
RESEARCH ARTICLE

Proteome-wide Mendelian randomization

identifies causal links between blood proteins

and severe COVID-19

Alish B. PalmosID
1,2‡, Vincent MillischerID

3,4‡*, David K. MenonID
5, Timothy

R. NicholsonID
2,6, Leonie S. Taams7, Benedict MichaelID

8, Geraint SunderlandID
9,10,

Michael J. Griffiths9,11, COVID Clinical Neuroscience Study Consortium,
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Abstract

In November 2021, the COVID-19 pandemic death toll surpassed five million individuals.

We applied Mendelian randomization including >3,000 blood proteins as exposures to iden-

tify potential biomarkers that may indicate risk for hospitalization or need for respiratory sup-

port or death due to COVID-19, respectively. After multiple testing correction, using genetic

instruments and under the assumptions of Mendelian Randomization, our results were con-

sistent with higher blood levels of five proteins GCNT4, CD207, RAB14, C1GALT1C1, and

ABO being causally associated with an increased risk of hospitalization or respiratory sup-

port/death due to COVID-19 (ORs = 1.12–1.35). Higher levels of FAAH2 were solely associ-

ated with an increased risk of hospitalization (OR = 1.19). On the contrary, higher levels of

SELL, SELE, and PECAM-1 decrease risk of hospitalization or need for respiratory support/

death (ORs = 0.80–0.91). Higher levels of LCTL, SFTPD, KEL, and ATP2A3 were solely

associated with a decreased risk of hospitalization (ORs = 0.86–0.93), whilst higher levels

of ICAM-1 were solely associated with a decreased risk of respiratory support/death of

COVID-19 (OR = 0.84). Our findings implicate blood group markers and binding proteins in

both hospitalization and need for respiratory support/death. They, additionally, suggest that

higher levels of endocannabinoid enzymes may increase the risk of hospitalization. Our

research replicates findings of blood markers previously associated with COVID-19 and
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prioritises additional blood markers for risk prediction of severe forms of COVID-19. Further-

more, we pinpoint druggable targets potentially implicated in disease pathology.

Author summary

As of November 2021, more than five million people have died due to COVID-19.

Although vaccinations provide good protection, it is important to fully understand the

biology behind the severe forms of COVID-19. Mendelian randomization facilitates the

identification of blood proteins that may be involved in the pathophysiology of severe

forms. Here, we investigated whether>3,000 blood proteins might play a role in hospitali-

zation due to COVID-19 or the requirement of respiratory support or death due to

COVID-19. Using genetic instruments and under the assumption of Mendelian randomi-

zation, our results are consistent with higher levels of five proteins being causally associ-

ated with an increased risk of both COVID-19 outcomes and higher levels of one protein

associated with hospitalization. Our results are also consistent with higher levels of four

proteins–mainly playing a role in cell adhesion–being causally associated with a decreased

risk of hospitalization and respiratory support/death, and higher levels of four proteins

being causally associated with a decreased risk of hospitalization. These proteins may rep-

resent new biomarkers useful in risk prediction of severity and may lead to new therapeu-

tics by prioritizing druggable targets.

Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in late

2019 in Wuhan, China, and is commonly referred to as coronavirus disease 2019 (COVID-19)

that rapidly evolved into a global pandemic [1,2]. As of November 2021, more than 240 million

cases have been confirmed worldwide with total deaths exceeding 5 million [3]. COVID-19

pathology encompasses a wide spectrum of clinical manifestations from asymptomatic, mild,

moderate, to 15% being severe infections [1,2,4]. Severe COVID-19 commonly requires hospi-

talization and intensive care with assisted respiratory support, and respiratory failure is the

most common reason for COVID-19 associated mortality [5].

A dysregulated pro- and anti-inflammatory immunomodulatory response is thought to

drive much of the pathophysiology of COVID-19 and comprises alveolar damage, lung inflam-

mation and pathology of an acute respiratory distress syndrome [1,2,6,7]. Given that the innate

immune response has an individual-level genetic basis, genetic variants carried by an individ-

ual could play an important role in the individual-level immune response and, therefore, may

influence progression and severity of COVID-19. This individual difference may also be key in

our understanding of why some individuals require hospitalization due to the severity of their

symptoms, whilst others are able to recover from COVID-19 without hospitalization [8]. In

addition, once hospitalized, this individual difference may drive some people towards fatal

outcomes or intensive care with respiratory support, whilst others are discharged from hospi-

tals without respiratory complications.

Although immunomodulatory blood proteins can be studied in hospitalized and non-hos-

pitalized patients with COVID-19, it is difficult to avoid potential confounding effects through

factors, such as initial viral exposure/inoculum, smoking behavior, and high body mass index

(BMI). These factors themselves are associated with high pro-inflammatory cytokine levels
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and may represent independent risk factors for hospitalization, death, or respiratory failure as

a result of COVID-19 [9,10].

Numerous genome-wide association studies (GWASs) in healthy populations associated

genetic variants with immunomodulatory blood proteins [11–13]. In addition, the COVID-19

Host Genetics Initiative carried out GWASs on COVID-19 outcomes to understand the role of

host genetic factors in susceptibility and severity of COVID-19 [8]: the first GWAS associated

genetic variants with hospitalization due to COVID-19; and the second with need for respira-

tory support and death subsequently to a COVID-19 hospitalization. The findings suggest that

once hospitalized another set of genetic variants may be responsible for a severe respiratory

form of COVID-19, which may lead to the need for respiratory support or death.

These GWASs represent a powerful source of information to identify new biomarkers and

therapeutic leads for drug development or repositioning. The method of Mendelian randomi-

zation can investigate the relationship between immunomodulatory blood proteins and a

severe COVID-19 infection. Mendelian randomization exploits the fact that alleles are ran-

domly inherited from parent to offspring in a manner analogous to a randomized-controlled

trial, and allows estimation of putative causal effects of an exposure on a disease while avoiding

confounding environmental effects, thus overcoming some of the limitations of observational

studies. Recent advancements in Mendelian randomization methods allow use of GWAS sum-

mary statistics to identify genetic proxies (i.e., instrumental variables) of modifiable risk factors

and test their association with disease outcomes [14,15]. We, therefore, conducted Mendelian

randomization analyses between high levels of a large number of blood proteins and COVID-

19, highlighting specific proteins associated with an increased risk of hospitalization due to

COVID-19 and once hospitalized, an increased risk for need of respiratory support/death due

to COVID-19. We identified putative causal associations that help us understand how innate

differences in protein levels can affect the COVID-19 disease course and which proteins could

be prioritized in clinical studies.

Methods

Blood protein GWAS data

In total, we amassed 5,305 sets of GWAS summary statistics for blood biomarkers [11–13,16–

23]. A systematic search was performed based on the ontology lookup service (OLS; www.ebi.

ac.uk/ols/index) using R and the packages ‘rols’ and ‘gwasrapidd’ between July 7th and July

27th, 2020. OLS is a repository for biomedical ontologies, such as gene ontology (GO) or the

experimental factor ontology (EFO), including a systematic description of many experimental

variables. First, all subnodes of the EFO ‘protein measurements’ (EFO:0004747) were deter-

mined using an iterative process based on the package ‘rols’. Overall, 628 unique EFO IDs

were determined. Subsequently, all genetic associations reported in the GWAS Catalog [24]

(www.ebi.ac.uk/gwas/) were identified and linked to the corresponding study using the pack-

age ‘gwasrapidd’. One hundred and seventy-eight unique GWAS catalog accession IDs with

available summary statistics were curated manually before inclusion. In order to expand the

dataset, studies published at a later date were included manually and the first and the last

author of studies without publicly available summary statistics were contacted.

In total, we included ten publications for which summary data was readily available and

processed those using standard GWAS summary statistics quality control metrics including

removal of incomplete genetic variants, variants with information metrics of lower than 0.6

and allele frequencies more extreme than 0.005 or 0.995. Allele frequencies were estimated

from raw genotypes of the European 1,000 Genomes Project dataset, where needed [25]. See

S1 Table for a full list of studies included in these analyses. Links to the summary statistics are
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also provided. Note that all protein measurements from all studies described above were

included in our analyses, meaning that some proteins were analyzed more than once.

COVID-19 GWAS data

In order to capture increased risk of hospitalization as a result of severe COVID-19, we down-

loaded the COVID-19 Host Genome Initiative GWAS meta-analysis [8] of “Hospitalized

covid vs. population”, European ancestry (B2_ALL_eur, release 5, January 2021; https://www.

covid19hg.org/results/r5/). Cases were defined as SARS-CoV-2 infected individuals who

required hospitalization due to COVID-19 related symptoms. Controls were defined as non-

cases, i.e. the population. The European sample consisted of 9,986 cases and 1,877,672 con-

trols. In our study, we refer to this GWAS as the hospitalization-COVID-19 GWAS.

In order to capture increased risk of very severe respiratory COVID-19, including respira-

tory support and death, we downloaded the COVID-19 Host Genome Initiative GWAS meta-

analysis [8] of “very severe respiratory confirmed covid vs. population”, European ancestry

(A2_ALL_eur, release 5, January 2021; www.covid19hg.org/results/r5). Cases were defined as

SARS-CoV-2 infected individuals who were admitted to hospital, had COVID-19 as the pri-

mary reason for admission, and had died or needed respiratory support (i.e., intubation, con-

tinuous positive airway pressure, or bilevel positive airway pressure). Controls were defined as

non-cases, i.e. the population [8]. The European sample consisted of 5,101 cases and 1,383,241

controls. In this study, we refer to this GWAS as the respiratory support/death-COVID-19

GWAS.

Mendelian randomization

To examine the influence of blood proteins on the risk of developing severe COVID-19, we

selected genetic variants, single nucleotide polymorphisms (SNPs), that were strongly associ-

ated with actual blood protein levels in 5,504 genome-wide analyses of single proteins using

robust methodologies (see S1 Data, for more details on how the proteins were measured, and

instruments for all significant proteins). Using these genetic loci as proxies for protein levels,

we performed an analysis using Mendelian randomization, a method that enables tests of puta-

tive causal associations of these blood proteins with the development of severe COVID-19. We

used the Generalized Summary data-based Mendelian randomization (GSMR) method as the

base method [26]. GSMR tests for putative causal associations between a risk factor and a dis-

ease using multi-SNP effects from GWAS summary data. The HEIDI-outlier approach in

GSMR removes SNP instruments with strong putative pleiotropic effects. In addition, GSMR

accounts for linkage disequilibrium (LD) among SNPs not removed by clumping using a refer-

ence dataset for LD estimation. In this study, the European 1,000 Genomes dataset was used as

the reference dataset [18].

For all GWASs, SNPs used as instrumental variables were selected by applying a suggestive

genome-wide p-value threshold (p< 5 x 10−6), to identify enough SNPs (i.e., at least 5) in com-

mon between the exposure (e.g., blood marker) and outcome (e.g. COVID-19 hospitalization).

Note that although reducing the p-value threshold may introduce potential false positive SNPs

as instruments, SNPs with the strongest effect sizes are robust and reliable for conducting MR.

The use of a lower p-value threshold in numerous MR studies is common [27–31], and we

additionally calculated F-statistics and I-squared statistics to transparently present the strength

of our instruments (S2 Table). We needed to take this analytical step as GWAS of blood pro-

teins with more statistical power are not available at this time.
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Where possible (due to SNPs in common between the exposure and the outcome), bidirec-

tional analyses were performed. To account for multiple testing, we calculated false discovery

rate (FDR) corrected Q values using the p.adjust function in R (pFDR = 0.05) [32].

Sensitivity analyses

To test for robustness, we performed sensitivity analyses on our significant results from the

GSMR analyses using additional Mendelian randomization methods, including the maximum

likelihood, MR Egger, simple median, weighted median, inverse weighted median, inverse

weighted median radial, inverse variance weighted (multiplicative random effects), inverse

variance weighted (fixed effects), simple mode and weighted mode methods [33–35]. In order

to pass our sensitivity analyses, at least nine of these ten methods must agree with the primary

GSMR results.

Furthermore, when possible, we performed GSMR using only variants in the cis region of

the gene encoding the blood marker (defined as variants either within a gene, up to 1 Mb prox-

imal to the start of the gene, or up to 1 Mb distal to the end of the gene). Gene information was

obtained from ensembl [36] using the biomaRt library [37], SNP information was obtained

from NCBI dbSNP [38] using the rsnps library [39] (Gustavsen et al., “Get ‘SNP’ (‘Single-

Nucleotide’ ‘Polymorphism’) Data on the Web [R Package Rsnps Version 0.4.0]” 2020).

With BMI being associated with both COVID-19 severity and the levels of many inflamma-

tory proteins [9,40,41], we also performed GSMR with BMI both as exposure and outcome for

all significant proteins.

Finally, given that many inflammatory and immunomodulatory proteins share genetic loci

and may therefore be driving associations via genetically correlated SNPs in high linkage dis-

equilibrium, we computed pairwise linkage disequilibrium for all SNPs used as instrumental

variables of blood proteins that were significantly associated in our analyses. To calculate link-

age disequilibrium, we used LDlink [42] and the CEU population panel (Utah residents from

North and West Europe) as the reference.

Pathway analyses

KEGG pathway analysis was performed in R with the significant proteins for both outcomes

separately, using the clusterProfiler library 4.0 [43]. To account for multiple testing, we calcu-

lated false discovery rate (FDR) on the pathways, the significance threshold was set at pFDR =

0.05.

Results

We tested 3,890 associations with hospitalization-COVID-19 as the exposure and blood pro-

teins as outcome (yielding 1 statistically significant association); and in reverse, 5,314 associa-

tions of blood proteins as the exposure and hospitalization-COVID-19 as the outcome

(yielding 15 statistically significant associations). Additionally, we tested 2,687 associations

with need for respiratory support/death-COVID-19 as the exposure (yielding 1 significant

association); and in reverse, 3,273 associations with respiratory support/death-COVID-19 as

the outcome (yielding 13 significant associations, Table 1). Our results show for some pro-

teins, robust associations with the same proteins twice, as they were measured twice in inde-

pendent GWASs, serving as direct replication. In order to easily identify these proteins, we

added a suffix of the study name to the protein. In addition, note that units of protein measure-

ment differed in studies, with some studies using standardized units (see studies in S1 Table).

Thus, we will report our findings per standard deviation increase.
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Table 1. Mendelian randomization results with COVID-19. Details of significant, false discovery rate-(FDR)-corrected Mendelian randomization results, using the

Generalized Summary Data-based Mendelian randomization (GSMR) method. Using genetic instruments and under the assumptions of Mendelian randomization, the

top section shows results consistent with six blood markers being significantly causally associated with an increased risk of hospitalization as a result of COVID-19 and the

nine blood markers causally associated with a decreased risk of hospitalization, as well as one protein showing a decrease in risk of hospitalization. The bottom section

shows results consistent with five blood markers being significantly causally associated with an increased risk for the need of respiratory support/death due to COVID-19

and eight blood markers causally associated with a decreased risk for the need of respiratory support/death due to COVID-19, as well as one protein decreasing risk for the

need of respiratory support/death due to COVID-19. The table presents the log odds statistics (i.e., beta) and corresponding standard error as well as odds ratios, 95% con-

fidence intervals, and the FDR-adjusted Q values (pFDR = 0.05).

Outcome—Hospitalization as a Result of COVID-19

Protein (exposure) Beta SE p value SNPs OR Lower 95% CI Upper 95% CI Q
FAAH2_Sun 0.17 0.03 1.54x10-07 13 1.19 1.12 1.25 1.31x10-04

GCNT4_Sun 0.15 0.03 8.15x10-08 18 1.16 1.11 1.21 8.68x10-05

CD207_Sun 0.11 0.02 1.95x10-08 24 1.11 1.08 1.15 3.59x10-05

RAB14_Sun 0.10 0.02 3.77x10-08 24 1.11 1.07 1.14 5.29x10-05

C1GALT1C1_Sun 0.10 0.02 4.06x10-05 26 1.10 1.06 1.15 2.47x10-02

ABO_Sun 0.07 0.01 1.36x10-07 29 1.07 1.05 1.10 1.29x10-04

LCTL_Sun -0.08 0.02 1.51x10-06 40 0.93 0.90 0.96 1.07x10-03

SFTPD_Breth -0.08 0.02 6.36x10-05 16 0.92 0.88 0.96 3.61x10-02

SELL_Sun -0.09 0.02 3.65x10-07 24 0.91 0.88 0.95 2.83x10-04

SELE_Folk -0.11 0.02 4.35x10-08 16 0.90 0.86 0.94 5.29x10-05

KEL_Sun -0.11 0.03 9.05x10-05 18 0.90 0.84 0.95 4.54x10-02

SELE_Scal -0.12 0.02 2.11x10-08 50 0.88 0.84 0.93 3.59x10-05

SELE_Breth -0.13 0.03 8.49x10-06 6 0.88 0.82 0.94 5.57x10-03

ATP2A3_Sun -0.16 0.04 8.99x10-05 16 0.86 0.78 0.93 4.54x10-02

PECAM1_Scal -0.23 0.04 2.05x10-10 30 0.80 0.73 0.87 1.74x10-06

Exposure—Hospitalization as a Result of COVID-19

Protein (outcome) Beta SE p value SNPs Q
MIP1b_Ahol -0.16 0.03 7.76x10-09 27 2.26x10-05

Outcome—Respiratory support/death due to COVID-19

Protein (exposure) Beta SE p value SNPs OR Lower 95% CI Upper 95% CI Q
GCNT4_Sun 0.30 0.05 3.36x10-11 16 1.35 1.26 1.44 6.68x10-08

RAB14_Sun 0.20 0.03 1.32x10-11 27 1.22 1.16 1.28 3.92x10-08

C1GALT1C1_Sun 0.19 0.04 3.19x10-07 28 1.21 1.13 1.28 2.37x10-04

CD207_Sun 0.16 0.03 2.97x10-07 25 1.17 1.11 1.23 2.37x10-04

ABO_Sun 0.11 0.02 8.35x10-08 30 1.12 1.08 1.16 8.30x10-05

SELE_Sliz -0.11 0.02 5.87x10-06 65 0.89 0.84 0.94 3.18x10-03

SELL_Sun -0.13 0.03 9.03x10-06 24 0.88 0.83 0.94 4.49x10-03

SELE_Scal -0.17 0.04 4.35x10-06 52 0.85 0.78 0.92 2.59x10-03

sICAM1_Sliz -0.17 0.04 2.98x10-05 31 0.84 0.76 0.92 1.27x10-02

SELE_Folk -0.19 0.03 9.44x10-10 16 0.83 0.77 0.89 1.41x10-06

SELE_Breth -0.20 0.05 1.87x10-05 6 0.82 0.73 0.91 8.57x10-03

PECAM1_Folk -0.26 0.05 1.49x10-06 8 0.77 0.66 0.88 9.87x10-04

PECAM1_Scal -0.31 0.05 1.34x10-09 31 0.73 0.63 0.83 1.60x10-06

Exposure—Respiratory support/death due to COVID-19

Protein (outcome) Beta SE p value SNPs Q
NEP_Hill -0.28 0.07 7.63x10-05 24 3.03x10-02

Note: SE = standard error, SNPs = number of single nucleotide polymorphisms in common between the exposure and outcome; OR = odds ratio, CI = confidence

interval, Q = false discovery rate-adjusted p value; ABO = ABO system transferase; ATP2A3 = ATPase Sarcoplasmic/Endoplasmic Reticulum Ca2+ Transporting 3;

C1GALT1C1 = C1GALT1 specific chaperone 1; CD207 = langerin; FAAH2 = Fatty Acid Amide Hydrolase 2; GCNT4 = glucosaminyl (N-Acetyl) transferase 4;

KEL = Kell Metallo-Endopeptidase (Kell Blood Group); LCTL = Lactase-like protein; MIP1b = macrophage inflammatory protein; NEP = neprilysin;

PECAM1 = platelet endothelial cell adhesion molecule; RAB14 = ras-related protein rab-14; SELE = E-selectin; SELL = L-selectin; SFTPD = Surfactant Protein D;

sICAM1 = Soluble intercellular adhesion molecule-1. Names after the underscore are abbreviations for the study the protein was measured in.

https://doi.org/10.1371/journal.pgen.1010042.t001
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Proteins associated with an elevated risk of hospitalization as a result of

COVID-19

After multiple testing correction (pFDR = 0.05), using genetic instruments and under the

assumptions of Mendelian randomization, our results were consistent with six blood markers

being significantly causally associated with an elevated risk of hospitalization as a result of

COVID-19 (Figs 1 and S1); the reverse associations with risk of hospitalization as exposure

and these six blood markers as outcome revealed no significant associations (S3 Table). Per

Fig 1. Blood markers putatively causally associated with hospitalized COVID-19. Summary figure of the false discovery rate-corrected (pFDR = 0.05) Mendelian

randomization results using the Generalized Summary data-based Mendelian randomization (GSMR) method. Using genetic instruments and under the assumptions of

Mendelian randomization, this figure displays: (A) Summary figure when hospitalization-COVID-19 is the outcome of interest; (B) Summary figure when hospitalization-

COVID-19 is the exposure of interest. Odds ratios (ORs) of the blood markers causally associated with hospitalized-Covid-19 are displayed on the x-axis (with 95%

confidence intervals). The blood markers are displayed on the y-axis. The dashed line at one represents an odds ratio of one (i.e., no effect). Using genetic instruments and

under the assumptions of Mendelian randomization, six blood markers were causally associated with a significantly increased risk for hospitalization COVID-19 and nine

blood markers were causally associated with a significantly decreased risk for hospitalization (qFDR� 0.05). ABO = ABO system transferase; ATP2A3 = ATPase

sarcoplasmic/endoplasmic reticulum Ca2+ transporting 3; C1GALT1C1 = C1GALT1 specific chaperone 1; CD207 = langerin; FAAH2 = fatty acid amide hydrolase 2;

GCNT4 = glucosaminyl (N-Acetyl) transferase 4; KEL = Kell metallo-endopeptidase (Kell Blood Group); LCTL = lactase-like protein; PECAM1 = platelet endothelial cell

adhesion molecule; RAB14 = ras-related protein rab-14; SELE = E-selectin; SELL = L-selectin; SFTPD = surfactant protein D.

https://doi.org/10.1371/journal.pgen.1010042.g001
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standard deviation (SD) increase in the respective blood marker our results were consistent

with an increase in odds for hospitalization ranging from 7 to 19%, with fatty acid amide

hydrolase 2 (FAAH2) showing the strongest effect: odds ratio (OR) = 1.19 (95% CI: 1.12, 1.25,

q� 0.01; Table 1).

Proteins associated with a decreased risk of hospitalization as a result of

COVID-19

After multiple testing correction (pFDR = 0.05), using genetic instruments and under the

assumptions of Mendelian randomization, our results were consistent with nine blood mark-

ers being significantly causally associated with a decreased risk of hospitalization as a result of

COVID-19 (Figs 1 and S2); the reverse associations with these nine blood markers were non-

significant (S3 Table). Per SD increase in the respective blood marker the decreases in odds

for hospitalization ranged from 7 to 20%, with the platelet endothelial cell adhesion molecule

(PECAM-1) showing the strongest effect: OR = 0.80 (95% CI: 0.73, 0.87, q� 0.01; Table 1).

Hospitalization as a result of COVID-19 associated with protein levels

In addition, using genetic instruments and under the assumptions of MR, our results were

consistent with hospitalization being significantly causally associated with decreased levels of

macrophage inflammatory protein (MIP1b): beta = -0.16 (SE = 0.03), q� 0.01; Table 1).

Proteins associated with an elevated risk of need for respiratory support/

death due to COVID-19

After multiple testing correction (pFDR = 0.05), using genetic instruments and under the

assumptions of Mendelian randomization, our results were consistent with five blood markers

being causally associated with need for respiratory support/death due to COVID-19 (Figs 2

and S3); the reverse associations with these blood markers as outcomes were nonsignificant

(S3 Table). Per standard deviation (SD) increase in these respective blood marker the increase

in odds for respiratory support/death ranged from 12 to 35%, with glucosaminyl (N-Acetyl)

transferase 4 (GCNT4) showing the strongest effect: OR = 1.35 (95% CI: 1.26, 1.44, q� 0.01;

Table 1).

Proteins associated with a decreased risk of need for respiratory support/

death due to COVID-19

After multiple testing correction (pFDR = 0.05), using genetic instruments and under the

assumptions of Mendelian randomization, our results were consistent with eight blood mark-

ers being causally associated with a statistically significantly decreased risk of need for respira-

tory support/death due to COVID-19 (Figs 2 and S4); the reverse associations with these

blood markers were nonsignificant (S3 Table). Per standard deviation (SD) increase in the

respective blood marker the increases in odds for respiratory support/death ranged from 11 to

27%, with the platelet endothelial cell adhesion molecule (PECAM-1) showing the strongest

effect size: OR = 0.73 (95% CI: 0.63, 0.83, q� 0.01; Table 1).

Need for respiratory support/death due to COVID-19 associated with

protein levels

In addition, using genetic instruments and under the assumptions of Mendelian randomiza-

tion, our results were consistent with respiratory support/death due to COVID-19 being

PLOS GENETICS Proteome-wide Mendelian randomization identifies causal links between blood proteins and severe COVID-19

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010042 March 3, 2022 8 / 23

https://doi.org/10.1371/journal.pgen.1010042


significantly causally associated with decreased levels of neprilysin (NEP): beta = -0.28

(SE = 0.07, q� 0.01; Table 1).

Sensitivity analyses

Additional Mendelian randomization analyses. To further increase confidence in the

findings, we additionally filtered our results for those concurrent with results calculated by

additional Mendelian randomization methods (Maximum likelihood, MR Egger, Simple

median, Weighted median, Inverse variance weighted (IVW), IVW radial, IVW multiplicative

random effects, IVW fixed effects, Simple mode, Weighted mode).

Fig 2. Blood markers putatively causally associated with need for respiratory support/death due to COVID-19. Summary figure of the false discovery rate-corrected

(pFDR = 0.05) Mendelian randomization results using the Generalised Summary data-based Mendelian randomization (GSMR) method. Using genetic instruments and

under the assumptions of Mendelian randomization, this figure displays: (A) Summary figure when respiratory support/death-COVID-19 is the outcome of interest; (B)

Summary figure when respiratory support/death-COVID-19 is the exposure of interest. Odds ratios (ORs) of blood markers causally associated with the need for

respiratory support/death due to COVID-19 are displayed on the x-axis (with 95% confidence intervals). The blood markers are displayed on the y-axis. The dashed line at

one represents an odds ratio of one (i.e., no effect). Using genetic instruments and under the assumptions of Mendelian randomization, five blood markers were causally

associated with a significantly increased risk for need for respiratory support/death due to COVID-19 and eight blood markers were causally associated with a significantly

decreased risk for respiratory support/death (qFDR� 0.05). ABO = ABO system transferase; C1GALT1C1 = C1GALT1 specific chaperone 1; CD207 = langerin;

GCNT4 = glucosaminyl (N-Acetyl) transferase 4; LCTL = lactase-like protein; PECAM1 = platelet endothelial cell adhesion molecule; RAB14 = ras-related protein rab-14;

SELE = E-selectin; SELL = L-selectin; sICAM1 = soluble intercellular adhesion molecule-1.

https://doi.org/10.1371/journal.pgen.1010042.g002
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Our sensitivity analyses confirmed the robustness of the association between 14 out of 15

blood markers and hospitalized-COVID-19, with ATP2A3 not satisfying the sensitivity analy-

sis criteria (see S4 and S5 Tables, for a full breakdown of these sensitivity analyses).

Our sensitivity analyses also confirmed the association between GCNT4_Sun, RAB14_Sun,

CD207_Sun, SELL_Sun, sICAM1_Sliz, SELE_Folk, PECAM1_Scal and severe-COVID-19.

C1GALT1C1_Sun, ABO_Sun, sEselectin_Sliz, SELE_Scal, SELE_Breth, PECAM1_Folk did not sur-

vive our sensitivity analyses (see S4 and S5 Tables for a full breakdown of these sensitivity analyses).

Strength of genetic instruments. Given that we are using a reduced p-value threshold to

identify SNPs as our genetic instruments, we calculated F-statistic and I-squared on all our sig-

nificantly associated proteins. We found that with the exception of ATP2A3, all F-statistics

were larger than 20 and all I-squared statistics were larger than 0.9, suggesting strong genetic

instruments for use in analyses [44–46]. See S2 Table for full results of these analyses.

Linkage disequilibrium analyses. Given that many inflammatory and immunomodula-

tory proteins share genetic loci which may therefore be driving associations via SNPs in

high linkage disequilibrium, we computed pairwise linkage disequilibrium statistics for all

SNPs used as instrumental variables for blood markers significantly associated with our

outcomes.

In our analysis of hospitalization as a result of COVID-19, we used 296 unique SNPs as

instrument variables for blood proteins, in 30 cases, one SNP was used as an instrument for

two or more different proteins, 27 of which were located on chromosome 9. In the assessment

of pairwise LD, 40 SNP pairs (based on 55 unique SNPs) showed high LD (r2 > 0.6). Most

pairs (n = 37) were located on chromosome 9 carrying the ABO gene (S6 Table and S5 Fig).

In our analysis of the need for respiratory support/death due to COVID-19, we used 305

unique SNPs as instrument variables for blood proteins; however, in 31 cases, one SNP was

used twice as an instrument for two or more different proteins, 28 of which were located on

chromosome 9. Furthermore, assessing pairwise LD between all SNPs, we found 50 SNP pairs

(based on 65 unique SNPs) in high LD (r2 > 0.6). Most pairs (n = 44) were located on chromo-

some 9 carrying the ABO gene (S7 Table and S6 Fig) [47–49].

cis-SNP effects from significantly associated proteins. In order to establish whether the

significant associations identified in our study were being driven by cis-regulatory variants, we

identified cis-SNPs from all significant blood markers and performed Mendelian randomiza-

tion analyses using only these SNPs with the respective COVID-19 GWASs. Out of the 28

exposure-outcome pairs, only seven (25%) where based on at least one cis-SNP and could

therefore be analysed. The results show that ABO_Sun and SFTPD_Breth cis-SNPs are signifi-

cantly associated with hospitalization, and ABO_Sun and sICAM-1_Sliz cis-SNPs are signifi-

cantly associated with need for respiratory support/death. All other significant associations are

deemed to be driven by trans-SNPs (S8 Table).

Mendelian randomization analyses with body mass index. High BMI has been robustly

associated with both inflammatory cytokine levels in blood and an increased risk of severe

COVID-19 [9,40,41]. After validating this relationship by performing Mendelian randomiza-

tion analysis between BMI and the two COVID-19 outcomes (S9 Table), we performed bidi-

rectional Mendelian randomization analyses between all significant blood markers and BMI,

using the largest publicly available BMI GWAS [50]. Our results indicate that genetic suscepti-

bility for higher BMI is associated with higher levels of SELE_Scal, C1GALT1C1_Sun, SELE_-

Folk, KEL_Sun, SELL_Sun, RAB14_Sun and SFTPD_Breth. In addition, the genetic

susceptibility for higher levels of LCTL_Sun, SELE_Sliz, SFTPD_Breth, PECAM-1_Scal and

RAB14_Sun is associated with higher BMI (see S10 Table for full results). Note that some pro-

tein GWASs had controlled for BMI, whereas others, the majority of which show a significant

association with BMI, did not (see S1 Table).
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Pathway analysis. Proteins significantly associated with respiratory support/death as a

result of COVID-19 were significantly enriched in three KEGG pathways: “Cell adhesion mol-

ecules” (hsa04514), “Mucin type O-glycan biosynthesis” (hsa00512) and “Malaria” (hsa05144).

No enrichment was found at the defined significance threshold for hospitalization as a result

of COVID-19, however “cell adhesion molecules” and “Mucin type O-glycan biosynthesis”

(hsa00512) showed the strongest signal (qFDR = 0.07)

Discussion

Using genetic instruments and under the assumptions of Mendelian randomization, our prote-

ome-wide analyses are consistent with higher levels of certain blood proteins being causally associ-

ated with risk of being hospitalized due to COVID-19, and subsequently experiencing the most

severe form including respiratory support or ending lethal (i.e., respiratory support/death in the

following). All these proteins have detectable blood plasma or serum levels. For our discussion, we

grouped the proteins by function in Table 2 and provided more detail in S11 Table.

It is important to note that, in our analyses, we did not identify typical canonical immune

proteins, such as interleukin 6 or C-reactive protein [51,52]. This suggests that with a larger

database of proteins we can pinpoint non-canonical immunomodulatory proteins relevant to

disease pathophysiology. We did, however, estimate associations for some proteins twice, as

they were measured separately in independent GWASs. Results from these analyses displayed

Table 2. Groupings of statistically significantly associated proteins by their biological processes.

Protein Association

Blood group proteins

ABO Risk of hospitalization & need of respiratory support or death due to COVID

KEL Protection against hospitalization

Antigen recognition

CD207 Risk of hospitalization & need of respiratory support or death due to COVID

SFTPD Protection against hospitalization

Adhesion molecules

SELL Protection against hospitalization & need of respiratory support or death due to COVID

SELE Protection against hospitalization & need of respiratory support or death due to COVID

PECAM-1 Protection against hospitalization & need of respiratory support or death due to COVID

sICAM-1 Protection against need of respiratory support or death due to COVID

Transporters

RAB14 Risk of hospitalization & need of respiratory support or death due to COVID

ATP2A3 Protection against hospitalization

Enzymes

GCNT4 Risk of hospitalization & need of respiratory support or death due to COVID

C1GALT1C1 Risk of hospitalization & need of respiratory support or death due to COVID

FAAH2 Risk of hospitalization

LCTL Protection against hospitalization

Note: ABO = ABO system transferase; ATP2A3 = ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 3;

C1GALT1C1 = C1GALT1 specific chaperone 1; CD207 = langerin; FAAH2 = fatty acid amide hydrolase 2;

GCNT4 = glucosaminyl (N-Acetyl) transferase 4; KEL = Kell metallo-endopeptidase (Kell Blood Group);

LCTL = lactase-like protein; PECAM1 = platelet endothelial cell adhesion molecule; RAB14 = ras-related protein rab-

14; SELE = E-selectin; SELL = L-selectin; SFTPD = surfactant protein D; sICAM1 = soluble intercellular adhesion

molecule-1.

https://doi.org/10.1371/journal.pgen.1010042.t002
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the same direction of effects, rendering them a direct replication and increasing the validity of

our findings.

Blood group proteins

In the blood group protein group, using genetic instruments and under the assumptions of

Mendelian randomization, our findings were consistent with ABO being causally associated

with both an increased risk of hospitalization as well as the requirement of respiratory support

or death by COVID-19 (i.e., respiratory support/death). ABO is an enzyme with glycosyltrans-

ferase activity that determines the ABO blood group of an individual [53]. However, the pre-

cise blood group associated with the increased risk for hospitalization as a result of COVID-19

cannot be determined from our results, as the probe for the blood marker measures both the A

and B isoform of the protein while not showing a signal for O. Given the underlying British

population of the original GWAS, A should be the more prevalent blood group (24%) in the

sample compared to B (8%) [54]. Nevertheless, it is more likely that A, B, or the combination

of A and B is associated with higher risk for hospitalization. Our findings confirm previous

reports of the ABO blood group system being an important risk factor for a severe COVID-19

infection. For example, the proportion of group A is higher in COVID-19 positive individuals

than in controls [55–60], and group A has been associated with higher mortality [61]. All evi-

dence taken together suggests that blood group A is the more likely candidate for follow-up

studies. Additionally, KEL, which is part of the complex Kell blood group system that contains

many highly immunogenic antigens [62], was associated with a decreased risk of hospitaliza-

tion as a result of COVID-19. This supports the notion that Kell negative individuals may be

more susceptible to COVID-19 [63].

Antigen recognition

In our study, CD207, also known as langerin, was associated with hospitalization as well as the

requirement of respiratory support or death by COVID-19. This protein is exclusively

expressed in Langerhans cells (LC)–the first dendritic cells to encounter pathogens entering

the body via the mucosa or skin [64]. Langerin binds COVID-19 glycoprotein glycans; how-

ever, it does not mediate transfection of COVID-19 pseudovirions in a T-lymphocyte cell line

[65], rendering its role in COVID-19 infections inconclusive [66]. Our findings showed evi-

dence consistent with high levels of SFTPD potentially protecting against COVID-19 hospitali-

zation. SFTPD is strongly expressed in lung, brain, and adipose tissue, and contributes to the

lung’s defense against microorganisms, antigens, and toxins [67]. SFTPD also interacts with

COVID-19 spike proteins [68]. In COVID-19, expression findings are mixed: some studies

show that SFTPD is highly expressed in the lungs of COVID-19 patients [68], whereas others

evidence a decreased expression [69]. Moreover, another study which investigated gene

expression patterns in COVID-19-affected lung tissue and SARS-CoV-2 infected cell-lines,

report a downregulation of SFTPD along with several regulatory partners [70]. Given its role

in immunomodulation and air exchange in the lung, this supports our finding that higher lev-

els of SFTPD may be causally associated with COVID-19 immunity [71,72]. Although more

research is needed; however, ours and others’ findings imply that SFTPD may protect against

severe forms of COVID-19.

Adhesion molecules

Using genetic instruments and under the assumptions of Mendelian randomization, our anal-

ysis was consistent with the adhesion molecules SELE, SELL, and PECAM-1 being causally

associated with a decreased risk of both hospitalization and the requirement of respiratory
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support/death by COVID-19, while ICAM-1 was only protective against respiratory support/

death. This is in keeping with results from out pathway analyses which suggest a significant

enrichment in the KEGG pathway “cell adhesion molecules”. Studies have suggested that late

stage COVID-19 is an endothelial disease [73]. The vascular endothelium is the crucial inter-

face between blood and other tissues, regulating vascular structure, permeability, vasomotion,

inflammation, and oxidative stress [73]. SELL and SELE are members of the selectin class of

leukocyte adhesion molecules, which facilitate slow rolling of blood leukocytes along the endo-

thelium [73]. Specifically, SELL promotes initial tethering and rolling of leukocytes to the endo-

thelium [74,75] and SELE is responsible for the accumulation of blood leukocytes at sites of

inflammation by mediating the adhesion of cells to the vascular lining [76,77]. The firm binding

of leukocytes to the endothelial surface depends upon other molecules, such as PECAM-1,

which is a cell adhesion molecule required for leukocyte transendothelial migration under most

inflammatory conditions [78,79], and our results were consistent with it being protective against

hospitalization. Once tightly bound, chemoattractant cytokines can signal to the bound leuko-

cytes to traverse the endothelial monolayer and enter tissues where they can combat pathogenic

invaders and initiate tissue repair [80]. This may be one of the biological explanations why we

saw elevated levels of SELL, SELE, and PECAM-1 as being protective against hospitalization.

ICAM-1–our results being consistent with it being protective against hospitalization–mediates

cell-cell adhesion and is involved in inflammation [81]. Contrary to our findings, higher ICAM-

1 levels have been associated with COVID-19 severity [82,83], requiring follow-up investiga-

tions. In summary, molecules that mediate the interaction between immune cells and blood ves-

sels may be important in late stage COVID-19 and moderate severity.

Transporter molecules

In the protein transporter/trafficking group, using genetic instruments and under the assump-

tions of Mendelian randomization, our results were consistent with RAB14 being causally

associated with an increased risk of hospitalization and respiratory support/death, whereas

ATP2A3 may protect against hospitalization. Rab proteins are central regulators of phagosome

maturation; RAB14 particularly regulates the interaction of phagosomes with early endocytic

compartments [84]. One study identified RAB14 GTPases as a critical COVID-19 host factor:

coronaviruses hijack Rab GTPase in host cells to replicate [85]. Additionally, whole genome

analysis of COVID-19 lung tissue identified RAB14 polymorphisms that alter its binding to

some miRNAs [86]. Therefore, Rab GTPases could be therapeutic targets. ATP2A3 is a magne-

sium-dependent ATP hydrolase, transports calcium from the cytosol into the sarcoplasmic/

endoplasmic reticulum involved in muscular excitation/contraction and contributes to cal-

cium sequestration [87,88]. Note that ATP2A3 has previously been genetically associated with

severe COVID-19, but its exact role in infection remains unclear [89]. Cardiac failure in severe

COVID-19 has been reported [90,91], hence, ATP2A3 may be involved as it regulates cardio-

myocyte contraction [92]. However, note that ATP2A3 did not survive our sensitivity analyses,

so this finding would need further validation.

Enzymes

In the enzyme group, which consists predominantly of glycosylases and hydrolases, using

genetic instruments and under the assumptions of Mendelian randomization, GCNT3, a

member of the GCNT family, was consistent with increasing the risk for hospitalization and

respiratory support/death. GCTN3 proteins mediate mucin synthesis, branching, and oligo-

merization [93], a pathway showing a significant enrichment in our analyses. Glycosylation of

COVID-19 viral surface antigens may help the virus evade the host immune system by
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shielding its protein surface and, therefore, may prevent the development of an effective

immune response [94]. In addition, as part of our innate immunity, the epithelial barrier made

up of mucins acts as the first line of defense [95]. Our analysis also showed evidence consistent

with C1GALT1C1 being risk increasing. C1GALT1C1 is a molecular chaperone required for

the expression of active T-synthase, the only enzyme that glycosylates the Tn antigen [96].

Anti-Tn antibodies are lower in COVID-19 patients than noninfected individuals and individ-

uals with blood group A [97]. Anti-Tn antibodies may protect against COVID-19 [97]. The

glycosylation of Tn by C1GALT1C1 may suppress these antibodies. The glycobiology of

COVID-19 includes glycans on viral proteins and host glycosaminoglycans that are critical in

infections [98]. FDA-approved drugs, such as glycans for vaccines, anti-glycan antibodies,

recombinant lectins, lectin inhibitors, glycosidase inhibitors, polysaccharides, and numerous

glycosides may be repurposing targets for COVID-19 [98]. Our analysis also showed evidence

consistent with FAAH2 being risk increasing for hospitalization as a result of COVID-19.

FAAH2, is a fatty acid hydrolase involved in endocannabinoid uptake and inactivation [99].

Cannabinoids may reduce pulmonary inflammation through immunomodulation, decrease

polymorphonuclear leukocytes infiltration, reduce fibrosis, decrease viral replication, and

modulate the ‘cytokine storm’ in COVID-19 [100–103]. Cannabinoids have been suggested as

anti-inflammatory treatment in COVID-19 [102,103]. Our results are also consistent with

LCTL, being protective against hospitalization. LCTL is a glycosidase which hydrolyses glyco-

sidic bonds. Little is known about this protein, and nothing in the context of COVID-19.

Using genetic instruments and under the assumptions of Mendelian randomization, our

analysis was also consistent with hospitalization due to COVID-19 decreasing levels MIP1b.

MIP1b is a major proinflammatory factor, acting as a chemoattractant for natural killer cells

[104]. This association has been reported previously [105], with studies suggesting that MIP1b

is a key mediator in the immune response against COVID-19 [106]. Also, in line with our find-

ings of respiratory support/death due to COVID-19 decreasing levels of NEP, NEP protects

against pulmonary inflammation and fibrosis [107]. Other studies suggest repurposing of

roflumilast, a treatment for chronic obstructive pulmonary disorder, that increases NEP activ-

ity and, hence, increases anti-inflammatory activity [107].

Our study has several limitations. First, although we required confirmation of our findings

by several Mendelian randomization methods, we set the p-value threshold for selecting

genetic variants as our instruments at genome-wide suggestive significance (p< 5 x 10−6) to

identify enough SNP instruments for each protein to run Mendelian randomization analyses.

Some genetic variants may therefore be false positive associations with protein levels. This pro-

cedure is common in Mendelian randomization analyses [27–31]. Additionally, we report F-

statistics and I-squared statistics per SNP instrument (S2 Table) so that the quality of our

instruments is transparent. This step was necessary as the available GWASs of the blood pro-

teins are still of limited sample size, and therefore statistical power. However, we identified sev-

eral blood markers robustly associated with COVID-19, including ABO, suggesting that our

SNP instruments pick up true associations and potential underlying biology of COVID-19. In

addition, we note that for most associations (such as between FAAH2 and hospitalized

COVID-19, or sICAM1 and severe COVID-19) we observe a clear linear relationship (S1–S4

Figs). However, some associations, such as between ABO and hospitalized COVID-19, or

GCNT4 and severe COVID-19, display SNP effects between the exposure and outcome with

very large standard errors. While these SNPs have less statistical power, the joint effect over all

SNPs remains significant. Second, some blood marker GWASs were excluded from our analy-

ses due to unavailability, therefore, we may have missed associations with these markers.

Third, although the COVID-19 GWASs used in our analyses were carefully chosen to
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represent two different phenotypes–hospitalization and respiratory support/death due to

COVID-19–other GWAS may be better powered for identifying severe COVID-19 pheno-

types. However, those were not publicly available when we conducted our study. Fourth, some

of our SNP instruments for blood proteins are either the same or are in high LD, potentially

tagging the same causal variant. Although this may indicate pleiotropy across blood markers,

these instruments only represent a minority of our instruments (28% for hospitalization and

31% for respiratory support/death, respectively). Furthermore, a significant proportion of

these SNPS are either used as instruments for the same protein from separate studies (e.g., in

the case of SELE or PECAM), or are used as pleiotropic instruments for the different adhesion

molecules (the family of SELE, PECAM-1, ICAM and SELL). Therefore, they should not overly

influence our results. Fifth, the proteins in the original GWAS were measured in blood, thus

not necessarily reflecting their intracellular concentrations. Therefore, it is difficult to draw

conclusions on intracellular concentrations based on our results and further cellular research

is required. Sixth, we used several robust MR methods with varying abilities to detect heteroge-

neity and pleiotropy; however, residual heterogeneity or pleiotropy may still be present. How-

ever, this is common to most Mendelian randomization analyses. Sixth, our sensitivity

analyses demonstrate that a genetic predisposition to high BMI is significantly associated with

some of our blood markers. High BMI is also associated with severe COVID-19 ([41], S9

Table), suggesting that BMI may drive risk of severe forms of COVID-19 and the change in

blood protein levels, potentially confounding our results. However, our Mendelian randomiza-

tion analyses showed that higher BMI is causal for higher levels of the COVID-19 protective

proteins SELE, KEL, SELL, and causal for lower levels of the COVID-19 risk increasing pro-

teins C1GALT and RAB14. Our sensitivity analysis therefore shows that BMI influences these

blood markers in opposite directions than would be concurrent with confounding effects. This

indicates the effects of these proteins are independent of BMI. Also, some blood protein

GWASs controlled for BMI which should in the first place reduce the potential confounding

(S1 Table). Finally, our findings are based on measurements in ancestral European popula-

tions due to data availability; therefore, future endeavors should include participants from

more diverse ancestry.

Our results highlight the utility of applying large scale Mendelian randomization analyses

to identify blood markers that may be causal for severe COVID-19. Using genetic instruments

and under the assumptions of Mendelian randomization, our findings are consistent with

higher levels of GCNT4, RAB14, C1GALT1C1, CD207 and ABO causally increasing the risk of

both hospitalization and need of respiratory support or death due to COVID-19, and higher

levels of FAAH2 increasing the risk of hospitalization. Our results were also consistent with

higher levels of a number of adhesion molecules, including SELE, SELL, PECAM-1 and

ICAM-1, as being protective against both hospitalization and a need of respiratory support or

death. This adds to a growing body of evidence for the involvement of adhesion and endothe-

lial dysfunction in severe COVID-19. Moreover, our results were consistent with higher levels

of LCTL, SFTPD and KEL being protective against hospitalization alone. Together, our find-

ings support previous findings and identify novel blood markers associated with a severe

COVID-19 phenotype, indicating possible avenues to develop prognostic biomarkers and

therapeutics for COVID-19.
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Resources: Gerome Breen.

Software: Alish B. Palmos, Vincent Millischer.

Supervision: Michael J. Griffiths, Christopher Hübel, Gerome Breen.
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97. Breiman A, Ruvoën-Clouet N, Deleers M, Beauvais T, Jouand N, Rocher J, et al. Low levels of natural

anti-α-N-acetylgalactosamine (Tn) antibodies are associated with COVID-19. Front Microbiol. 2021;

12: 641460. https://doi.org/10.3389/fmicb.2021.641460 PMID: 33643275

98. Lardone RD, Garay YC, Parodi P, de la Fuente S, Angeloni G, Bravo EO, et al. How glycobiology can

help us treat and beat the COVID-19 pandemic. J Biol Chem. 2021; 296: 100375. https://doi.org/10.

1016/j.jbc.2021.100375 PMID: 33548227

99. Kaczocha M. [Thesis]. “Role of Fatty Acid Binding Proteins and FAAH-2 in Endocannabinoid Uptake

and Inactivation.” Edited by Dale G. Deutsch. Ann Arbor, United States: State University of New York

at Stony Brook. Availlable: https://www.proquest.com/dissertations-theses/role-fatty-acid-binding-

proteins-faah-2/docview/305091515/se-2.

100. Lucaciu O, Aghiorghiesei O, Petrescu NB, Mirica IC, Benea HRC, Apostu D. In quest of a new thera-

peutic approach in COVID-19: the endocannabinoid system. Drug Metab Rev. 2021; 1–13. https://doi.

org/10.1080/03602532.2021.1895204 PMID: 33683968

101. Rizzo MD, Henriquez JE, Blevins LK, Bach A, Crawford RB, Kaminski NE. Targeting Cannabinoid

Receptor 2 on Peripheral Leukocytes to Attenuate Inflammatory Mechanisms Implicated in HIV-Asso-

ciated Neurocognitive Disorder. J Neuroimmune Pharmacol. 2020; 15: 780–793. https://doi.org/10.

1007/s11481-020-09918-7 PMID: 32409991

102. Costiniuk CT, Jenabian M-A. Acute inflammation and pathogenesis of SARS-CoV-2 infection: canna-

bidiol as a potential anti-inflammatory treatment? Cytokine Growth Factor Rev. 2020; 53: 63–65.

https://doi.org/10.1016/j.cytogfr.2020.05.008 PMID: 32467020

PLOS GENETICS Proteome-wide Mendelian randomization identifies causal links between blood proteins and severe COVID-19

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010042 March 3, 2022 22 / 23

https://doi.org/10.1128/IAI.02917-14
http://www.ncbi.nlm.nih.gov/pubmed/25644001
https://doi.org/10.1016/j.chom.2020.12.009
https://doi.org/10.1016/j.chom.2020.12.009
http://www.ncbi.nlm.nih.gov/pubmed/33357464
https://doi.org/10.1038/s41431-021-00831-y
http://www.ncbi.nlm.nih.gov/pubmed/33649539
https://doi.org/10.1074/jbc.M202011200
https://doi.org/10.1074/jbc.M202011200
http://www.ncbi.nlm.nih.gov/pubmed/11956212
https://doi.org/10.1074/jbc.M314286200
http://www.ncbi.nlm.nih.gov/pubmed/15028735
https://doi.org/10.1093/infdis/jiaa660
http://www.ncbi.nlm.nih.gov/pubmed/33083826
https://doi.org/10.1161/CIRCRESAHA.120.317055
https://doi.org/10.1161/CIRCRESAHA.120.317055
http://www.ncbi.nlm.nih.gov/pubmed/32252591
https://doi.org/10.1001/jamacardio.2020.0950
https://doi.org/10.1001/jamacardio.2020.0950
http://www.ncbi.nlm.nih.gov/pubmed/32211816
https://doi.org/10.1016/j.yjmcc.2009.11.012
http://www.ncbi.nlm.nih.gov/pubmed/19962989
https://doi.org/10.4267/2042/38541
https://doi.org/10.1038/s41598-020-71748-7
https://doi.org/10.1038/s41598-020-71748-7
http://www.ncbi.nlm.nih.gov/pubmed/32929138
https://doi.org/10.14814/phy2.14701
http://www.ncbi.nlm.nih.gov/pubmed/33373502
https://doi.org/10.1073/pnas.262438199
https://doi.org/10.1073/pnas.262438199
http://www.ncbi.nlm.nih.gov/pubmed/12464682
https://doi.org/10.3389/fmicb.2021.641460
http://www.ncbi.nlm.nih.gov/pubmed/33643275
https://doi.org/10.1016/j.jbc.2021.100375
https://doi.org/10.1016/j.jbc.2021.100375
http://www.ncbi.nlm.nih.gov/pubmed/33548227
https://www.proquest.com/dissertations-theses/role-fatty-acid-binding-proteins-faah-2/docview/305091515/se-2
https://www.proquest.com/dissertations-theses/role-fatty-acid-binding-proteins-faah-2/docview/305091515/se-2
https://doi.org/10.1080/03602532.2021.1895204
https://doi.org/10.1080/03602532.2021.1895204
http://www.ncbi.nlm.nih.gov/pubmed/33683968
https://doi.org/10.1007/s11481-020-09918-7
https://doi.org/10.1007/s11481-020-09918-7
http://www.ncbi.nlm.nih.gov/pubmed/32409991
https://doi.org/10.1016/j.cytogfr.2020.05.008
http://www.ncbi.nlm.nih.gov/pubmed/32467020
https://doi.org/10.1371/journal.pgen.1010042


103. Rossi F, Tortora C, Argenziano M, Di Paola A, Punzo F. Cannabinoid Receptor Type 2: a Possible Tar-

get in SARS-CoV-2 (CoV-19) Infection? Int J Mol Sci. 2020; 21. https://doi.org/10.3390/ijms21113809

PMID: 32471272

104. Menten P, Wuyts A, Van Damme J. Macrophage inflammatory protein-1. Cytokine Growth Factor

Rev. 2002; 13: 455–481. https://doi.org/10.1016/s1359-6101(02)00045-x PMID: 12401480

105. Li M, Yeung CHC, Schooling CM. Circulating cytokines and Coronavirus disease: a bi-directional Men-

delian randomization study. Front Genet. 2021; 12: 680646. https://doi.org/10.3389/fgene.2021.

680646 PMID: 34163532

106. Tan Y, Tang F. SARS-CoV-2-mediated immune system activation and potential application in immu-

notherapy. Med Res Rev. 2021; 41: 1167–1194. https://doi.org/10.1002/med.21756 PMID: 33185926

107. Mohammed El Tabaa M, Mohammed El Tabaa M. Targeting Neprilysin (NEP) pathways: A potential

new hope to defeat COVID-19 ghost. Biochem Pharmacol. 2020; 178: 114057. https://doi.org/10.

1016/j.bcp.2020.114057 PMID: 32470547

PLOS GENETICS Proteome-wide Mendelian randomization identifies causal links between blood proteins and severe COVID-19

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010042 March 3, 2022 23 / 23

https://doi.org/10.3390/ijms21113809
http://www.ncbi.nlm.nih.gov/pubmed/32471272
https://doi.org/10.1016/s1359-6101%2802%2900045-x
http://www.ncbi.nlm.nih.gov/pubmed/12401480
https://doi.org/10.3389/fgene.2021.680646
https://doi.org/10.3389/fgene.2021.680646
http://www.ncbi.nlm.nih.gov/pubmed/34163532
https://doi.org/10.1002/med.21756
http://www.ncbi.nlm.nih.gov/pubmed/33185926
https://doi.org/10.1016/j.bcp.2020.114057
https://doi.org/10.1016/j.bcp.2020.114057
http://www.ncbi.nlm.nih.gov/pubmed/32470547
https://doi.org/10.1371/journal.pgen.1010042

