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Abstract

Despite the increasing importance of non-targeted metabolomics to answer various life sci-

ence questions, extracting biochemically relevant information from metabolomics spectral

data is still an incompletely solved problem. Most computational tools to identify tandem

mass spectra focus on a limited set of molecules of interest. However, such tools are typi-

cally constrained by the availability of reference spectra or molecular databases, limiting

their applicability of generating structural hypotheses for unknown metabolites. In contrast,

recent advances in the field illustrate the possibility to expose the underlying biochemistry

without relying on metabolite identification, in particular via substructure prediction. We

describe an automated method for substructure recommendation motivated by association

rule mining. Our framework captures potential relationships between spectral features and

substructures learned from public spectral libraries. These associations are used to recom-

mend substructures for any unknown mass spectrum. Our method does not require any pre-

defined metabolite candidates, and therefore it can be used for the hypothesis generation or

partial identification of unknown unknowns. The method is called MESSAR (MEtabolite Sub-

Structure Auto-Recommender) and is implemented in a free online web service available at

messar.biodatamining.be.

Introduction

Metabolomics is an emerging “omics” science involving the high-throughput analysis of

metabolites or small biomolecules, with highly relevant applications in drug and biomarker

discovery [1, 2]. One standard method for metabolite analysis is mass spectrometry (MS), pre-

ceded by a separation technique, such as gas chromatography (GC) or liquid chromatography

(LC). Advances in MS instrumentation enable the simultaneous detection and quantification
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of thousands of metabolites in a biological sample. Chemical identification of these metabolites

is a key step towards biochemical interpretation of studied samples. To obtain structural infor-

mation, tandem MS (MS/MS) is applied to record the fragment m/z of targeted molecules.

Structure elucidation from MS/MS data has always been a challenging and time-consuming

task with a vast number of potentially interesting metabolites that are still unknowns. The

main reason is that current MS/MS databases (spectral libraries) only contain a limited num-

ber of historical spectra, far below the number of metabolites in reality [3, 4].

Advances in computational tools have led to a considerable extension of the search space

that can be examined and have resulted in an improvement of the identification accuracy by

using massive molecular databases (for example, PubChem currently contains about 100 mil-

lion compounds [5]). These tools start by filtering the molecular database using the precursor

m/z of the unknown spectra, yielding up to thousands of structure candidates.

To subsequently score and rank these candidates two categories of algorithms have been

proposed. First, in silico fragmentation tools simulate theoretical spectra for each candidate

metabolite and compare those with the query spectrum [6–9]. Second, machine learning (ML)

methods learn intermediate representations, such as molecular fingerprints [10] from histori-

cal spectrum–structure relationships. These representations are then used to score spectrum–

candidate matches. A typical example hereof is the CSI:FingerID tool [11]. However, both

types of algorithms still have certain limitations. For example, in silico fragmentation tools

only cover simple fragmentations and cannot accurately simulate complex rearrangement

reactions [12]. Additionally, none of these tools can identify “unknown unknowns”, i.e. com-

pounds that have not been structurally described yet and are therefore not present in any

molecular database. As a result typically only a fraction of compounds can be identified cor-

rectly [13].

Recently a third category of computational tools has been introduced in non-targeted meta-

bolomics. With a focus on the hypothesis generation for unknown structures, these tools aim

to predict substructures rather than the full metabolite structure. The basic concept for this

strategy is that metabolites often share substructures, resulting in similar patterns in their

MS/MS spectra. Typical spectral features are productions, neutral losses, or mass differences

[14–17].

One important tool to explore spectral similarity is the Global Natural Products Social

Molecular Networking (GNPS) resource [18]. GNPS consists of a large metabolite network

where metabolites with similar MS/MS spectra are connected so that structurally annotated

metabolites can be used for the identification of their neighbors. However, such a network-

based approach may fail to connect metabolite pairs if they have a low spectral similarities

despite sharing important substructures such as small functional groups. Additionally, the

annotation of neighboring nodes still requires manual intervention.

MS2LDA is a recent framework proposed by van der Hooft et al. [19–21]. It decomposes

unlabeled MS/MS spectra into patterns of co-occurring fragments and losses, referred to as

“Mass2Motifs”, which are indicative of biological substructures. These Mass2Motifs patterns

are automatically extracted from complex MS/MS spectra using unsupervised text mining

techniques. However, the extracted motifs have to be structurally annotated based on expert

knowledge, which requires extensive domain expertise and is time-consuming.

Here we introduce a new method for the recommendation of substructures for MS/MS

spectra, working independently from molecular databases. Our tool, called MESSAR (MEtabo-

lite SubStructure Auto-Recommender), is inspired by the concept of association rule mining

(ARM). ARM has been designed to discover interesting relations based on frequently co-

occurring items, and it has previously been used to find relations between unassigned mass

spectra [22–24].
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We use a collection of labeled spectra (reference spectra with a known corresponding

molecular structure from a spectral library) to mine co-occurring patterns of the form “MS/

MS features + substructures”, yielding “MS/MS feature(s)! substructure” rules. These rules

capture recurring patterns found in mass spectra and assign them potential substructures. As

such, they can be used to partially replace expert-driven annotations in tools such as MS2LDA.

The current MESSAR model is a database of 8378 “MS/MS feature(s)! substructure” rules

derived from the GNPS spectral library. All rules were statistically evaluated on training and

independent testing spectra, and compared with rules generated from a decoy GNPS spectral

library. When annotating a new spectrum, MESSAR identifies all of its spectral features that

match the rule database, after which any rules suggesting similar substructures are aggregated

and maximal common substructures (MCS) are reported.

MESSAR is currently designed for positive ion mode LC-MS/MS data. It is available as a

free online web service at messar.biodatamining.be.

Materials and methods

Training spectral libraries

MESSAR generates rules from target and decoy GNPS spectral libraries built by Scheubert

et al. (Fig 1A). According to the data descriptions [25], the target library consists of 4138 posi-

tive ion high-quality labeled spectra acquired on Q-TOF instruments. For each spectrum,

Scheubert et al. have computed a fragmentation tree that annotates a subset of fragments with

molecular formulas and removed peaks that usually represent isotopic peaks, chemical noise

and other unexplained fragments [11]. Meanwhile, neutral exact masses were assigned to for-

mula annotated fragments. The decoy library was a randomized version of the target library.

The decoy process kept the library labels (molecular structures) and all edges of the fragmenta-

tion tree, while generating randomized mass spectra via tree rearrangement (Fig 1A). Such

process mimics very “noisy” experimental spectra, therefore extracted patterns can probably

reflect spurious feature-substructure relations in the target library. For both target and decoy

libraries, mass spectra representing the same structure were combined, and duplicated frag-

ments were removed. The final training data consists of 3146 target and decoy spectra

(S1 Data).

Spectral feature extraction

Both fragment masses and distances between fragments (mass differences) were interesting

spectral features for model training. However, as an example, if a training spectrum has 20

mass peaks, extracted spectral features consist of 20

2

� �
¼ 190 mass differences. If we use all

mass differences, rule generation can be computationally expensive and highly dominated by

mass differences with no structural information. Therefore, we only used edges of fragmenta-

tion trees as target spectral features since they represent losses due to fragmentation reactions

and probably hold structural information (Fig 1B). Since decoy spectra were derived from the

same set of edges as their corresponding target spectra, to introduce randomness, a subset of

20% spectral features were arbitrarily extracted from all mass differences of the decoy spectra

(Fig 1D). In the end, a similar amount of spectral features was used to generate target and

decoy rules.

Substructure generation

For every metabolite in the spectral library a set of substructures is created by combining two

approaches: i) by checking the presence of predefined substructures, ii) through “breaking of
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retrosynthetically interesting chemical substructures” (BRICS) algorithm [26] (RDKit https://

www.rdkit.org/ in Python). For i), we took 1483 CSI:FingerID molecular fingerprints (all types

except for ECFP4) and converted them into substructures [11]. The SMILES code of corre-

sponding substructures are available in S1 Data. For the second approach, we disconnected

one or two chemical bonds in the metabolite and collected the resulting two or three substruc-

tures obtained from every iteration (Fig 1C). CHON substructures that contain less than five

carbon and oxygen atoms were considered trivial and therefore discarded. All substructures

were represented by SMILES codes in the rule database.

Rule generation, statistical analysis and filtering

After combining substructures with extracted spectral features, association rules were mined

separately for target and decoy libraries (Fig 1E and 1F). Details about ARM can be found in

S1 Text.

A MESSAR rule with shape X) Y describes the potential dependency of a substructure (Y)

on a spectral feature pattern/feature set (X can contain up to three co-occurring masses and

mass differences). Therefore, each rule can be considered as a binary classifier that decides

whether a metabolite contains a substructure according to the corresponding spectral feature

presence/absence. The predictive power of the rules was evaluated based on a confusion

matrix, as follows (Table 1):

Fig 1. Workflow for target and decoy rule generation. Based on training data from an LC-MS/MS spectral library substructure recommendations are generated.

Our method consists of (A) retrieving training MS/MS spectra, (B) extracting spectral features (neutral exact masses and mass differences) from the target library,

(C) generating molecular substructures, (D) extracting spectral features from the decoy library, (E) rule mining using substructures and target spectral features, (F)

rule mining using substructures and decoy spectral features, (G) statistical evaluation of target and decoy rules, filtering target rules and saving valid rules to the

final database.

https://doi.org/10.1371/journal.pone.0226770.g001
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We calculated two statistical metrics for each target and decoy rule, namely precision and

recall (Fig 1G). A perfect precision score of 1.0 means that the metabolite always contains sub-

structure Y if we detect the spectra feature set X whereas a recall of 1.0 means that all metabo-

lites containing substructure Y must have feature set X in their spectra:

precisionðX ! YÞ ¼
TP

SuppðXÞ

recallðX ! YÞ ¼
TP

SuppðYÞ

Target rules were filtered by defining a recall threshold for 1% FDR (Fig 1G). Based on the

target-decoy method, the simple FDR associated with a particular recall threshold is the ratio

between the number of accepted decoy rules (above the threshold) and target rules [27]. The

simple FDR was estimated using the prozor package in R (https://github.com/protviz/prozor).

Test data

The predictive power of individual target rules was first evaluated on an independent “MASS-

BANK” data set (S2 Data). This test set contained 5164 labeled TOF-MS/MS spectra derived

from the MASSBANK spectral library (http://mona.fiehnlab.ucdavis.edu/). Compounds

behind these spectra are metabolites, drugs and natural products.

The second test data set “MASSBANK_CASMI” (S2 Data) was used to assess substructure

recommendation for unknown spectra. This test set consists of 185 labeled TOF-MS/MS data,

including 34 drugs and 126 metabolites from MASSBANK, as well as 25 spectra from the open

contest CASMI 2017 (http://casmi-contest.org/2017).

When creating both test sets, we discarded all compounds that overlapped with the MES-

SAR training set based on the first block of InChiKey. “MASSBANK_CASMI” does not con-

tain any compounds used for CSI:FingerID model training (https://bio.informatik.uni-jena.

de/software/sirius/). Mass spectra representing the same structure in each test set were com-

bined, and duplicate fragments were removed.

Maximum common substructure

When using MESSAR rules to annotate unknown spectra, we computed the maximum com-

mon substructures (MCSs) of a matched rule set in order to extract meaningful core substruc-

tures and to reduce the uncertainty of prediction. We first screened all matched rule pairs to

identify “analogous rules” in which the head of rules had a Tanimoto similarity score higher

than 0.5 [28]. We extracted from all analogous rule pairs maximum common substructures

using the rcdk package in R. For motif annotation, the most frequent MCS of a rule set was

reported. For unknown spectra annotation, each extracted MCS was scored by summing the

recall of all relevant rules.

Table 1. Confusion matrix for the MESSAR rule X! Y.

Y ¬Y
X True Positive (TP) False Positive (FP)

¬X False Negative (FN) True Negative (TN)

Supp(X) = TP + FP, Number of spectra that contain the set of spectral feature(s) X;

Supp(Y) = TP + FN, Number of compounds that contain the substructure Y.

https://doi.org/10.1371/journal.pone.0226770.t001
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MESSAR webtool

The MESSAR web tool recommends substructures for an input spectrum based on the pre-

trained rule database (Fig 1). MESSAR expects as input a list of MS/MS peaks and the precur-

sor m/z. MESSAR then uses the fragments and the computed mass differences to query its

database. The matched rules are ranked by their recall. Users could use these rules to generate

structural hypotheses. In addition, rules that suggest similar (or identical) substructure can be

aggregated, leading to a ranked list of substructure recommendations. Three rule aggregation

algorithms are available in the web tool: i)“Exhaustive”: maximum common substructures

computed from all rules; ii) “Fast”: MCS calculation on 20 most sensitive rules; iii) “Naive”:

simply combining rules that suggest identical substructures. For all three algorithms, the score

of each substructure is the sum of recall of all responsible rules. We recommend users to try

out all three algorithms to discover the most reliable and meaningful substructures, but we

only present results based on the “Exhaustive” algorithm in this paper. The client interface of

the web tool was developed using the R Shiny framework.

Substructure recommendation by CSI:FingerID and MS2LDA

CSI:FingerID (Windows GUI SIRIUS-4.0.1) was downloaded from https://bio.informatik.uni-

jena.de/software/sirius/. The “MASSBANK_CASMI” data was submitted to the GUI as an mgf

format file. The precursor formula was not available for fragmentation tree building, and all

elements were considered (classical CHNOPS along with Br, Cl, F and I since they might be

present in drug compounds). The annotation tolerance was set to 20 ppm. Only the best pre-

cursor formula (the one with the highest score) was submitted for substructure annotation.

CSI:FingerID predicted five types of molecular fingerprints that can be translated into sub-

structures (1483 substructures in total), namely CDK, PubChem CACTVS, Klekota-Roth, FP3

and MACCS. Substructures were ranked by probability. We only considered recommenda-

tions with a probability above 0.5.

The same mgf file was submitted to http://ms2lda.org/ for M2M searching and annotation.

The minimum intensity of MS2 peaks was set at 1, and the width of MS2 bins at 0.005 Da. The

motifs found were further inferred using predefined 500 GNPS motifs. The results are available

online at http://ms2lda.org/basicviz/summary/951/.

Results and discussion

First, we briefly describe the model training (rule generation) procedure and illustrate the sta-

tistical performance of generated rules on training and test spectra. Second, the biochemical

relevance of these rules is revealed through a comparison with MS2LDA patterns. Third, MES-

SAR was validated on two independent sets of test spectra for the prediction power of individ-

ual rules and all rules together. The performance of MESSAR for unknown spectra annotation

was compared with CSI:FingerID. Finally, the usefulness of the MESSAR output for structural

hypothesis generation was evaluated alongside CSI:FingerID and MS2LDA through 185 test

spectra.

Outline of MESSAR rule generation

MESSAR predicts molecular substructures from an MS/MS spectrum based on meaningful

“MS/MS feature(s)! substructure”-like patterns (rules) derived from existing labeled spectra.

To find such patterns, the classical ARM algorithm was applied on a subset of the GNPS spec-

tral library. The algorithm discovers rules among labeled spectra based on user-defined param-

eters (S1 Text). An overview of the rule generation procedure from the spectral library is

MESSAR: MEtabolite SubStructure Auto-Recommender
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depicted in Fig 1. This includes the following steps described in the Materials and Methods

section: (A) retrieving training data: target and decoy GNPS spectral libraries used by passa-

tutto software [25], (B) extracting spectral features from the target library, (C) generating

molecular substructures of training compounds, (D) extracting spectral features from the

decoy library, (E) ARM on target features and substructures, (F) generating random rules

from the decoy database, (G) statistical evaluation of target and decoy rules, filtering target

rules by FDR estimation with the target-decoy method. All target rules above the score thresh-

old chosen were saved in the MESSAR rule database.

Statistical properties of MESSAR rules

Using the procedures described in S1 Text, we have generated 20747 and 15480 rules from tar-

get and decoy spectral libraries, respectively (before FDR-based filtering in step G). In the tar-

get database we can observe several expected substructure recommendations. For example,

mass features in rules 1–3 (Table 2) reflect the molecular weight of recommended substruc-

ture. We found about 3% such rules that captured the direct link between masses/mass differ-

ences and the presence/loss of substructures (S1 File). The remaining 97% rules describe

potential latent associations between spectral features and substructures (Table 2, Rules 4–9,

S1 File) and cannot be explained directly.

In total, the 20747 target rules covered 215 sets of spectral features and 732 substructures.

The same set of spectral features can recommend several different substructures (Rules 4-6),

and reciprocally, the same substructure can be associated with multiple feature patterns (Rules

7-9). In the first scenario, the recommended substructures are usually very much alike, which

can be explained by the presence of the same spectral feature(s) in similar training molecules

with a minor substructure difference (S2 Fig). The second scenario is consistent with the con-

cept of Mass2Motifs [19], that is, a complex substructure is indeed associated to co-occurring

molecular fragments and losses (spectral patterns).

However, not all target MESSAR rules are meaningful because ARM can find spectral fea-

tures-substructure associations that are present by chance. Since a direct biochemical evalua-

tion (e.g. via molecular weight) is not feasible for most rules, we verified whether the statistical

measures, precision and recall, can be used to select meaningful rules. The most meaningful

rule can be selected based on the highest precision or recall (Table 2). Using the entire training

set, we created confusion matrices for each rule and evaluated the two statistical measures. The

decoy rules served as negative controls and were evaluated in the same way as the target rules

(Fig 1G).

Table 2. Examples of MESSAR rules from the target database.

ID Type Body (X) Head (Y) Precision Recall

1 MDiff. 43.0422 CCF 0.10 0.23

2 MDiff. 35.9767 CCl 1.0 0.73

3 Mass 119.0855 CCCCCCCCCC 0.54 0.47

4 Mass 172.0757 CC(C)CNC = O 0.26 0.30

5 Mass 172.0757 CNCC1CCC2 = CC = CC(= O)N2C1 0.45 0.60

6 Mass 172.0757 O = C(COC1CCC2CCC(= O)OC2C1)N3CCCCC3 0.16 0.96

7 Mass 143.0855 C#CC1(O)CCC2C3CCC4 = CC(= O)CCC4C3CCC21C 0.11 0.92

8 Mass, MDiff. 105.0699, 52.0313 C#CC1(O)CCC2C3CCC4 = CC(= O)CCC4C3CCC21C 0.12 0.74

9 Mass, Mass, Mass 117.0699, 129.0699, 105.0699 C#CC1(O)CCC2C3CCC4 = CC(= O)CCC4C3CCC21C 0.13 0.63

https://doi.org/10.1371/journal.pone.0226770.t002
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First, there was no correlation between the two metrics (Fig 2A). Points representing tar-

get/decoy rules can be separated based on recall. We further compared the distributions of pre-
cision and recall (Fig 2B and 2C). It can be seen that the precision of most target and decoy

rules lies between 0 and 0.4, and target/decoy distributions overlap over the entire precision
range. In contrast, the recall of the decoy rules centers around 0.07 and ranges mostly between

0 and 0.2, while target rules display a skewed Poisson-like distribution around 0.16 with a

long right tail up to 1 (Fig 2C). Moreover, there was little overlap between target/decoy

distributions.

In summary, recall appears to be more suitable to distinguish meaningful rules from spuri-

ous patterns. It will be the only metrics used for FDR control and model validation (substruc-

ture recommendation) in the manuscript. After filtering rules for statistical soundness and for

1% FDR (threshold defined based on the shape of the curve in S3 Fig), target rules with a recall
higher than 0.20 were kept. The final MESSAR database consists of 8378 association rules (S1

File).

Comparison between MESSAR rules and MS2LDA patterns

MS2LDA [19, 21] is an unsupervised tool that discovers patterns across fragmentation spectra.

As it operates within a similar scope as MESSAR, a detailed comparison is warranted. The

major difference between MESSAR and MS2LDA is that MS2LDA requires frequent patterns

of spectral features (fragments and neutral losses) extracted from raw MS/MS spectra to be

manually annotated by MS experts. These two steps result in a set of annotated “Mass2Motifs”

(M2Ms) that couple spectral features to descriptive sub-structures (e.g. “Amine loss—Indica-

tive for free NH2 group in fragmented molecule”), comparable to MESSAR rules. Moreover,

spectral feature–substructure associations in M2Ms are highly confident, and as such they can

be used as a ground truth to assess the biochemical relevance of MESSAR rules.

We compared the 8378 MESSAR rules with the 500 positive ion mode M2Ms derived from

GNPS [19]. Each M2M consists of up to 200 motif features (fragments and losses), sorted by

their probabilities (Fig 3 left panel). The fifty most probable features were searched against the

MESSAR target rules using a 20 ppm mass window around the MESSAR spectral features, and

feature types were required to agree.

In practice, M2M features can never completely overlap with MESSAR rule features. One

reason is that some M2M features can be isotopic peaks, noise,. . .,while such features were

removed before training MESSAR rules. To understand what a “reliable overlap” is, we per-

formed two negative control experiments: i) searching “random motifs” consisting of only

Fig 2. Statistical evaluation of MESSAR rules. (A) scatter plot between precision and recall, (B) precision and (C) recall distribution of target and decoy rules.

https://doi.org/10.1371/journal.pone.0226770.g002
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features taken from other motifs against MESSAR target rules; ii) searching motif features

against decoy rules. After repeating i) 10 times and taking the median, 459 motifs overlapped

with MESSAR rules by at least 1 feature, however, 0 motif shared more than 5 common fea-

tures with MESSAR rules (Fig 3B, S2 File). Based on i), we consider a “reliable overlap if a

M2M shares more than 5 common features with MESSAR rules. Among 500 motifs, we found

77 reliable M2M-rule matches. In comparison, 29 motifs overlapped with decoy rules in ii) by

Fig 3. Comparison between Mass2Motifs and MESSAR rules. A) An example of comparison. The fifty most probable features (fragments or losses) of the Motif

25 were searched against the MESSAR target rules. A 20 ppm mass window was used and feature types were required to agree (“Fragment” = “Mass”, “Loss” =

“MDiff”). Recall was used as the tie-breaker to select the most meaningful rules, and MCS was computed if multiple selected rules have the same recall. The

MESSAR substructure recommendations for Motif 25 were compared with the annotation by MS experts. B) Matching between 8378 MESSAR target rules—500

MS2LDA motifs as well as two negative control experiments: target rules vs random motifs (matching results based on the median of 10 replicates); decoy rules vs

MS2LDA motifs.

https://doi.org/10.1371/journal.pone.0226770.g003
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more than 5 features (or 10% for M2Ms with fewer than 50 features). Likewise, much fewer

M2M-decoy rule matches (than 77) were observed when decoy rules were derived from two

other algorithms of passatutto (S2 File).

We further investigated the underlying biochemical link based on these 77 reliable matches.

Briefly, we used MESSAR rules to annotate their matched motifs. The substructure annotation

was achieved based on the set of MESSAR rules associated with a M2M via common spectral

features (Fig 3A). If several matched rules were associated with the same feature set, recall was

used as tiebreaker to select the most important rule. For instance, among rules b), c) and d) in

Fig 3A, rule b) with the highest recall was selected, and only the substructure recommended by

b) was kept for evaluation. If recall could not break the tie (such as rules f, g and h in Fig 3A),

we reported the MCS of substructures predicted from all such rules. The MESSAR prediction

for all 77 M2Ms can be found in S3 data.

Among these 77 M2Ms, 28 have also received expert annotations in [19]. Using these

motifs, we validated the biochemical relevance of MESSAR rules by comparing substructures

predicted with ground-truth expert annotation (S1 Table). Interestingly, the MESSAR-pre-

dicted substructures showed a striking similarity to expert knowledge, ranging from simple

(e.g ethyl phenol of Motif 21) to complex (e.g. indole substructure of Motif 25, 26, 194) sub-

structures. According to experts’ knowledge, ground-truth annotations of 26 motifs (out of 28)

were identical or very similar to the substructure predicted by at least one matched MESSAR

rule. On average, 40% of recall-selected rules correctly predicted the motif substructure (exact

number of correct rules in S2 File). In addition, matched rules can capture structural similarity

between motifs. For example, most rules matching with motifs 1, 32, 39, 50 and 274, which are

all steroid-related, correctly recommended the steroid core (S1 Table).

The MESSSAR rules also recommended substructures for the remaining 49 M2M (out of

77) that were not annotated in [19]. The examples in S2 Table and S3 Data show the ability of

MESSAR to assign meaningful substructures, allowing biochemical interpretations of

unknown M2Ms.

Overall, we found a reliable overlap between 8378 MESSSAR rules and 77 M2Ms (out of

500). The matched and recall-selected rule set not only validated most expert annotations of

M2Ms but also recommended substructures for unknown M2Ms. However, in broad terms,

MESSAR and MS2LDA are strongly complementary, since rules and M2Ms show completely

different formats: MESSAR rules link spectral features (with exact masses) with specific sub-

structures, while M2Ms are spectral patterns derived from raw experimental spectra with

descriptive substructure annotation (Fig 3). Although strong biochemical links were revealed

from overlapping rules and motifs, the remaining rules and motifs can not be compared

directly. We will further illustrate their complementarity in following sections.

Validating MESSAR rules using authentic standards

MESSAR rules were characterized by their recall calculated based on the entire training set.

This metrics describes the probability that a feature set (X) is detected if the substructure (Y) is

in the training molecule. Target-decoy comparison shows the ability of recall to select non-ran-

dom rules. In the MS2LDA-MESSAR comparison, rules with the highest recall correctly pre-

dicted motif substructures from overlapped motif features. To demonstrate that the rest of

rules were not only beyond random but also meaningful and reliable, 8378 MESSAR rules

were individually validated on an independent test set of 5164 MASSBANK standards

(S2 Data).

For each rule X) Y, we counted how many test spectra contain the feature set X while the

substructure Y is present in the corresponding chemical standards, in other words, the number
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of true positives (Table 1). Consistent with the model training procedure, 4743 rules with

TP� 5 were statistically evaluated (S1 Text). We could not evaluate the rest of rules due to

their rare occurrence in the test set. In addition to the TPs, we counted the frequency of sub-

structure (Supp(Y)) for each rule, from which recall was reported (Fig 4, S3 File).

In Fig 4, half of evaluated rules (2364 out of 4743 rules) had a recall higher than 0.6, while

only 10% (463 out of 4743) might be spurious due to a recall lower than 0.2. This result was

not biased by the rule filtering step (Fig 1G) since we have only applied a 0.2 filter on training

data-derived recall. A global high recall indicates that MESSAR rules are meaningful and pow-

erful in capturing characteristic spectral features of a substructure. As an example, with a recall
of 1, the rule 21850 (S3 File) implies that the fragment 160.0757 appears in all testing com-

pounds that involve cytisine substructure.

Substructure recommendation for unknown spectra

We can use the entire rule set to annotate unknown spectra. This functionality is available to

users in the MESSAR web tool. The intermediate steps of the substructure prediction proce-

dure are illustrated in Fig 5A using the example of Ochratoxin B ethyl ester (Inchikey: XXA-

VUHHKDMGGBR-UHFFFAOYSA-N, Challenge ID: 38 in S2 Data “MASSBANK_CASMI”).

Fig 4. Statistical evaluation of MESSAR rules on testing data. Recall distribution of 4743 evaluated rules. The red dash line indicates

the 0.2 threshold used to define spurious rules.

https://doi.org/10.1371/journal.pone.0226770.g004
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We queried the rule database based on the peaks and mass differences extracted from the test

spectrum. With a 20 ppm mass window, the query resulted in 202 matched rules predicting

192 substructures. According to expert knowledge, most rules recommended benzene rings,

aromatic amines and indole-related substrutures (S4 File). Such conclusion can be drawn after

examining all matched rules. For ease of interpretation, we proposed an additional simplifica-

tion step through analogous rules aggregation so that final recommended substructures were

MCSs of rules head (Y). Accordingly, the score of each MCS was the sum of recall of all respon-

sible rules. We have aggregated 202 rules into 26 ranked substructures (S4 File). This last step,

available in our web tool, is optional but strongly recommended.

In practice, only top-ranked substructures are recommended to end users for de novo iden-

tification or approximate characterization of unknown metabolites. In other words, the top

candidates of a good substructure prediction tool should contain both accurate and meaning-

ful (e.g. biochemically-relevant) structural knowledge. Therefore, both quantitative (accuracy

of tools) and qualitative (meaningfulness) aspects were considered when comparing MESSAR

output (top-ranked substructures aggregated from matched rules) with two other substructure

recommendation tools i.e. CSI:FingerID and MS2LDA.

The 185 test spectra from “MASSBANK_CASMI” (S2 Data) were submitted to all three

software. The accuracy of MESSAR was only compared with CSI:FingerID since MS2LDA

Fig 5. Substructure recommendation and interpretation for unknown spectra. A) Spectral features of the test spectrum are searched against the rule database.

The matched rules are aggregated through MCS calculation of analogous rules. The final recommendations are MCSs scored by the sum of recall. The top

recommendations are verified against the ground-truth in terms of exact structural match and biochemical relevance. B) Number of test spectra annotated by

MESSAR, CSI:FingerID and their combined use (since some spectra cannot be processed by either tool) and number of “good annotations” under four criteria of

accuracy. C) Based on top 3 outputs of MESSAR, test spectra 46, 59 and 142 can be grouped for sharing potentially the indole substructure.

https://doi.org/10.1371/journal.pone.0226770.g005
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output was text descriptions of substructures thus not eligible for quantitative comparison.

Small substructures with fewer than 5 non-hydrogen atoms were discarded. Based on the out-

put of both tools, we retrieved the number of hits (when the predicted substructure is an exact

match of ground-truth) among top 3, 5 and 10 recommended substructures. We counted the

number of “properly annotated” test spectra under four fixed criteria (Fig 5B): i) at least one

hit among top 3; ii) 2 or 3 hits among top 3; iii) at least 3 hits among top 5 and iv) at least 5 hits

among top 10 candidates (Fig 5B). These criteria reflect how trustworthy the tools are if users

only look at the top substructure recommendations. Among spectra that MESSAR or CSI:Fin-

gerID were able to process, 28% and 38% were correctly annotated, respectively, according to

a strict criterion such as i).

Based on independent spectra, CSI:FingerID allows more accurate substructure prediction

over MESSAR (e.g. 52% against 42% of test spectra with at least one hit among top 3). Here,

the better performance with CSI:FingerID can be explained by the additional spectra pre-pro-

cessing step in SIRIUS and by its massive training spectra (8210 unique compounds against

3146 in MESSAR). Interestingly, after concatenating the top results from both tools (i.e. top 3,

5 and 10 substructures) and filtering duplicates, nearly 50% processed spectra were correctly

annotated based on criterion i) and 72% with criterion ii). While CSI:FingerID allowed more

exact substructure matches, the combined approach consistently outperforms either tool.

On the other hand, an exact substructure match to test compounds does not mean that the

output is meaningful or useful to reveal the ground-truth. For instance, a substructure with the

SMILES code “CC(CCC)CC” is probably an exact match to diverse metabolites, but it cannot

assist structural hypothesis generation or the understanding of the biochemical origin of

unknowns. Therefore, a qualitative evaluation of software output by an external expert is pre-

ferred. Here we collected the output of all three software for the 185 spectra as well as the

ground-truth in S3 Table. MESSAR and CSI:FingerID outputs were top 3 substructure candi-

dates, and MS2LDA output was the interpretation of matched GNPS motif. The external

expert performed a blinded evaluation and suggested for each spectrum the appropriate tool

(s) based on: i) how useful the predicted substructures are (e.g. indication of chemical family);

ii) biochemical relevance of output with regard to ground-truth. In the example of Ochratoxin

B ethyl ester (Challenge ID: 38), MESSAR and CSI:FingerID were equally considered useful

since they correctly predicted the aromatic ring and amine group, respectively (S3 Table).

According to the expert, 124 out of 185 test spectra received reliable and useful annotations

from at least one software (S3 Table). MESSAR, CSI:FingerID and MS2LDA reliably predicted

substructures for 68, 65 and 32 times, and they were the single appropriate tool for 39, 41 and

6 test spectra, respectively. These numbers indicate a strong orthogonality between these tools.

Specifically, MESSAR was most powerful for capturing polycyclic aromatic (e.g. Challenge ID:

3,9,16,36,58,78. . .), indole (ID: 6, 46, 59, 60, 142. . .) and chlorobenzene (ID: 40, 66) substruc-

tures. CSI:FingerID provided reliable prediction of amino acids (ID: 41, 119, 153, 179) and

other nitrogen-containing functional groups such as pyrimidine (ID: 13, 94) and benzenesul-

fonylamide (93, 182). MS2LDA was able to elucidate sterone-related (ID: 3, 36, 84, 146) and

conjugated sugar (ID: 76, 169).

In S3 Table, there were 14 cases where both MESSAR and CSI:FingerID allowed useful

annotations. Interestingly, for 8 such spectra (ID: 18, 21, 55, 96, 119, 145, 157 and 158), the

correct substructures predicted were not redundant. In the example of ID: 119, MESSAR

correctly predicted the phenol substructure, while CSI:FingerID annotated the underlying

compound as an amino acid. De novo annotation can be improved by combining both infor-

mation. Such complementarity was also observed between MESSAR and MS2LDA. In fact,

the combined use of three tools would allow a broader coverage of metabolite families and

increased reliability of hypothesis generation. On the other hand, one tool can be more
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preferable if user has prior knowledge about biochemical origins of the unknown. It will be

interesting to evaluate this aspect in future research.

Conclusions

MESSAR was inspired by the idea that the presence of spectral features in an MS/MS spectrum

is linked to substructures of the metabolite. We have implemented a data-driven approach to

unravel such relations from public spectral library. Our approach was inspired from associa-

tion rule mining. Statistical evaluation of target/decoy rules and validation on independent

spectra characterized such relations as “good recall but lower precision”. It means that some

spectral features are constantly present for compounds containing a certain substructure. In

fact, rules with high recall in S1 File reveal characteristic ions for several important substruc-

ture. However, learning a specific substructures from one or a few spectral features could be

challenging due to the low precision.

Although individual MESSAR rules have a low predictive power in terms of precision, the

strength of our approach lies in two aspects: i) rules with higher recall predict meaningful sub-

structures, useful for de novo identification; ii) the sparsity of rules enables the prediction of

diverse substructures, making our tool a good structural hypothesis generator. On the other

hand, rules matched to an unknown spectrum can usually be aggregated through MCS search,

leading to accurate and reliable substructure recommendation.

We developed MESSAR web tool to assist the de novo annotation of unknown metabolites,

for example, to identify functional classes of unknown spectra that share substructures (Fig

5C), to corroborate results from other chemical identification tools, etc. Although our tool and

CSI:FingerID share similar concept and work on a similar scope, the machine-learning model

behind is fundamentally different. First, CSI:FingerID starts by converting the training spectra

into fragmentation trees before predicting substructure presence based on fragmentation tree

similarity. In contrast, MESSAR directly explores the relationships between spectral features

and molecular substructures. Second, CSI:FingerID relies on molecular fingerprints to train

SVM (support vector machine) models, while MESSAR employs both predefined substruc-

tures (molecular fingerprints) and less common ones by breaking chemical bonds of training

compounds. The difference in machine-learning model can explain the difference in perfor-

mance and the orthogonality of reliable predictions (depending on compound classes). MES-

SAR is inherently complementary to recently-published software MS2LDA as MS2LDA

extracts co-occurring spectral features while MESSAR provides an automated structural anno-

tation of these features. Similarly, we anticipate that MESSAR will be useful for the functional

analysis of complex biological matrices as it can quickly recognize substructure patterns.

Through both quantitative and qualitative evaluation, we have demonstrated that MESSAR

uses orthogonal information to improve state of the art. In practice, combining MESSAR with

MS2LDA and CSI:FingerID will enhance structural hypothesis generation, allowing reliable

biological interpretation from diverse MS/MS spectra.
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tional Tool To Assist in the Annotation of Metabolites from Tandem Mass Spectra. Analytical Chemistry.

2017; 86(6):3474–3482. https://doi.org/10.1021/acs.analchem.6b04512

16. Mrzic A, Lermyte F, Vu TN, Valkenborg D, Laukens K. InSourcerer: a high-throughput method to search

for unknown metabolite modifications by mass spectrometry. Rapid Communications in Mass Spec-

trometry. 2017; 31(17):1396–1404. https://doi.org/10.1002/rcm.7910 PMID: 28569011

17. Mahieu NG, Spalding JL, Gelman SJ, Patti GJ. Defining and Detecting Complex Peak Relationships in

Mass Spectral Data: The Mz.unity Algorithm. Analytical Chemistry. 2016; 88(18):9037–9046. https://

doi.org/10.1021/acs.analchem.6b01702 PMID: 27513885

18. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation

of mass spectrometry data with GNPS. Nature biotechnology. 2016; 34(8):828–837. PMID: 27504778

19. van der Hooft JJJ, Wandy J, Barrett MP, Burgess KEV, Rogers S. Topic modeling for untargeted sub-

structure exploration in metabolomics. Proceedings of the National Academy of Sciences of the United

States of America. 2016; 113(48):13738–13743. https://doi.org/10.1073/pnas.1608041113 PMID:

27856765

20. van der Hooft JJJ, Wandy J, Young F, Padmanabhan S, Gerasimidis K, Burgess KEV, et al. Unsuper-

vised discovery and comparison of structural families across multiple samples in untargeted metabolo-

mics. Analytical Chemistry;in press.

21. Wandy J, Zhu Y, van der Hooft JJJ, Daly R, Barrett MP, Rogers S. Ms2lda. org: web-based topic model-

ling for substructure discovery in mass spectrometry. Bioinformatics; 34(2):317–318. https://doi.org/10.

1093/bioinformatics/btx582

22. Naulaerts S, P M, Bittremieux W, Vu TN, Vanden Berghe W, Goethals B, et al. A primer to frequent

itemset mining for bioinformatics. Briefings in Bioinformatics. 2015; 16(2):216–231. https://doi.org/10.

1093/bib/bbt074 PMID: 24162173

23. Vu TN, Bittremieux W, Valkenborg D, Goethals B, Lemière F, Laukens K. Efficient Reduction of Candi-

date Matches in Peptide Spectrum Library Searching Using the Top k Most Intense Peaks. Journal of

Proteome Research. 2014; 13(9):4175–4183. https://doi.org/10.1021/pr401269z PMID: 25004400

24. Vu TN, Mrzic A, Valkenborg D, Maes E, Lemière F, Goethals B, et al. Unravelling associations between

unassigned mass spectrometry peaks with frequent itemset mining techniques. Proteome science.

2014; 12(1):54. https://doi.org/10.1186/s12953-014-0054-1 PMID: 25429250

25. Scheubert K, Hufsky F, Petras D, Wang M, Nothias LF, Dührkop K, et al. Significance estimation for
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