now we know that rapid neurotransmission is

not restricted solely to neuron-to-neuron communication

but also includes glial cells. Especially, astrocytes can

receive neurotransmitters, respond to them, and send

output signals to neighboring neurons, forming a so-called

Btripartite synapse^. For this, extracellular ATP and P2

receptors appear to have a central role. Further extensive

Figure 1. A schematic diagram of Btripartite synapse[ mediated by

extracellular ATP neurotransmitters, spilling over from the synapse,

stimulate surrounding astrocytes (gray arrows). Astrocytes have a big

variety of neurotransmitter receptors, and can release diffusible molecules

such as ATP in response to the neurotransmitters, and form propagating

Ca2þ waves in astrocytes. Astrocytic ATP has an essential role for the

formation of the intercellular Ca2þ wave, and in turn functions as a

feedback signal to modulate synaptic transmission in adjacent neurons.
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studies will be required to clarify the physiological or

pathological significance of astrocytes in synaptic trans-

mission, the mechanisms underlying the release of ATP

from astrocytes and the distinct functions of glutamate and

ATP as gliotransmitters. At present, it may be thought that

glial cells play a subordinate role in the brain function,

especially in the processing and integration of information.

However, the glial era has just started, and exciting dis-

coveries can be expected. Being partner with ATP,

astrocyte can be a star.
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