
Heliyon 6 (2020) e03342

Contents lists available at ScienceDirect

Heliyon

www.elsevier.com/locate/heliyon

Research article

Random access with a distributed Bitmap Join Index for Star Joins

Jaqueline J. Brito a, Thiago Mosqueiro b, Ricardo R. Ciferri c, Cristina D.A. Ciferri a,∗

a University of São Paulo, São Carlos, Brazil
b University of California Los Angeles, Los Angeles, USA
c Federal University of São Carlos, São Carlos, Brazil

A R T I C L E I N F O A B S T R A C T

Keywords:

Computer science

Random access

Distributed Bitmap Index

Star Join

Low-selectivity queries

Hadoop ecosystem

Indices improve the performance of relational databases, especially on queries that return a small portion of
the data (i.e., low-selectivity queries). Star joins are particularly expensive operations that commonly rely on
indices for improved performance at scale. The development and support of index-based solutions for Star Joins
are still at very early stages. To address this gap, we propose a distributed Bitmap Join Index (dBJI) and a
framework-agnostic strategy to solve join predicates in linear time. For empirical analysis, we used common
Hadoop technologies (e.g., HBase and Spark) to show that dBJI significantly outperforms full scan approaches
by a factor between 59% and 88% in queries with low selectivity from the Star Schema Benchmark (SSB). Thus,
distributed indices may significantly enhance low-selectivity query performance even in very large databases.
1. Introduction

The volume of data that is now available changed the design and
value of decision-making systems on a broad range of fields [1, 2, 3].
To harness the true potential behind this new paradigm, the demand
for the appropriate infrastructure rapidly inspired novel and creative
solutions, such as distributed file systems, parallel programming mod-

els, and NoSQL databases. Due to the high costs of maintaining updated
computational resources, cloud computing was proposed based on com-

modity hardware and non-local infrastructures [4, 5]. For instance,
Apache Hadoop [6] was released as an open-source framework used
for distributed storage and processing (i.e., Hadoop MapReduce) of big
datasets. The next generation of technologies such as HBase [7] and
Spark [8] were all designed to interact with Hadoop systems. Among
other options [9, 10], the emergence of these powerful open-source so-

lutions paved the way for the development of applications that utilize
billions of entries to construct reports and analytics [11, 12]. Conse-

quently, there is an increasing demand for flexible and scalable solu-

tions to store and efficiently query large datasets.

Research demonstrated the importance of indices to improve the
performance of relational databases, especially to execute queries that
return a small portion of the data, i.e., queries with low selectivity [13,
14, 15]. As a rule of thumb, low-selectivity queries benefit the most
from the use of indices (i.e., picking entry by entry based on their in-

dexing without the need to analyze the whole table), as opposed to full

* Corresponding author.

E-mail address: cdac@icmc.usp.br (C.D.A. Ciferri).

table scan. This also applies to NoSQL databases and applications to Big
Data [16, 17]. For example, in the context of credit card transactions,
although historical records are often used to generate statistical polls to
aid decision-making processes in banks and hedge funds, a share of the
profits in such companies result from the evaluation of records involv-

ing only a handful of individuals (e.g. loan applications or personalized
pricing algorithms).

Star Joins are demanding operations in Online Analytical Process-

ing (OLAP) systems that often present low selectivity even in very large
datasets, thus benefiting from indexed solutions [18, 19]. For instance,
the Bitmap Join Index distinguishes itself as a largely used solution to
improve Star Joins in non-cloud environments [20]. Star Joins are de-

fined on a star schema, where a central fact table is linked to several
satellite dimension tables, thus resembling a star (Fig. 1). A large collec-

tion of strategies and optimizations have been proposed for Star Joins
in cloud environments (see Section 3). For instance, many MapReduce
strategies based on full scan were introduced to deal with the rampant
growth in data volume [21, 22, 23]. The challenge then became to avoid
excessive disk access and cross-communication among parallel jobs [11,
24, 25]. However, as the query selectivity becomes small, a consider-

able portion of the data retrieved by full scan operations is inevitably
discarded, draining read/write resources. Also, shuffling unneeded data
clogs the network and blocks further cross-communication.

Still, the development and support of Hadoop-based solutions for
random access remain on hold. Particularly, although queries with low
https://doi.org/10.1016/j.heliyon.2020.e03342

Received 29 June 2019; Received in revised form 8 January 2020; Accepted 30 Janu

2405-8440/© 2020 Published by Elsevier Ltd. This is an open access article under t
ary 2020

he CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2020.e03342
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/heliyon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2020.e03342&domain=pdf
mailto:cdac@icmc.usp.br
https://doi.org/10.1016/j.heliyon.2020.e03342
http://creativecommons.org/licenses/by-nc-nd/4.0/

J.J. Brito et al. Heliyon 6 (2020) e03342
Fig. 1. A visualization of the star schema with one central fact table, and four
dimension tables.

Fig. 2. The architecture explored in this paper, with a Processing Layer re-

sponsible for massive distributed computation and an Access Layer capable of
performing full scan and random access.

selectivity may still require the retrieval of massive amounts of en-

tries, our overarching hypothesis is that the appropriate use of indexing
should substantially improve the current methods, depending on the
query selectivity. In other words, even in a distributed file system, query
selectivity may reach a point where the use of indices to retrieve results
entry by entry is faster than scanning and subsequently pruning the fact
table. Yet, all of the available solutions to Star Joins in Hadoop use
full scan regardless of their selectivity [26, 27]. Moreover, an ideal dis-

tributed system should seamlessly switch between full scan and random
access according to properties related to the query (e.g., its selectivity).

We propose a strategy that combines distributed indices and a two-

layer architecture based on open-source frameworks to accelerate Star
Join queries with low selectivity. To propose our strategy, we address
the following fundamental challenges.

1. How to provide full scan or random access to speed up Star Joins over
fact tables stored in the HDFS according to the query selectivity. To this
end, we base our strategy on a two-layer architecture that delegates
massive parallel operations to a Processing Layer, and the access to
the distributed file system to an Access Layer (Fig. 2). The use of
these two independent layers allows the choice of different pro-

cessing strategies based on their individual characteristics to solve
a broad spectrum of queries, including high and low selectivity.

2. What is the suitable distributed data structure to store Bitmap Join in-

dices for large-scale data in the HDFS? We propose the distributed
Bitmap Join Index (dBJI) that is partitioned across a distributed
2

system, and fully exploits the parallel resources available on the
cluster. The dBJI can be used for random access in the cloud.

3. How to design a distributed algorithm that scales well with increasing
data volumes and provides a suitable index partitioning. We propose
a distributed algorithm to efficiently construct the dBJI. Our algo-

rithm is characterized by partitioning the index structure across the
nodes with a given partition size.

4. How to design an efficient algorithm for low-selectivity Star Joins using
the distributed Bitmap Join index. We propose an efficient process-

ing algorithm for low-selectivity Star Joins in linear time based on
available frameworks designed for cloud systems. The algorithm is
divided into two phases: first, the dBJI is used by the Processing
Layer to solve the dimension predicates; then the requested pri-

mary keys are retrieved by the Access Layer using random access.

5. How to implement the solutions to the aforementioned challenges us-

ing Hadoop-related software. We instantiated the Access Layer with
HBase, and the Processing Layer with either Spark or MapReduce.
All implementations are provided on GitHub [28].

The advantages of our index-based solution were investigated
through an in-depth performance analysis in low-selectivity Star Joins
considering a wide range of related work available in the literature. The
performance results showed that our solution outperformed by a factor
between 59% and 88% other 11 strategies based on full scan.

2. Background

2.1. The Bitmap Join Index

The Bitmap Join Index is composed of bitmap arrays that represent
the occurrence of attribute values from dimension tables in the tuples of
the fact table [20]. Star Join predicates can be solved by using bitwise
logical operators on the bitmap indices, avoiding actual joins between
fact tables and dimensions. Specifically, a Bitmap Join Index for an at-

tribute 𝛼 from the dimension table 𝐷 is a set of bitmap arrays for every
distinct value of 𝛼. For every value 𝑥 of the attribute 𝛼, each bitmap
𝑖𝑡𝛼=𝑥 contains one bit for each tuple in the fact table, indexed by its
primary key 𝑝𝑘𝑓 . Each of these bits represents the occurrence (1) or not
(0) of the value 𝑥 in the corresponding tuple of the fact table. We show
in Fig. 3(a) examples for two attribute values, 𝑎1 = 10 and 𝑏1 = 5. Thus,
for instance, if the 𝑗-th bit of the bitmap 𝑖𝑡𝛼=𝑥 is 1 (0), that means that
the tuple on the fact table with 𝑝𝑘𝑓 = 𝑗 is (is not) associated with 𝛼 = 𝑥.
It is now evident that a predicate 𝛼1 = 𝑥1 ⊗𝛼2 = 𝑥2, with ⊗ being a log-

ical operator, can then be solved by evaluating the 𝑖𝑡𝛼1=𝑥1 ⊗ 𝑖𝑡𝛼2=𝑥2
For instance, to find the tuples in the fact table under the condition
𝑎1 = 10 AND 𝑏1 = 5, the bitwise logical operator AND can be applied di-

rectly to the bitmaps 𝑖𝑡𝑎1=10 and 𝑖𝑡𝑏1=5. Thus, only tuples 2 and 9
from the fact table should be retrieved via random access.

The Bitmap Join Index has been proven a competitive solution, even
when the number of indexed dimensions is large [29]. Although the car-

dinality of the dimension attributes is generally assumed to be small, a
limitation of Bitmap Join Indices is handling attributes with high car-

dinality. These problems can be attenuated by optimization techniques,
such as binning [30, 31], compression [32, 33], and coding [34]. As a
result, the Bitmap Join Index is largely used to solve Star Joins queries
in decision-making systems, especially data warehousing environments
that store huge volumes of read-mostly data [31]. As expanded in the
Section 4.2, in this paper we explore the benefits of Bitmap Join Indices
in distributed systems.

2.2. Apache open-source software

Hadoop MapReduce. The Apache Hadoop MapReduce [6] (MapRe-

duce for short) is an open-source distributed implementation of a
generic programming model where Map and Reduce procedures ma-

nipulate key-value pairs [35]. In general, Map tasks filter and sort the
data, and Reduce tasks summarize the results of the Map.

J.J. Brito et al. Heliyon 6 (2020) e03342
Apache Spark. The Apache Spark is a parallel and distributed
framework based on in-memory computation [8] and on the Resilient
Distributed Dataset (RDD) abstraction [36]. All operations on the RDDs
are first mapped into a Directed Acyclic Graph (DAG) and then reorga-

nized into sets of smaller tasks based on their mutual dependencies by
the DAG scheduler.

Apache HBase. The Apache HBase is an open-source, NoSQL
database designed to provide fast read and write operations to appli-

cations in Big Data [7]. Its primary goal is to store and manage huge
tables on clusters based in cloud environments while leveraging the
fault tolerance provided by the HDFS. Although HBase organizes data
into tables in a similar fashion to relational databases, the data is de-

normalized, and there are no native joins.

To provide fast random access, HBase stores its tables in a custom
format called HFile. Because the HDFS was designed for batch process-

ing, datasets are usually split into large blocks (the standard block size
is 64MB). These blocks are usually read in sequence. HBase uses the
HFile format to build a second layer of smaller data blocks over the
HDFS, with a standard block size of 64KB. Indices can be constructed
on this second layer [37]: when a row key is requested, indices redi-

rect the read/write operation to the location of the block where such
row is stored. However, HBase reads the entire data block defined by
the HFile format and then performs a sequential search to find that par-

ticular row key. Therefore, an HFile format with large block size adds
up to the overhead during the reading operation and sequential search,
while smaller block sizes require index data structures that are larger
and more complex.

3. Related work

3.1. Joins in Hadoop

Because joining multiple tables is a common operation in many
database applications and especially challenging when the data volume
scales up, many of the systems in the Apache family support joins. For
instance, Apache Hive [38] is a data warehouse solution built on top
of Hadoop that performs join queries by processing a cascade of joins
between each pair of tables (also known as cascade join or reduce-side
join). When possible, Hive may also load small tables into the main
memory and then compute the joins (also known as broadcast join).
Both of these techniques consist of the common solutions to solve joins,
and we will test the performance of these approaches by using the
following terminology (see Table 1): MR-Cascade refers to a cascade
join implemented in MapReduce; and MR-Broadcast, to the broadcast
join. Blanas et al. [27] extensively studied the performance of these ap-

proaches, and other small variants, to provide a survey with guidelines
to aid the selection of approaches when employing joins in MapReduce.
For completeness, we explored their counterparts in Spark [24], the SP-

Cascade approach for cascade join, and SP-Broadcast for the broadcast
join.

3.2. Star Joins in Hadoop

Because in most applications the fact table is considerably large,
the application of techniques that optimize how the data is handled is
critical to process Star Joins efficiently. To avoid multiple MapReduce
cycles, Afrati et al. [21] proposed a map-key approach (hereafter, MR-

MapKey) that computes Star Joins in a single job by replicating and
mapping data from dimension tables. Tao et al. [39] extended the MR-

MapKey approach to perform hierarchical joins by adding more jobs.
We refer to this extension as MR-Hierarchized. Although the MR-MapKey

and MR-Hierarchized approaches avoid multiple jobs, there is significant
replication of data among subsets of Reducers.

Another common strategy to accelerate the processing of Star Joins
is the use of filters to prune the fact table before joining with the di-

mensions. For instance, one very simple improvement on top of the
3

Table 1

List of the approaches outlined (Section 3) and used in the performance eval-

uation (Section 5). The approaches proposed in this paper are highlighted in
bold with gray background. The second and third columns distinguish the ac-

cess method used by each approach (random access vs. full scan). The fourth
and fifth columns identify optimization techniques, if any, as described in the
main text (Section 3).

MapReduce
algorithms

Random
access

Full
scan

Optimization

Filter Broadcast

MR-Bitmap ✓

MR-Cascade ✓

MR-MapKey ✓

MR-Hierarchized ✓

MR-Broadcast ✓ ✓

MR-Bloom-ScatterGather ✓ ✓

MR-Bloom-MapKey ✓ ✓

MR-Bloom-Cascade ✓ ✓

MR-Bitmap-Filter ✓ ✓

Spark
algorithms

Random
access

Full
scan

Optimization

Filter Broadcast

SP-Bitmap ✓

SP-Broadcast-Bitmap ✓ ✓

SP-Broadcast ✓ ✓

SP-Bloom-Cascade ✓ ✓

SP-Cascade ✓

MR-Cascade is to use Bloom filters [40] to prune the fact table and
perform the join with the dimensions, thus avoiding propagation of un-

necessary data. We implemented this method in this paper, which is
referred to as MR-Bloom-Cascade. Because MR-Bloom-Cascade requires
as many jobs as dimension tables, Han et al. [22] proposed an approach
(hereafter, MR-Bloom-ScatterGather) that only requires three jobs: (1)
application of Bloom Filters, (2) join between each vertical partition of
the fact table with corresponding dimensions and (3) merge of all verti-

cal partitions. Zhang et al. [23] extended the MR-MapKey approach by
including an additional job to build Bloom filters. We refer to this exten-

sion as MR-Bloom-MapKey. However, although these strategies proved
the use of Bloom filters improved their performance, filtering requires
one extra job. In analogy with MR-Bloom-ScatterGather, Zhu et al. [41]

used Join Bitmaps as filters to prune the fact table, thus referred to as
MR-Bitmap-Filter. Although this bitmap data structure used in this ap-

proach is similar to that presented in this paper, it employs full scan to
retrieve data from the HDFS. Thus, the MR-Bitmap-Filter approach uses
the bitmap data structure as a filter rather than an index, introducing
an additional overhead to low-selectivity queries due to the lack of ran-

dom access. In this paper, we redefine the bitmap index in a distributed
context and employ random access to leverage the advantages of an
index in solving low selectivity queries.

Finally, in our previous paper [24], we proposed and studied in
detail two Spark approaches that minimize disk spill and network com-

munication. Namely, these approaches are (i) the SP-Bloom-Cascade,
which uses Bloom filters to prune the fact table and then performs the
joins; and (ii) the SP-Broadcast, which implements the broadcast join.
While the SP-Broadcast presented the best performance overall when
enough memory was available, the SP-Bloom-Cascade strategy was re-

markably resilient to scenarios with scarce memory per node, probably
because the Bloom filters require minimal storage.

3.3. Contrasting our contribution

We summarize in Table 1 all approaches introduced so far, and
include the approaches proposed in the present paper. Solutions are
discriminated according to their access method (second and third
columns) and whether they use optimization techniques (fourth and
fifth columns). The approaches presented in this paper (namely SP-

Bitmap, SP-Broadcast-Bitmap, and MR-Bitmap) are the only ones that

J.J. Brito et al. Heliyon 6 (2020) e03342
employ random access, and excel at queries with low selectivity (as
shown in Section 5.3). Because the underlying methodology only as-

sumes two independent layers (one Access Layer and one Processing
Layer), our solution is framework agnostic and can be further extended
beyond the MapReduce and Spark frameworks. That is, to the best of
our knowledge, there is no related work that employs random access

to process Star Joins for data residing on a HDFS. Therefore, our pro-

posal is innovative in the sense that, in a system intended for a general
purpose the methodologies displayed in Table 1 can be selected on de-

mand to solve a broader spectrum of queries, including high and low
selectivity (see Sections 4.1 and 4.5).

4. Proposal

We introduce the following solutions to the fundamental challenges
listed in Section 1:

1. We propose a strategy that operates on top of an architecture com-

posed of a Processing Layer and an Access Layer that provides both
full scan and random access (Section 4.1).

2. By employing an Access Layer able to perform random access, we
propose a distributed Bitmap Join Index (dBJI) that leverages the
parallelism provided by the Processing Layer to solve Star Joins
(Section 4.2).

3. We present a scalable distributed algorithm for constructing dBJI
(Section 4.3).

4. We propose an algorithm that solves low-selectivity join predicates
using the dBJI (Section 4.4).

5. We instantiate the Access Layer with HBase, and the Processing
Layer with either Spark or MapReduce (Section 4.5).

4.1. Combining processing and access layers

We propose the use of an architecture based on an Access Layer and
a Processing Layer (Fig. 1c). Depending on the specific query, the Ac-

cess Layer is responsible to employ either random access or full scan,
and coordinate with the Processing Layer. This is important to separate
concerns and not depend on technologies such as Spark to deliver ran-

dom access. How the selection between random access and full scan is
made should be addressed elsewhere. In fact, this strategy is similar to
how relational databases solve queries by using query optimizers [42,
43]. Depending on which strategy is chosen, this system will behave in
a slightly different way, as described below.

Full scan. The overall strategy is to request from the Access Layer
a full scan of the fact table and the dimensions involved in the given
query, and then the Processing Layer computes the join in parallel. We
reviewed in Section 3.2 the existing algorithms available for full scan.

Random Access. In order to take full advantage of the parallel
frameworks, the distributed index is first loaded and computed by the
Processing Layer and, then, a request for the resulting tuples is sent to
the Access Layer. Once the Access Layer receives this request, the tuples
are retrieved from the appropriate cluster nodes using a random access
method. The index loaded by the Processing Layer is called a secondary
index, and the index used by the Access Layer is called a primary index.
This strategy is described in detail in the next section.

4.2. Distributed Bitmap Join Index (dBJI)

The distributed Bitmap Join Index (dBJI) is a set of bitmap arrays
that are stored on a distributed system and is designed to leverage the
advantages of parallel processing to solve Star Joins. In the construction
of the dBJI, it is not assumed that indices related to a partition of the
tables are located on the same node (i.e., no assumption of collocation).
For every value 𝑥 of an attribute 𝛼, the bitmap array 𝑖𝑡𝑃

𝛼=𝑥 contains
one bit for each tuple in the fact table that is indexed by the primary
keys 𝑝𝑘𝑓 ∈ 𝑃 . The set 𝑃 represents a subset of the primary keys of the
4

fact table, and is used to split the index into many nodes. Let us assume
that the sequence 1, 2, … , 𝑁

represents a partition of the complete
set  of all primary keys that compose the fact table, with 𝑁 being
the number of partitions. As in the original bitmap join index, each of
these bits represents the occurrence (1) or not (0) of the value 𝑥 in the
corresponding tuple. Thus, the set of 𝑝𝑘𝑓 that solve a simple predicate
such as 𝛼 = 𝑥 is given by the list of all bits set to 1 in 𝑖𝑡𝑗

𝛼=𝑥 in all
partitions,

𝑆 =
𝑁⋃
𝑗=1

{
𝑝𝑘𝑓 ∈ 𝑗 ∶ 𝑖𝑡

𝑗

𝛼=𝑥
[
𝑝𝑘𝑓

]
= 1

}
, (1)

where 𝑖𝑡𝑗

𝛼=𝑐
[
𝑝𝑘𝑓

]
is the bit associated with 𝑝𝑘𝑓 ∈ 𝑗 .

Distributing the index. To fully exploit parallelism and to balance
the workload in the cluster, partitions are uniformly distributed across
the nodes (Fig. 3b). Metadata containing information about the location
of each partition is stored in the namenode (master). To optimize the
loading time of the index files, the bitmap arrays 𝑖𝑡𝑗

𝛼=𝑥 are stored in a
different file for each attribute 𝛼 and value 𝑥 of that attribute. Without
loss of generality, let us assume that the primary keys are the integers
1, 2, 3, … , 𝑁𝑡, i.e., 𝑝𝑘𝑓 ∈ ℤ ∩ [1, 𝑁𝑡], with 𝑁𝑡 being the number of tuples
in the database. Within partitions and for each attribute and attribute
value, the bitmap arrays are organized into blocks of size 𝑏𝑠 that consists
of: (i) the primary key 𝑝𝑘𝑓 of the first tuple indexed by that block; and
(ii) a sequence of 𝑏𝑠 bits that represent the bitmap values associated
with the tuples between the 𝑝𝑘𝑓 and 𝑝𝑘𝑓 + 𝑏𝑠 − 1. Fig. 3b shows an
example of bitmap partitions with block size 𝑏𝑠 = 4 tuples.

Solving join predicates. Because the Star Joins often involve pred-

icates with two or more distinct attributes or ranges of attributes, joins
may require the use of multiple bitmap arrays associated with the same
partition. Consider a query  consisting of 𝑚 predicates 𝑝𝑘 composed as
𝑝1 ⊗1 𝑝2 ⊗2 … ⊗𝑚−1 𝑝𝑚, where ⊗𝑘 is the logical operator linking predi-

cates 𝑝𝑘 and 𝑝𝑘+1. Although extending this formalism to a wider range
of predicates is straightforward (as mentioned in Section 2.1), our goal
is to solve predicates 𝑝𝑘 ≡ 𝛼𝑘 = 𝑥𝑘 involving an attribute 𝛼𝑘 and one of
its possible values 𝑥𝑘. To solve this chain of predicates, each node will
compute a partial solution 𝑖𝑡𝑗


as follows:

𝑖𝑡
𝑗


=𝑖𝑡

𝑗

𝛼1=𝑥1 ⊗1 𝑖𝑡
𝑗

𝛼2=𝑥2 ⊗2 …⊗𝑚−1 𝑖𝑡
𝑗

𝛼𝑚=𝑥𝑚 . (2)

Finally, the set of all required primary keys,

𝑆 =
𝑁⋃
𝑗=1

{
𝑝𝑘𝑓 ∈ 𝑗 ∶ 𝑖𝑡

𝑗



[
𝑝𝑘𝑓

]
= 1

}
, (3)

is aggregated by the master node and sent to the Access Layer. If a
precedence order is required, the same precedence should be applied on
the chain of operations with bitmap arrays. For example, the predicate
(𝑎1 = 10 AND 𝑏1 = 5) OR 𝑏2 = 10, similar to the predicate in Fig. 3c, is
solved by performing

𝑖𝑡
𝑗


=
(
𝑖𝑡

𝑗

𝑎1=10
∧𝑖𝑡

𝑗

𝑏1=5
)
∨𝑖𝑡

𝑗

𝑏2=10
(4)

for 𝑗 = 1, 2, … 𝑁 , where ∧ is the bitwise logical AND operator and ∨,
the OR operator.

Complexity analysis. Because the cardinality ||𝑆
|| is proportional

to the selectivity of the query , low-selectivity queries have low mem-

ory demand. Additionally, because Star Joins are solved by employing
bitwise operations on bitmap arrays 𝑖𝑡𝑗

𝛼=𝑥 that share the same par-

tition, the index structures with the same partition should ideally be
stored on the same node. If not, then the index needs to be appropri-

ately transmitted across the cluster, creating additional delays on the
query processing. Finally, because computing 𝑆 involves computing a
cascade of predicates and an aggregation, it is important to study its
complexity:

J.J. Brito et al. Heliyon 6 (2020) e03342

Fig. 3. A representation of our distributed Bitmap Join Index (dBJI). (a): Example of instance of a bitmap index considering the same tables in Fig. 1(a). (b): Physical
storage of the dBJI. (c): Example of application of the dBJI to solve an AND operation.
Theorem 1. For a given query 𝑄 consisting of 𝑚 predicates 𝑝𝑘 composed as
𝑝1 ⊗1 𝑝2 ⊗2 … ⊗𝑚−1 𝑝𝑚, where ⊗𝑘 are logical operators, computing 𝑆 has
time complexity 

(
(𝑚 + 1)𝑁𝑡

)
, where 𝑁𝑡 is the number of tuples in the fact

table.

Proof. If 𝑚 = 0, then there is only one predicate 𝑝𝑘 ≡ 𝛼 = 𝑥 and 𝑆 is
computed by the aggregation in Equation (3) for all partitions 𝑖𝑡𝑗

𝛼=𝑥.
Because that requires scanning all 𝑁𝑡 elements of the bitmap structure,
the complexity in this case is (𝑁𝑡). If 𝑚 > 0, then for each pair of
predicates 𝑝𝑗 ⊗𝑗 𝑝𝑗+1 with 𝑗 = 1, … , 𝑚, first the bitwise logical operation
between the bitmaps associated with predicates 𝑝𝑗 and 𝑝𝑗+1 are com-

puted (as in Equation (2)). Given a number 𝑁 of partitions with same
size, each bitwise operation has time complexity (𝑁𝑡∕𝑁) =(𝑁𝑡). Af-

ter performing all operations, the final aggregation of all primary keys
is performed, which results in a total complexity of 

(
(𝑚 + 1)𝑁𝑡

)
. □

4.3. Constructing the dBJI

Because the size of the index structure scales with the number of
tuples in the fact table, we propose in Algorithm 1 a distributed algo-

rithm to construct and store the dBJI on a distributed file system. Our
algorithm controls how the partitions are distributed in the cluster, the
size of each partition and the block size 𝑏𝑠. It receives as input the fact
(𝐹) and dimension (𝐷) tables, the attribute (𝛼) and value (𝑥) being
indexed, the number of partitions (𝑁) and the block size (𝑏𝑠). Algo-

rithm 1 starts by collecting the primary keys from the dimension table
and stores the keys that correspond to the indexed value (i.e., 𝛼 = 𝑥)
into a hash map (lines 1-6). Then, the fact table is split into 𝑁 hor-

izontal partitions (line 7). Each partition is processed and generates a
corresponding bitmap partition (line 8-29). Within each partition, a new
bitmap block is created to incorporate the next 𝑏𝑠 tuples (line 11). The
primary key of the first tuple is stored at the beginning of the blocks
(line 12). Next, the boolean values indicating whether the tuple 𝑡 has
the indexed value or not generate bitmap blocks (lines 14-25). Finally,
the algorithm outputs the dBJI for 𝛼 = 𝑥. We provide a MapReduce im-

plementation of Algorithm 1 on Appendix A. The implementation is also
available at GitHub [28].

Theorem 2. Algorithm 1 has time complexity (𝑁𝑡), where 𝑁𝑡 is the num-

ber of tuples in the fact table.

Proof. For a given dimension 𝐷 with 𝑁𝑑 entries, the complexity
to compute lines 1-6 is (𝑁𝑑). Between lines 9-29, the two nested
loops scan the fact table a single time. Thus, the complexity becomes
5

(𝑁𝑑) + (𝑁𝑡). Because in star schemas 𝑁𝑑 ≪ 𝑁𝑡, the complexity is
(𝑁𝑡) regardless of the number 𝑁 of partitions or the block size 𝑏𝑠. □

Algorithm 1 Constructing the dBJI.

Input: 𝐷, 𝐹 , 𝛼, 𝑥, 𝑁 and 𝑏𝑠
𝐷: dimension table
𝐹 : fact table
𝛼: indexed attribute
𝑥: indexed value from 𝑎
𝑁 : number of partitions
𝑏𝑠 : block size

Output: all partitions 𝑖𝑡𝑗

𝛼=𝑥 of the bitmap join index for 𝛼 = 𝑥

Legend: = means attribution; ← means append/push to array.

∕ ∗ Creating a hash map to store the selected primary keys from 𝐷 ∗ ∕
1: 𝐻 = ∅
2: for each 𝑑 in 𝐷 do

3: if 𝑑.𝛼 == 𝑥 then

4: 𝐻 ← 𝑑.𝑝𝑘𝐷
5: end if

6: end for

∕ ∗ Splitting the fact table into 𝑁 horizontal partitions ∗ ∕
7: R[] = Split(𝐹 , 𝑁)
8: Bitmap = ∅

∕ ∗ Constructing each partition 𝑖𝑡𝑗

𝛼=𝑥 ∗ ∕
9: for 𝑗 = 0; 𝑗 < 𝑁 ; 𝑗++ do

10: BitmapPartition = ∅
11: BitmapBlock = ∅
12: BitmapBlock ← 𝑡.𝑝𝑘𝐹
13: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1
14: for each 𝑡 in 𝑅[𝑗] do

15: if 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 % 𝑏𝑠 + 1 == 0 then

16: BitmapPartition ← BitmapBlock
17: BitmapBlock = ∅
18: BitmapBlock ← 𝑡.𝑝𝑘𝐹
19: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1
20: end if

∕ ∗ Evaluates the value of the index for 𝑡 ∗ ∕
21: if H.has(𝑡.fk𝐷) then

22: BitmapBlock ← 1
23: else

24: BitmapBlock ← 0
25: end if

26: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟++
27: end for

28: Bitmap ←BitmapPartition
29: end for

30: return Bitmap

4.4. Processing Star Joins with the dBJI

The Star Join processing pipeline proposed in this paper is divided in
two phases. First, for a query  the Processing Layer computes 𝑖𝑡𝑗 in


J.J. Brito et al. Heliyon 6 (2020) e03342
each node using the distributed Bitmap Join Indices (dBJI). The corre-

sponding bitmap partitions are then combined into a set 𝑆 of primary
keys. As discussed in Section 4.2, because we store corresponding parti-

tions in the same nodes, this procedure is executed locally. The second
phase consists of sending 𝑆 to the Access Layer to execute random
access based on its primary indexing schema. Thus, only the required
tuples from the fact table are retrieved from the distributed filesystem
and joined to the dimension tables.

dBJI as a secondary index with loose binding. To successfully em-

ploy this strategy with existing distributed systems, the dBJI connects to
a primary index used in the distributed random access performed by the
Access Layer. The primary index is a map between a primary key 𝑝𝑘𝑗
and an address PI(𝑝𝑘𝑗) in the distributed filesystem (specifying cluster
node and disk address). Thus, for a set of primary keys 𝑆 that solve a
query , a function DistributedRandomAccess(⋅) interfaces with the Ac-

cess Layer to employ random access to retrieve records from addresses
PI(𝑝𝑘𝑗), ∀𝑝𝑘𝑗 ∈ 𝑆. Although this two-level structure adds a small over-

head, it does not change the complexity of the Star Join and can be
minimized if performed in bulk.

Processing algorithm. Algorithm 2 computes the Star Join using
random access, as depicted by the workflow in Fig. 4. The algorithm re-

ceives as input a Star Join query 𝑄, a fact table 𝐹 , a set of dimensions
{𝑗}, and a set of dBJIs {𝑖𝑡}. Lastly, the argument JoinMethod(⋅) of
Algorithm 2 can be any join algorithm (e.g. cascade join or a broadcast
join). The algorithm starts by the Processing Layer loading the necessary
bitmap structures and construct S𝑄 = ∪𝑗𝑖𝑡

𝑗


on line 1 (green lines in

Fig. 4). In line 2, this list is passed through DistributedRandomAccess(⋅)
to the Access Layer to employ the primary index and retrieve the neces-

sary tuples from the fact table (blue lines). Then, the dimension tables
required in the query 𝑄 are loaded via full scan (blue lines below the
Full Scan sign), filtered, and joined with the fact table in lines 3-6 (red
lines). If necessary, the result can be grouped and/or sorted between
lines 6 and 7, depending on the clauses present in the query 𝑄.

Algorithm 2 Processing Star Join Queries with the dBJI.

Input: 𝑄, 𝐹 , {𝑗} and 𝑖𝑡, JoinMethod
𝑄: star join query
𝐹 : fact table
{𝑗}: set of dimension tables used in 𝑄
{𝑖𝑡}: set of bitmap join indices
JoinMethod: join methodology (e.g. cascade or broadcast)

Output: result of 𝑄
∕ ∗ Execute bitwise logical operations over the bitmap indices {𝑖𝑡} according to the
predicates of 𝑄 in order to obtain a list of primary keys from 𝐹 (𝑝𝑘𝑓) ∗ ∕
1: S𝑄 = RunParallelBitwiseLogicalOperations(𝑄, {𝑖𝑡})

∕ ∗ The list of selected 𝑝𝑘𝑓 is used for random access to the fact table ∗ ∕
2: 𝑅𝑒𝑠𝑢𝑙𝑡𝐹 = DistributedRandomAccess(𝐹 , S𝑄)

∕ ∗ Performing full scan dimension tables applying filters according to the predicates
of 𝑄, and joining with fact table ∗ ∕

3: for each 𝐷 in {𝑗} do

4: Result𝐷 = FilteredFullScan(𝐷, 𝑄)
5: Result𝐹 = JoinMethod(Result𝐹 , Result𝐷)
6: end for

7: return Result𝐹

Complexity. Because of the complexity in evaluating  from The-

orem 1, Algorithm 2 processes Star Joins in linear time. Although the
specific methodology depends on the specific implementation, the dis-

tributed random access performed in line 2 retrieves the list in  one by
one, i.e., it runs in linear time. Lines 3 through 6 in Algorithm 2 retrieve
the dimensions involved and performs a join operation.

4.5. Instance based on Hadoop systems

Both the architecture presented in Section 4.1 and the dBJI can be
implemented in a distributed system based on Hadoop-related software.
The most natural candidate for the distributed filesystem is the HDFS.
6

Fig. 4. Workflow of our solution on a Hadoop-based instance of the architecture
and distributed Bitmap Join Index (dBJI).

The Processing Layer can be realized by either MapReduce or Spark
frameworks to deliver massive parallel computations. Finally, HBase is
a good candidate for Access Layer for its trade-off between full scan
and random access and the fact that HFile are suitable for star schemas.
The connection between the dBJI and HBase’s primary index is per-

formed through its API function BulkGet(⋅). There are two important
low-level features specific to HBase that may affect the performance
of our system: (i) how HFile blocks are read and (ii) their size. First,
although HBase’s BulkGet(⋅) can use a primary index to locate HFile
blocks associated with a set of primary keys, it performs a sequential
search within HFile blocks. Second, the block size used by HBase HFile
(64KB) is larger than the common size employed by most relational sys-

tems (PostgreSQL’s default page size is 8KB). This difference in block
size influences the performance of random access due to additional
read/write. We investigated the effect of the block size empirically in
section 5.6. We provide two implementations of Algorithm 2 in Appen-

dices B and C (also in GitHub [28]). This setup and algorithms are used
in Section 5 to validate the performance of our proposal.

5. Performance evaluation

In this section, we evaluate the performance of the proposed strate-

gies using the distributed Bitmap Join Index (dBJI) and compare it to
those of previously published algorithms. To perform both random ac-

cess and full scan, we use the architecture in Fig. 2 and the instantiation
proposed in Section 4.5. We explored both MapReduce and Spark as
candidate Processing Layers and HBase as an Access Layer. All imple-

mentations used in this section are available on GitHub [28].

J.J. Brito et al. Heliyon 6 (2020) e03342

Table 2

Characteristics of the datasets and bitmap indices used in the performance evaluations.

SF Number of tuples
(×108)

Size (GB) of each
dataset on disk

Tuples per Hbase
region (×106)

Size (MB) of each
bitmap array

Number of partitions
per bitmap array

100 0.6 326 1 71.9 100
200 1.2 655 2 143.4 200
300 1.8 982 3 214.6 300
400 2.4 1310 4 286.2 400

Table 3

Predicate and approximate selectivity of all queries used in our performance evaluations.

Query Predicates Selectivity (%)

Q2.3 𝑝_𝑏𝑟𝑎𝑛𝑑 = ‘MFGR#2221’ and 𝑠_𝑟𝑒𝑔𝑖𝑜𝑛 = ‘EUROPE’ ≈ 0.020
Q3.3 (𝑐_𝑐𝑖𝑡𝑦 = ‘UNITED KI1’ or 𝑐_𝑐𝑖𝑡𝑦 = ‘UNITED KI5’) and (𝑠_𝑐𝑖𝑡𝑦 = ‘UNITED KI1’ or 𝑠_𝑐𝑖𝑡𝑦 = ‘UNITED KI5’) and 𝑑_𝑦𝑒𝑎𝑟 >= 1992 and 𝑑_𝑦𝑒𝑎𝑟 <= 1997 ≈ 0.0059
Q3.4 (𝑐_𝑐𝑖𝑡𝑦 = ‘UNITED KI1’ or 𝑐_𝑐𝑖𝑡𝑦 = ‘UNITED KI5’) and (𝑠_𝑐𝑖𝑡𝑦 = ‘UNITED KI1’ or 𝑠_𝑐𝑖𝑡𝑦 = ‘UNITED KI5’) and 𝑑_𝑦𝑒𝑎𝑟𝑚𝑜𝑛𝑡ℎ = ‘Dec1997’ ≈ 0.000083
Q4.3 𝑐_𝑟𝑒𝑔𝑖𝑜𝑛 = ‘AMERICA’ and 𝑠_𝑛𝑎𝑡𝑖𝑜𝑛 = ‘UNITED STATES’ and (𝑑_𝑦𝑒𝑎𝑟= 1997 or 𝑑_𝑦𝑒𝑎𝑟= 1998) and 𝑝_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = ‘MFGR#14’ ≈ 0.0077
Q4.4 𝑐_𝑟𝑒𝑔𝑖𝑜𝑛 = ‘AMERICA’ and 𝑝_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = ‘MFGR#14’ and 𝑑_𝑦𝑒𝑎𝑟 = 1998 ≈ 0.071
Q4.5 𝑐_𝑟𝑒𝑔𝑖𝑜𝑛 = ‘AMERICA’ and 𝑝_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = ‘MFGR#14’ and 𝑑_𝑦𝑒𝑎𝑟 >= 1996 and 𝑑_𝑦𝑒𝑎𝑟 <= 1998 ≈ 0.31
Q4.6 𝑐_𝑟𝑒𝑔𝑖𝑜𝑛 = ‘AMERICA’ and 𝑝_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = ‘MFGR#14’ and 𝑑_𝑦𝑒𝑎𝑟 >= 1994 and 𝑑_𝑦𝑒𝑎𝑟 <= 1998 ≈ 0.56
5.1. Experimental setup

Cluster. We set up a cluster in Microsoft Azure with 1 master and
20 slave D3v2 instances. Each instance had four 2.4 GHz Intel Xeon
E5-2673, 14GB of memory, and a hard disk of 1TB. We used Hadoop
MapReduce 2.6.0 and Spark 1.4.1 as processing engines, YARN 2.6.0
as cluster manager, and HBase 1.1.2. It is worth noting that Apache
Spark 2 became stable after we performed our experiments, and recent
optimizations of Apache Spark 2 may reflect in further performance
gains for our proposed strategy, which combines a distributed Bitmap
Join Index (dBJI) and a two-layer architecture based on open-source
frameworks to speed up Star Join queries with low selectivity.

Dataset. We used the Star Schema Benchmark (SSB) [44] to gener-

ate synthetic datasets to study the performance of Star Joins. The size
of each dataset was controlled by the Scaling Factor (SF). Table 2 shows
detailed information about the datasets used in our tests. Each table was
stored into a single column family and partitioned across 600 HBase re-

gions. We used the default size for HBase blocks (64KB). We abbreviated
the column names and the family qualifiers to reduce the data volume
because HBase replicates this information for every value.

Workload. We used four Star Join queries with low selectivity from
the SSB, namely Q2.3, Q3.3, Q3.4, and Q4.3. Table 3 details the queries
used in our tests. The queries defined on the SSB approximately main-

tain their selectivity regardless of the SF. To test the impact of increas-

ing query selectivity values on the computation time, we changed the
predicate of the query Q4.3 and created queries Q4.4, Q4.5, and Q4.6,
also defined in Table 3. All results represent the average over 5 runs,
and bars represent the standard error. Queries from the SSB or similar
to them are largely used to compare competing solutions to Star Joins
in cloud environments [22, 24, 39, 41]. Although these queries gener-

ally encompass at most four Star Join operations, our proposal nicely
scales for queries with more operations since its complexity varies lin-

early with the number of predicates, as stated in Theorem 1. To ensure
that each replicate was not influenced by the cache, all nodes’ memories
were flushed between each execution.

Distributed Bitmap Join Indices (dBJI). The indices dBJI nec-

essary to solve the predicates in Table 3 were constructed following
Algorithm 1. Each bitmap array was split into 100 partitions and with
the block size corresponding to 3 million tuples (Table 2). The indices
were stored as sequence files in HDFS and were distributed across the
20 slave nodes. We did not assume collocation between partitions of the
dBJI and the fact table. Further, because our primary goal is to evaluate
the solution of Star Joins with random access in distributed systems, we
did not apply any of the optimization techniques listed in Section 2.1

(i.e., binning, compression, and coding). For instance, binning could be
7

used to improve the structure when indexing attributes that can assume
a large range of values or numeric values that are not discrete.

Tested algorithms. We compared the performance of our proposed
algorithms SP-Bitmap, SP-Broadcast-Bitmap, and MR-Bitmap against 11
different approaches based on full scan, as summarized in Table 1.
This table groups the strategies by the following criteria: (i) access
method (random access vs. full scan); (ii) processing framework em-

ployed (MapReduce vs. Spark); and (iii) whether filters or broadcasting
were used.

5.2. Optimization of MapReduce parameters

To ensure that the performance of MapReduce strategies can be com-

pared to that of Spark strategies, we optimized the two parameters that
are influential in performance tests: the number of reducers and the slow
start ratio. The number of reducers defines how many reducers are con-

currently instantiated in each Map/Reduce cycle. In some strategies,
the number of reducers should present a strong impact because it in-

duces an increased amount of replicated data that is transferred during
the join operation. The slow start ratio defines the number of map tasks
that must be completed before scheduling reduce tasks for the same job.
By default, this ratio is 0.05. For the tests reported in this section, we
used a dataset with SF=100 and investigated queries Q2.3, Q3.3, Q3.4,
and Q4.3.

All of the MapReduce strategies based on full scan presented a region
of values of the number of reducers in which their performance was ei-

ther optimal or very close to optimal, regardless of the query (Fig. 5). In
particular, the optimal number of reducers was higher for strategies that
do not apply filtering optimizations (e.g., MR-MapKey and MR-Cascade).
This is probably because the total workload, including data shuffling
and processing, was balanced across all the available reducers. Ap-

proaches based on filtering techniques were optimized with very few re-

ducers (e.g., MR-Bloom-MapKey and MR-Bloom-ScatterGather). The only
exception was the MR-Bitmap-Filter: its performance remained stable for
a number of reducers below 100. Furthermore, all full scan MapReduce
strategies showed an improvement in performance when the slow start
ratio was set to 0.99, which is a higher value than the default (Fig. 6).
The improvement in performance ranged from 9.6% to 49.9%.

Finally, the MR-Bitmap strategy, which we propose in this paper,
showed optimal performance with a low number of reducers and the
same high value for the slow start ratio (Fig. 7). For a number of reduc-

ers smaller than 100, the performance of our approach remained mostly
constant (Fig. 7a). Regarding the slow start ratio (Fig. 7b), the compu-

tation time either remained the same (query Q2.3) or improved by a
factor between 24% and 36%.

J.J. Brito et al. Heliyon 6 (2020) e03342

Fig. 5. Performance of the MapReduce strategies based on full scan as a function of the number of reducers.

Fig. 6. MapReduce strategies based on full scan showed better performance with a value of slow start ratio equal to 0.99.

Fig. 7. Performance of our proposed MR-Bitmap as a function of (a) the number of reducers and (b) the slow start ratio.
Based on the results described in this section, in each strategy we set
the number of reducers to the value corresponding to their best elapsed
time, according to Figs. 5 and 7(a). We also set the slow start ratio of
all algorithms to 0.99.

5.3. Performance across different approaches

Especially in queries that have low selectivity, our strategies, based
on the dBJI, presented the best performance regardless of the frame-

work used for their implementation (compare green bars with red
and blue in Fig. 8). For the tests reported in this section, we used a
dataset with SF=100 and investigated queries Q2.3, Q3.3, Q3.4, and
Q4.3. Regarding the MapReduce framework, our strategy MR-Bitmap

dropped the computation time by a factor between 39.7% and 88.3%.
In the Spark framework, the performance increase of our strategies SP-

Bitmap and SP-Broadcast-Bitmap varied from 77.3% up to 88.3%. These
results demonstrate the advantage of associating random access with
the use of our dBJI to process low selectivity Star Join queries. More-

over, although Spark implementations tend to outperform those in
the MapReduce framework, our MR-Bitmap algorithm outperformed all
Spark strategies based on full scan by a factor from 30.3% up to 68.2%.
Therefore, the application of the appropriate access method may have
8

a stronger influence on query performance than that of the choice of
framework.

Because MR-Bitmap-Filter employs a Bitmap Join structure to filter
the fact tables, the fact that it significantly underperforms our method
MR-Bitmap agrees with our overarching hypothesis that the proper use
of random access is likely to improve the performance of Star Joins sub-

stantially. Moreover, the MR-Bitmap-Filter was slightly slower than ap-

proaches that use Bloom filters with full scan (MR-Bloom-ScatterGather,
MR-Bloom-MapKey, and MR-Bloom-Cascade). Despite this fundamental
difference, both MR-Bitmap-Filter and MR-Bitmap were the only two that
presented a constant performance for a number of reducers smaller than
100 (Figs. 7 and 5).

Comparing MapReduce solutions based on full scan, the use of filters
significantly reduced the computation time (compare blue and red bars
in Fig. 8). For the MapReduce strategies, the use of optimizations im-

proved the elapsed time from 0.7% up to 50.7%. For the Spark strategies,
the optimized full scan strategies showed an improvement in the perfor-

mance ranging from 7.0% to 37.9%. Considering all full scan strategies,
the Spark algorithms outperformed those in MapReduce, reducing the
computation time by a factor of between 15.8% to 69.5%.

For the remainder of the performance tests, we will only use the best
two approaches based on full scan to compare with our proposed meth-

J.J. Brito et al. Heliyon 6 (2020) e03342

Fig. 8. The proposed strategies SP-Bitmap, SP-Broadcast-Bitmap and MR-Bitmap (green bars) outperformed all full scan strategies for all queries with low selectivity.
Strategy names follow Table 1. Red and blue bars refer to full scan approaches. Optimized approaches (blue bars) refer to the use of filters and broadcast (indicated
at the last column of Table 1).
ods. Based on the results presented in this section, the two MapReduce
strategies with computation times closest to that of our MR-Bitmap were
the full scan strategies MR-Broadcast and MR-Bloom-MapKey. The Spark
strategies with the computation times closest to that of our SP-Bitmap

and SP-Broadcast-Bitmap were the full scan SP-Bloom-Cascade and SP-

Broadcast.

5.4. Effect of query selectivity

Our strategies based on random access outperformed competitor
strategies based on full scan when the query selectivity was below
0.6% (Figs. 9a,c). In these experiments, for each framework (Spark and
MapReduce) we compare our algorithms with the two full scan runner-

up approaches, as indicated at the end of Section 5.3. We fixed the
dataset with SF=100 and used queries Q4.3, Q4.4, Q4.5 and Q4.6,
which have increasing query selectivity values (Table 3). In the Spark
framework, both SP-Broadcast-Bitmap and SP-Bitmap outperformed SP-

Bloom-Cascade and SP-Broadcast that use full scan for all query selectiv-

ities under 0.6% (Fig. 9a). When the query selectivity was below 0.2%,
using the dBJI resulted in a performance gain ranging from 62% to 78%
with respect to the full-scan strategies. Similarly, the MR-Bitmap also
outperformed MR-Broadcast and MR-Bloom-MapKey in the same region
of values for the query selectivity (Fig. 9c). The best performance results
9

of MR-Bitmap were also with query selectivities below 0.2%, providing
a performance gain ranging from up 67% to 74%. When query selec-

tivity was 0.56% (query Q4.6), SP-Broadcast-Bitmap trailed its full scan
counterparts, SP-Bloom-Cascade and SP-Broadcast, by a factor of 1.6%.
Additionally, SP-Bitmap and MR-Bitmap still outperformed their respec-

tive Spark and MapReduce counterparts but by a small margin.

5.5. Effect of block selectivity

In analogy to standard relational databases, solutions based on in-

dices tend to outperform other methodologies in a broader range of
selectivity values (in some cases, at least up to 5% [18]). The discrep-

ancy between the range of selectivity in which random access solutions
are preferred can be explained by two independent factors: (i) because
the dBJI is a secondary index with loose binding, there is an addi-

tional overhead in the communication with the primary index; and (ii)
because HBase performs sequential searches within the HFile blocks,
while standard relational databases use offsets to locate a record within
a data block. Hereafter, we define the fraction of blocks retrieved to
solving a query as its block selectivity. Indeed, using the same queries
and SF as in Section 5.4, the block selectivity in which our strategies
based on indices outperformed those based on full scan ranged up to

J.J. Brito et al. Heliyon 6 (2020) e03342
Fig. 9. The proposed strategies based on random access (green markers), both
for Spark and MapReduce, outperformed the two fastest full scan strategies
(blue markers) when the query selectivity was smaller than 0.6%. (a,c) Perfor-

mance results as a function of query selectivity. (b,d) Performance results as a
function of block selectivity.

Fig. 10. The performance of our strategies based on random access (green
markers) outperformed the two fastest full scan strategies (blue markers) on
a broader range of selectivity values when the database was sorted. (a,c) Per-

formance results as a function of query selectivity. (b,d) Performance results as
a function of block selectivity.

Fig. 11. All strategies presented their best performances with a HFile block size
of 64 KB, regardless of the query selectivity.

45% (Fig. 9b,d). This observation means that 45% of the total of HFile
blocks were accessed.

Sorting the dataset by some of the query predicates reduced the
block selectivity dramatically, consequently decreasing the computa-

tion time of our strategies based on random access (Fig. 10). We sorted
the fact table according to the predicates of query Q4.4 (i.e., 𝑑_𝑦𝑒𝑎𝑟,
𝑐_𝑟𝑒𝑔𝑖𝑜𝑛 and 𝑝_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦). With the database sorted, the block selectivity
(Figs. 10b,d) decreased substantially (from 45% to 0.6%) and was com-

parable to the query selectivity (Figs. 10a,c). Furthermore, comparing
results from Figs. 10(a,c) and 9(a,c) shows that our strategies based on
random access became robust to a larger range of values of both query
and block selectivities. On average, SP-Bitmap and SP-Broadcast-Bitmap

were 78% faster than SP-Bloom-Cascade and SP-Broadcast (Fig. 10a,b).
MR-Bitmap also outperformed the best MapReduce strategies based in
full scan by a factor between 44% and 74% (Fig. 10c,d).

5.6. Effect of block size

For methods based on random access, there exists a trade-off be-

tween a large block size (excessive readout) and a small block size
(increased disk seeks and index complexity). Setting a block size in any
of these extremes dropped the computation time of Star Joins by ap-

proximately 15% (Fig. 11). We report performance results with HFile
block sizes of 8KB, 64KB and 256KB, using a dataset with SF=100 and
queries Q4.3, Q4.4, Q4.5, and Q4.6. Regardless of the query selectiv-

ity, our algorithms SP-Bitmap and SP-Broadcast-Bitmap presented their
best performances when the block size was 64KB. The performance of
SP-Broadcast-Bitmap slightly dropped 14.6% when the block size was
8KB (compared to a 64KB block size). This is due to the increase in the
main memory required to store block indices and hash maps. Further-

more, the performance of SP-Broadcast-Bitmap and SP-Bitmap dropped
16% when the block size was increased to 128KB (compared to a 64KB
block size). This drop in performance was caused by the unnecessary
amount of data read and increased sequential searches. For the smallest
selectivity value (Fig. 11a), the performance gains of our algorithms re-

mained remarkably constant. Interestingly, the full scan strategies also
presented their best performances with a block size of 64KB, regard-

less of the query selectivity. Because once the database is deployed the
block size cannot be changed, this result is important to show that, re-
10

J.J. Brito et al. Heliyon 6 (2020) e03342

Fig. 12. The performance of our proposed algorithms (green bars) presented a linear dependency with the scaling factor of the dataset.
gardless of the access method (full scan or random access), all strategies
perform the best at the same block size.

5.7. Effect of the data volume

Regarding the scalability of our approaches, the performance of MR-

Bitmap, SP-Bitmap and SP-Broadcast-Bitmap remained linear with the
Scaling Factor 𝑆𝐹 (Fig. 12). We report performance evaluations for
query Q4.3, with a block size of 64KB and varying SF. The performance
of our Spark solutions SP-Bitmap and SP-Broadcast-Bitmap remained re-

markably constant with respect to 𝑆𝐹 (Fig. 12a). Comparing the two
full scan runner-up approaches, as indicated at the end of Section 5.3,
both SP-Bitmap and SP-Broadcast-Bitmap outperformed by a factor be-

tween 83% and 94%. In MapReduce, our strategy MR-Bitmap outper-

formed both MR-Broadcast and MR-Bloom-MapKey by a factor between
74% and 81% (Fig. 12b).

6. Conclusions

In this paper, we proposed a distributed Bitmap Join Index (dBJI)
and an index-based distributed strategy to compute Star Joins that
overcomes the lack of broad support to random access in available
open-source distributed systems. Our solution is based on an archi-

tecture composed of two independent elements: a Processing Layer
that performs massively distributed computation; and an Access Layer
that delivers both full scan and random access on demand. The Ac-

cess Layer serves as a middleware that supports random access between
the HDFS and processing frameworks (Spark and MapReduce, in our
tests). Among all eleven alternative solutions tested, three were based
on Spark [24], and eight were based on the MapReduce framework [21,
22, 23, 27, 39, 41].

Our experiments showed that dBJI and an efficient processing al-

gorithm outperform alternative full scan solutions for queries with low
selectivity (Fig. 8). In our implementation, the dBJI used HBase’s API
to perform random access on HFiles and retrieve only the blocks that
were pertinent to solve the query at hand. We noticed, however, that
the HFile format slightly inflated the dataset, which had a small nega-

tive influence on the computation. The gain in computation time due
to the dBJI, however, makes up for the additional delay due to the data
inflation.

We also learned that a query optimizer should take into consider-

ation, in addition to the estimated query selectivity, the proportion
of blocks to be accessed, namely the block selectivity, when deciding
between random access and full scan. Indeed, the strongest impact in
the computation time was observed when the block selectivity was sig-

nificantly reduced as a consequence of sorting the dataset (compare
panels b and d from Figs. 9 and 10). Although this fact indicates that a
large block size penalizes the computation time of the indexed strate-

gies probably due to the repeated sequential searches within blocks,
computation time is also hurt by a block size too small. Therefore, a
distributed file system’s block size should poise both of these opposing
effects (as shown in Fig. 11) to deliver an optimal query performance.
We also confirmed a pronounced increase in the performance of queries
with predicates that involve an attribute sorted in the distributed file
11
system (compare performance in Figs. 9 and 10). Thus, besides improv-

ing the performance, the range of block selectivity under which random
access solutions were optimal became broader (Figs. 10). This indicates
that the use of indices becomes more robust and is likely very favorable
whenever predicates use sorted attributes.

As Star Joins are ubiquitous and expensive operations, our contri-

bution consists of a general strategy to handle low-selectivity queries
and mitigate the absence of native methods for random access in, for
instance, the Hadoop software family. There is, of course, much ground
to be covered in terms of construction, optimization, and use of in-

dices to solve complex queries and analytical processes in the cloud.
One strong candidate that offers native support to random access is the
Apache Kudu [45], a distributed storage specialized in fast analytics. It
provides an intermediary step between the fast capabilities provided by
Apache Parquet [46] for full scans, and the nimble random access pro-

vided by HBase. In addition, Pilosa [47] is another open-source project
that offers distributed bitmap indexing with the promise to accelerate
queries of massive datasets. As the gap in support for random access hin-

ders further development of such a promising research area, the concept
behind combining a secondary index with Access and Processing Layers
can be extended to implement other kinds of indices (e.g., B-Trees) and
operations (e.g., drill-down). Furthermore, many studies may directly
or indirectly benefit from using proper random access in distributed
systems, such as [41, 48], and our paper paves the way for such appli-

cations with minimal tailoring and tinkering. We believe that our ideas
may contribute to foster discussion and collaborative efforts to create
novel tools that are also openly available to the community.

Declarations

Author contribution statement

C.D.A. Ciferri, J.J. Brito, T. Mosqueiro, R.R. Ciferri: Conceived and
designed the experiments; Performed the experiments; Analyzed and
interpreted the data; Contributed reagents, materials, analysis tools or
data; Wrote the paper.

Funding statement

J.J. Brito, T. Mosqueiro and C.D.A. Ciferri acknowledge Microsoft
Azure Research Award MS-AZR-0036P. J.J. Brito acknowledges support
from FAPESP grant 2012/13158-9. C.D.A. Ciferri acknowledges support
from FAPESP grant 2018/22277-8. R.R. Ciferri acknowledges support
from CNPq grant #311868/2015-0. This study was financed in part by
the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior –
Brasil (CAPES) – Finance Code 001.

Competing interest statement

The authors declare no conflict of interest.

Additional information

Supplementary material related to this article can be found online
at https://doi .org /10 .1016 /j .heliyon .2020 .e03342.

https://doi.org/10.1016/j.heliyon.2020.e03342

J.J. Brito et al. Heliyon 6 (2020) e03342
Data and algorithms are available in: https://github .com /jaquejbrito /
star -join -bitmap.

Acknowledgements

Authors thank Dr. Hermes Senger for allowing us to use his lab-

oratory cluster infrastructure for tests. J.J. Brito and T. Mosqueiro
thank for useful discussions with Mr. Anderson C. Carniel. J.J. Brito,
T. Mosqueiro and C.D.A. Ciferri acknowledge Microsoft Azure Re-

search Award MS-AZR-0036P. J.J. Brito acknowledges support from
FAPESP grant 2012/13158-9. R.R. Ciferri acknowledges support from
CNPq grant 311868/2015-0. C.D.A. Ciferri acknowledges support from
FAPESP grant 2018/22277-8.

References

[1] D. Agrawal, S. Das, A. El Abbadi, Big data and cloud computing: current state and
future opportunities, in: 14th International Conference on Extending Database Tech-

nology, 2011, pp. 530–533.

[2] R. Huerta, T. Mosqueiro, J. Fonollosa, N.F. Rulkov, I. Rodriguez-Lujan, Online decor-

relation of humidity and temperature in chemical sensors for continuous monitoring,
Chemom. Intell. Lab. Syst. 157 (2016) 169–176.

[3] H. Demirkan, D. Delen, Leveraging the capabilities of service-oriented decision sup-

port systems: putting analytics and big data in cloud, Decis. Support Syst. 55 (1)
(2013) 412–421.

[4] P. Mell, T. Grance, The NIST Definition of Cloud Computing, 2011.

[5] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of cloud computing, Commun.
ACM 53 (4) (2010) 50–58.

[6] Apache Hadoop, https://hadoop .apache .org/.

[7] Apache HBase, https://hbase .apache .org/.

[8] Apache Spark, http://spark .apache .org/.

[9] Impala, https://impala .apache .org.

[10] MapR-FS, https://mapr .com /products /mapr -fs/.

[11] K. Lee, Y. Lee, H. Choi, Y.D. Chung, B. Moon, Parallel data processing with mapre-

duce: a survey, SIGMOD Rec. 40 (4) (2011) 11–20.

[12] C. Doulkeridis, K. Nørvåg, A survey of large-scale analytical query processing in
mapreduce, VLDB J. 23 (3) (2014) 355–380.

[13] A. Gani, A. Siddiqa, S. Shamshirband, F.H. Nasaruddin, A survey on indexing tech-

niques for big data: taxonomy and performance evaluation, Knowl. Inf. Syst. 46 (2)
(2016) 241–284.

[14] G. Roumelis, M. Vassilakopoulos, A. Corral, Y. Manolopoulos, Efficient query pro-

cessing on large spatial databases: a performance study, J. Syst. Softw. 132 (2017)
165–185.

[15] V. Poosala, P.J. Haas, Y.E. Ioannidis, E.J. Shekita, Improved histograms for selec-

tivity estimation of range predicates, in: ACM Sigmod Record, vol. 25, ACM, 1996,
pp. 294–305.

[16] X. Gao, J. Qiu, Supporting queries and analyses of large-scale social media data
with customizable and scalable indexing techniques over nosql databases, in: 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 2014,
pp. 587–590.

[17] S. Lakshman, S. Melkote, J. Liang, R. Mayuram, Nitro: a fast, scalable in-memory
storage engine for nosql global secondary index, Proc. VLDB Endow. 9 (13) (2016)
1413–1424.

[18] J.J. Brito, T.L.L. Siqueira, V.C. Times, R.R. Ciferri, C.D.A. Ciferri, Efficient process-

ing of drill-across queries over geographic data warehouses, in: 13th International
Conference on Data Warehousing and Knowledge Discovery, 2011, pp. 152–166.

[19] H. Gupta, V. Harinarayan, A. Rajaraman, J.D. Ullman, Index selection for OLAP, in:
13th International Conference on Data Engineering, 1997, pp. 208–219.

[20] P.E. O’Neil, G. Graefe, Multi-table joins through bitmapped join indices, ACM SIG-

MOD Rec. 24 (3) (1995) 8–11.

[21] F.N. Afrati, J.D. Ullman, Optimizing joins in a map-reduce environment, in: 13th
International Conference on Extending Database Technology, 2010, pp. 99–110.

[22] H. Han, H. Jung, H. Eom, H.Y. Yeom, Scatter-gather-merge: an efficient star-join
query processing algorithm for data-parallel frameworks, Clust. Comput. 14 (2)
(2011) 183–197.

[23] C. Zhang, L. Wu, J. Li, Efficient processing distributed joins with bloomfilter using
mapreduce, Int. J. Grid Distrib. Comput. 6 (3) (2013) 43–58.

[24] J.J. Brito, T. Mosqueiro, R.R. Ciferri, C.D.A. Ciferri, Faster cloud star joins with
reduced disk spill and network communication, Proc. Comput. Sci. 80 (2016) 74–85.

[25] J. Aguilar-Saborit, V. Muntés-Mulero, C. Zuzarte, J.-L. Larriba-Pey, Ad hoc star join
query processing in cluster architectures, Lect. Notes Comput. Sci. 3589 (2005) 200.

[26] V. Purdilă, Ş.-G. Pentiuc, Single-scan: a fast star-join query processing algorithm,
Softw. Pract. Exp. 46 (3) (2016) 319–339.

[27] S. Blanas, J.M. Patel, V. Ercegovac, J. Rao, E.J. Shekita, Y. Tian, A comparison of join
algorithms for log processing in mapreduce, in: 2010 ACM SIGMOD International
Conference on Management of Data, 2010, pp. 975–986.

[28] J.J. Brito, T. Mosqueiro, Star joins with distributed bitmap join index, https://

github .com /jaquejbrito /star -join -bitmap, 2018. (Accessed 1 February 2018).

[29] S. Liu, G. Li, J. Feng Star-join, Spatio-textual similarity join, in: 21st ACM
International Conference on Information and Knowledge Management, 2012,
pp. 2194–2198.

[30] K. Wu, K. Stockinger, A. Shoshani, Breaking the curse of cardinality on bitmap
indexes, in: International Conference on Scientific and Statistical Database Man-

agement, Springer, Berlin, Heidelberg, 2008, pp. 348–365.

[31] K. Stockinger, K. Wu, A. Shoshani, Evaluation strategies for bitmap indices with
binning, in: International Conference on Database and Expert Systems Applications,
2004, pp. 120–129.

[32] G. Antoshenkov, Byte-aligned bitmap compression, in: Data Compression Confer-

ence, 1995, p. 476.

[33] K. Wu, E.J. Otoo, A. Shoshani, Optimizing bitmap indices with efficient compres-

sion, ACM Trans. Database Syst. 31 (1) (2006) 1–38.

[34] P. O’Neil, D. Quass, Improved query performance with variant indexes, in: ACM
Sigmod Record, vol. 26, 1997, pp. 38–49.

[35] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113.

[36] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M.J. Franklin,
S. Shenker, I. Stoica, Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing, in: 9th USENIX Symposium on Networked Systems
Design and Implementation, 2012, pp. 15–28.

[37] L. George, HBase: The Definitive Guide: Random Access to Your Planet-Size Data,
O’Reilly Media, Inc., 2011.

[38] A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu, R.
Murthy, Hive – a petabyte scale data warehouse using hadoop, in: 26th International
Conference on Data Engineering (ICDE), 2010, pp. 996–1005.

[39] Y. Tao, M. Zhou, L. Shi, L. Wei, Y. Cao, Optimizing multi-join in cloud environment,
in: Proceedings of the IEEE International Conference on High Performance Comput-

ing and Communications & 2013 IEEE International Conference on Embedded and
Ubiquitous Computing, 2013, pp. 956–963.

[40] S. Tarkoma, C.E. Rothenberg, E. Lagerspetz, Theory and practice of bloom filters for
distributed systems, IEEE Commun. Surv. Tutor. 14 (1) (2012) 131–155.

[41] H. Zhu, M. Zhou, F. Xia, A. Zhou, Efficient star join for column-oriented data store
in the mapreduce environment, in: 8th Conference on Web Information Systems and
Applications, 2011, pp. 13–18.

[42] B. Babcock, S. Chaudhuri, Towards a robust query optimizer: a principled and prac-

tical approach, in: 2005 ACM SIGMOD International Conference on Management of
Data, 2005, pp. 119–130.

[43] M. Hung, M. Huang, D. Yang, N. Hsueh, Efficient approaches for materialized views
selection in a data warehouse, Inf. Sci. 177 (6) (2007) 1333–1348.

[44] P.E. O’Neil, E.J. O’Neil, X. Chen, S. Revilak, The star schema benchmark and aug-

mented fact table indexing, in: 1th TPC Technology Conference on Performance
Evaluation and Benchmarking, 2009, pp. 237–252.

[45] Apache Kudu, https://kudu .apache .org/.

[46] Apache Parquet, https://parquet .apache .org/.

[47] Pilosa, https://www .pilosa .com/.

[48] C.C. Lopes, V.C. Times, S. Matwin, R.R. Ciferri, C.D. de Aguiar Ciferri, Process-

ing OLAP queries over an encrypted data warehouse stored in the cloud, in: 16th
International Conference on Data Warehousing and Knowledge Discovery, 2014,
pp. 195–207.
12

https://github.com/jaquejbrito/star-join-bitmap
https://github.com/jaquejbrito/star-join-bitmap
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibEFCCC299C63AE8FFB0881A707B16AEC0s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibEFCCC299C63AE8FFB0881A707B16AEC0s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibEFCCC299C63AE8FFB0881A707B16AEC0s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibAEBA39A1644700B043F999D7B1405C95s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibAEBA39A1644700B043F999D7B1405C95s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibAEBA39A1644700B043F999D7B1405C95s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibAACE9707602E87FD3DB23E70403F1AFDs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibAACE9707602E87FD3DB23E70403F1AFDs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibAACE9707602E87FD3DB23E70403F1AFDs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibCE29A5FFE6CC6E68649B80205D7BAD5Es1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib877017C09E44F2ED0FFF5892D578DF53s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib877017C09E44F2ED0FFF5892D578DF53s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib877017C09E44F2ED0FFF5892D578DF53s1
https://hadoop.apache.org/
https://hbase.apache.org/
http://spark.apache.org/
https://impala.apache.org
https://mapr.com/products/mapr-fs/
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibD822658C70588C8F1C8E802FEC72BC4Es1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibD822658C70588C8F1C8E802FEC72BC4Es1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib02A4CA619BE94DD046BD56C744AF8FF2s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib02A4CA619BE94DD046BD56C744AF8FF2s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibC9AF90FCAB7FE39C142F06B2FC3B5666s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibC9AF90FCAB7FE39C142F06B2FC3B5666s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibC9AF90FCAB7FE39C142F06B2FC3B5666s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib0FB0235EB3CD2F6D70D845EC0101ADE1s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib0FB0235EB3CD2F6D70D845EC0101ADE1s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib0FB0235EB3CD2F6D70D845EC0101ADE1s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibAC1857ACF8238F78A988D54D9BABDD2Ds1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibAC1857ACF8238F78A988D54D9BABDD2Ds1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibAC1857ACF8238F78A988D54D9BABDD2Ds1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibCEE2F4D504D6B36F8FBF834B17302894s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibCEE2F4D504D6B36F8FBF834B17302894s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibCEE2F4D504D6B36F8FBF834B17302894s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibCEE2F4D504D6B36F8FBF834B17302894s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib6E4C3105C70113733C81483DE65F2E98s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib6E4C3105C70113733C81483DE65F2E98s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib6E4C3105C70113733C81483DE65F2E98s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib76CC75ABC75CA69F703984D57B08623Fs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib76CC75ABC75CA69F703984D57B08623Fs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib76CC75ABC75CA69F703984D57B08623Fs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib0880D3BEFADC9B572F9286D216EA617Ds1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib0880D3BEFADC9B572F9286D216EA617Ds1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib591B033EE7BCEB524DE53C530D95843Bs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib591B033EE7BCEB524DE53C530D95843Bs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib132326677D0790E046A3EC7B3E1A2F24s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib132326677D0790E046A3EC7B3E1A2F24s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibB77C539B45EBA0109FE532E3C4880EEEs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibB77C539B45EBA0109FE532E3C4880EEEs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibB77C539B45EBA0109FE532E3C4880EEEs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib83016CFFD0623EE034BCAC1EFE311B5Cs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib83016CFFD0623EE034BCAC1EFE311B5Cs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibEEE1781CC8D9A67F87B170BF15F5F4A5s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibEEE1781CC8D9A67F87B170BF15F5F4A5s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibB3051AABC0E25FA4E4E32A193112DBF2s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibB3051AABC0E25FA4E4E32A193112DBF2s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib21D6988D8C87F678C484337ACF9EA321s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib21D6988D8C87F678C484337ACF9EA321s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibF0778420B9A72B5919F1359C457C99CEs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibF0778420B9A72B5919F1359C457C99CEs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibF0778420B9A72B5919F1359C457C99CEs1
https://github.com/jaquejbrito/star-join-bitmap
https://github.com/jaquejbrito/star-join-bitmap
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibBABB968DEB1B705074F8F52B65126108s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibBABB968DEB1B705074F8F52B65126108s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibBABB968DEB1B705074F8F52B65126108s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibAE9AA6049EA91BF3DEEA8D379DF258CFs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibAE9AA6049EA91BF3DEEA8D379DF258CFs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibAE9AA6049EA91BF3DEEA8D379DF258CFs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib72D03770B51DA05CC01862A0A55FCFDCs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib72D03770B51DA05CC01862A0A55FCFDCs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib72D03770B51DA05CC01862A0A55FCFDCs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib2563482DE650C5262898FB141FB0A096s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib2563482DE650C5262898FB141FB0A096s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibE7FE69C96D8E6B1EFEF32BE10DE0E8E1s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibE7FE69C96D8E6B1EFEF32BE10DE0E8E1s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib4D1A65487ABC73E2D3025522FCF09063s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib4D1A65487ABC73E2D3025522FCF09063s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibC931BA8264C85F5B5187F3192F8AF00Ds1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibC931BA8264C85F5B5187F3192F8AF00Ds1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib316A1849E45F37DC681BAFC1C83BB507s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib316A1849E45F37DC681BAFC1C83BB507s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib316A1849E45F37DC681BAFC1C83BB507s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib316A1849E45F37DC681BAFC1C83BB507s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib627F5C13AFA0F816BD81BD77A199163As1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib627F5C13AFA0F816BD81BD77A199163As1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib23E1069B2CFF784F3F2F9E392D815360s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib23E1069B2CFF784F3F2F9E392D815360s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib23E1069B2CFF784F3F2F9E392D815360s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibA3D5AC28387B0D123B093EFAF637F2BAs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibA3D5AC28387B0D123B093EFAF637F2BAs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibA3D5AC28387B0D123B093EFAF637F2BAs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibA3D5AC28387B0D123B093EFAF637F2BAs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibDC61CDE53EC93F038DD4F7CEDC9BE721s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibDC61CDE53EC93F038DD4F7CEDC9BE721s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib8CD1F87546FFFB173023C963DA95BECCs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib8CD1F87546FFFB173023C963DA95BECCs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib8CD1F87546FFFB173023C963DA95BECCs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib3D85A3C4D096A04ECC004E31659A52D6s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib3D85A3C4D096A04ECC004E31659A52D6s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib3D85A3C4D096A04ECC004E31659A52D6s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib6106895AB4CA549C84F30FD7D50A635Bs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib6106895AB4CA549C84F30FD7D50A635Bs1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib2A28316D0EEF2A28E9829964CF59C982s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib2A28316D0EEF2A28E9829964CF59C982s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bib2A28316D0EEF2A28E9829964CF59C982s1
https://kudu.apache.org/
https://parquet.apache.org/
https://www.pilosa.com/
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibBE606ACE5E6C7DC57C309905EFEFA8C4s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibBE606ACE5E6C7DC57C309905EFEFA8C4s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibBE606ACE5E6C7DC57C309905EFEFA8C4s1
http://refhub.elsevier.com/S2405-8440(20)30187-0/bibBE606ACE5E6C7DC57C309905EFEFA8C4s1

	Random access with a distributed Bitmap Join Index for Star Joins
	1 Introduction
	2 Background
	2.1 The Bitmap Join Index
	2.2 Apache open-source software

	3 Related work
	3.1 Joins in Hadoop
	3.2 Star Joins in Hadoop
	3.3 Contrasting our contribution

	4 Proposal
	4.1 Combining processing and access layers
	4.2 Distributed Bitmap Join Index (dBJI)
	4.3 Constructing the dBJI
	4.4 Processing Star Joins with the dBJI
	4.5 Instance based on Hadoop systems

	5 Performance evaluation
	5.1 Experimental setup
	5.2 Optimization of MapReduce parameters
	5.3 Performance across different approaches
	5.4 Effect of query selectivity
	5.5 Effect of block selectivity
	5.6 Effect of block size
	5.7 Effect of the data volume

	6 Conclusions
	Declarations
	Author contribution statement
	Funding statement
	Competing interest statement
	Additional information

	Acknowledgements
	References

