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Indices improve the performance of relational databases, especially on queries that return a small portion of 
the data (i.e., low-selectivity queries). Star joins are particularly expensive operations that commonly rely on 
indices for improved performance at scale. The development and support of index-based solutions for Star Joins 
are still at very early stages. To address this gap, we propose a distributed Bitmap Join Index (dBJI) and a 
framework-agnostic strategy to solve join predicates in linear time. For empirical analysis, we used common 
Hadoop technologies (e.g., HBase and Spark) to show that dBJI significantly outperforms full scan approaches 
by a factor between 59% and 88% in queries with low selectivity from the Star Schema Benchmark (SSB). Thus, 
distributed indices may significantly enhance low-selectivity query performance even in very large databases.
1. Introduction

The volume of data that is now available changed the design and 
value of decision-making systems on a broad range of fields [1, 2, 3]. 
To harness the true potential behind this new paradigm, the demand 
for the appropriate infrastructure rapidly inspired novel and creative 
solutions, such as distributed file systems, parallel programming mod-

els, and NoSQL databases. Due to the high costs of maintaining updated 
computational resources, cloud computing was proposed based on com-

modity hardware and non-local infrastructures [4, 5]. For instance, 
Apache Hadoop [6] was released as an open-source framework used 
for distributed storage and processing (i.e., Hadoop MapReduce) of big 
datasets. The next generation of technologies such as HBase [7] and 
Spark [8] were all designed to interact with Hadoop systems. Among 
other options [9, 10], the emergence of these powerful open-source so-

lutions paved the way for the development of applications that utilize 
billions of entries to construct reports and analytics [11, 12]. Conse-

quently, there is an increasing demand for flexible and scalable solu-

tions to store and efficiently query large datasets.

Research demonstrated the importance of indices to improve the 
performance of relational databases, especially to execute queries that 
return a small portion of the data, i.e., queries with low selectivity [13, 
14, 15]. As a rule of thumb, low-selectivity queries benefit the most 
from the use of indices (i.e., picking entry by entry based on their in-

dexing without the need to analyze the whole table), as opposed to full 
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table scan. This also applies to NoSQL databases and applications to Big 
Data [16, 17]. For example, in the context of credit card transactions, 
although historical records are often used to generate statistical polls to 
aid decision-making processes in banks and hedge funds, a share of the 
profits in such companies result from the evaluation of records involv-

ing only a handful of individuals (e.g. loan applications or personalized 
pricing algorithms).

Star Joins are demanding operations in Online Analytical Process-

ing (OLAP) systems that often present low selectivity even in very large 
datasets, thus benefiting from indexed solutions [18, 19]. For instance, 
the Bitmap Join Index distinguishes itself as a largely used solution to 
improve Star Joins in non-cloud environments [20]. Star Joins are de-

fined on a star schema, where a central fact table is linked to several 
satellite dimension tables, thus resembling a star (Fig. 1). A large collec-

tion of strategies and optimizations have been proposed for Star Joins 
in cloud environments (see Section 3). For instance, many MapReduce 
strategies based on full scan were introduced to deal with the rampant 
growth in data volume [21, 22, 23]. The challenge then became to avoid 
excessive disk access and cross-communication among parallel jobs [11, 
24, 25]. However, as the query selectivity becomes small, a consider-

able portion of the data retrieved by full scan operations is inevitably 
discarded, draining read/write resources. Also, shuffling unneeded data 
clogs the network and blocks further cross-communication.

Still, the development and support of Hadoop-based solutions for 
random access remain on hold. Particularly, although queries with low 
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Fig. 1. A visualization of the star schema with one central fact table, and four 
dimension tables.

Fig. 2. The architecture explored in this paper, with a Processing Layer re-

sponsible for massive distributed computation and an Access Layer capable of 
performing full scan and random access.

selectivity may still require the retrieval of massive amounts of en-

tries, our overarching hypothesis is that the appropriate use of indexing 
should substantially improve the current methods, depending on the 
query selectivity. In other words, even in a distributed file system, query 
selectivity may reach a point where the use of indices to retrieve results 
entry by entry is faster than scanning and subsequently pruning the fact 
table. Yet, all of the available solutions to Star Joins in Hadoop use 
full scan regardless of their selectivity [26, 27]. Moreover, an ideal dis-

tributed system should seamlessly switch between full scan and random 
access according to properties related to the query (e.g., its selectivity).

We propose a strategy that combines distributed indices and a two-

layer architecture based on open-source frameworks to accelerate Star 
Join queries with low selectivity. To propose our strategy, we address 
the following fundamental challenges.

1. How to provide full scan or random access to speed up Star Joins over 
fact tables stored in the HDFS according to the query selectivity. To this 
end, we base our strategy on a two-layer architecture that delegates 
massive parallel operations to a Processing Layer, and the access to 
the distributed file system to an Access Layer (Fig. 2). The use of 
these two independent layers allows the choice of different pro-

cessing strategies based on their individual characteristics to solve 
a broad spectrum of queries, including high and low selectivity.

2. What is the suitable distributed data structure to store Bitmap Join in-

dices for large-scale data in the HDFS? We propose the distributed 
Bitmap Join Index (dBJI) that is partitioned across a distributed 
2

system, and fully exploits the parallel resources available on the 
cluster. The dBJI can be used for random access in the cloud.

3. How to design a distributed algorithm that scales well with increasing 
data volumes and provides a suitable index partitioning. We propose 
a distributed algorithm to efficiently construct the dBJI. Our algo-

rithm is characterized by partitioning the index structure across the 
nodes with a given partition size.

4. How to design an efficient algorithm for low-selectivity Star Joins using 
the distributed Bitmap Join index. We propose an efficient process-

ing algorithm for low-selectivity Star Joins in linear time based on 
available frameworks designed for cloud systems. The algorithm is 
divided into two phases: first, the dBJI is used by the Processing 
Layer to solve the dimension predicates; then the requested pri-

mary keys are retrieved by the Access Layer using random access.

5. How to implement the solutions to the aforementioned challenges us-

ing Hadoop-related software. We instantiated the Access Layer with 
HBase, and the Processing Layer with either Spark or MapReduce. 
All implementations are provided on GitHub [28].

The advantages of our index-based solution were investigated 
through an in-depth performance analysis in low-selectivity Star Joins 
considering a wide range of related work available in the literature. The 
performance results showed that our solution outperformed by a factor 
between 59% and 88% other 11 strategies based on full scan.

2. Background

2.1. The Bitmap Join Index

The Bitmap Join Index is composed of bitmap arrays that represent 
the occurrence of attribute values from dimension tables in the tuples of 
the fact table [20]. Star Join predicates can be solved by using bitwise 
logical operators on the bitmap indices, avoiding actual joins between 
fact tables and dimensions. Specifically, a Bitmap Join Index for an at-

tribute 𝛼 from the dimension table 𝐷 is a set of bitmap arrays for every 
distinct value of 𝛼. For every value 𝑥 of the attribute 𝛼, each bitmap 
𝑖𝑡𝛼=𝑥 contains one bit for each tuple in the fact table, indexed by its 
primary key 𝑝𝑘𝑓 . Each of these bits represents the occurrence (1) or not 
(0) of the value 𝑥 in the corresponding tuple of the fact table. We show 
in Fig. 3(a) examples for two attribute values, 𝑎1 = 10 and 𝑏1 = 5. Thus, 
for instance, if the 𝑗-th bit of the bitmap 𝑖𝑡𝛼=𝑥 is 1 (0), that means that 
the tuple on the fact table with 𝑝𝑘𝑓 = 𝑗 is (is not) associated with 𝛼 = 𝑥. 
It is now evident that a predicate 𝛼1 = 𝑥1 ⊗𝛼2 = 𝑥2, with ⊗ being a log-

ical operator, can then be solved by evaluating the 𝑖𝑡𝛼1=𝑥1 ⊗ 𝑖𝑡𝛼2=𝑥2
For instance, to find the tuples in the fact table under the condition 
𝑎1 = 10 AND 𝑏1 = 5, the bitwise logical operator AND can be applied di-

rectly to the bitmaps 𝑖𝑡𝑎1=10 and 𝑖𝑡𝑏1=5. Thus, only tuples 2 and 9 
from the fact table should be retrieved via random access.

The Bitmap Join Index has been proven a competitive solution, even 
when the number of indexed dimensions is large [29]. Although the car-

dinality of the dimension attributes is generally assumed to be small, a 
limitation of Bitmap Join Indices is handling attributes with high car-

dinality. These problems can be attenuated by optimization techniques, 
such as binning [30, 31], compression [32, 33], and coding [34]. As a 
result, the Bitmap Join Index is largely used to solve Star Joins queries 
in decision-making systems, especially data warehousing environments 
that store huge volumes of read-mostly data [31]. As expanded in the 
Section 4.2, in this paper we explore the benefits of Bitmap Join Indices 
in distributed systems.

2.2. Apache open-source software

Hadoop MapReduce. The Apache Hadoop MapReduce [6] (MapRe-

duce for short) is an open-source distributed implementation of a 
generic programming model where Map and Reduce procedures ma-

nipulate key-value pairs [35]. In general, Map tasks filter and sort the 
data, and Reduce tasks summarize the results of the Map.
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Apache Spark. The Apache Spark is a parallel and distributed 
framework based on in-memory computation [8] and on the Resilient 
Distributed Dataset (RDD) abstraction [36]. All operations on the RDDs 
are first mapped into a Directed Acyclic Graph (DAG) and then reorga-

nized into sets of smaller tasks based on their mutual dependencies by 
the DAG scheduler.

Apache HBase. The Apache HBase is an open-source, NoSQL 
database designed to provide fast read and write operations to appli-

cations in Big Data [7]. Its primary goal is to store and manage huge 
tables on clusters based in cloud environments while leveraging the 
fault tolerance provided by the HDFS. Although HBase organizes data 
into tables in a similar fashion to relational databases, the data is de-

normalized, and there are no native joins.

To provide fast random access, HBase stores its tables in a custom 
format called HFile. Because the HDFS was designed for batch process-

ing, datasets are usually split into large blocks (the standard block size 
is 64MB). These blocks are usually read in sequence. HBase uses the 
HFile format to build a second layer of smaller data blocks over the 
HDFS, with a standard block size of 64KB. Indices can be constructed 
on this second layer [37]: when a row key is requested, indices redi-

rect the read/write operation to the location of the block where such 
row is stored. However, HBase reads the entire data block defined by 
the HFile format and then performs a sequential search to find that par-

ticular row key. Therefore, an HFile format with large block size adds 
up to the overhead during the reading operation and sequential search, 
while smaller block sizes require index data structures that are larger 
and more complex.

3. Related work

3.1. Joins in Hadoop

Because joining multiple tables is a common operation in many 
database applications and especially challenging when the data volume 
scales up, many of the systems in the Apache family support joins. For 
instance, Apache Hive [38] is a data warehouse solution built on top 
of Hadoop that performs join queries by processing a cascade of joins 
between each pair of tables (also known as cascade join or reduce-side 
join). When possible, Hive may also load small tables into the main 
memory and then compute the joins (also known as broadcast join). 
Both of these techniques consist of the common solutions to solve joins, 
and we will test the performance of these approaches by using the 
following terminology (see Table 1): MR-Cascade refers to a cascade 
join implemented in MapReduce; and MR-Broadcast, to the broadcast 
join. Blanas et al. [27] extensively studied the performance of these ap-

proaches, and other small variants, to provide a survey with guidelines 
to aid the selection of approaches when employing joins in MapReduce. 
For completeness, we explored their counterparts in Spark [24], the SP-

Cascade approach for cascade join, and SP-Broadcast for the broadcast 
join.

3.2. Star Joins in Hadoop

Because in most applications the fact table is considerably large, 
the application of techniques that optimize how the data is handled is 
critical to process Star Joins efficiently. To avoid multiple MapReduce 
cycles, Afrati et al. [21] proposed a map-key approach (hereafter, MR-

MapKey) that computes Star Joins in a single job by replicating and 
mapping data from dimension tables. Tao et al. [39] extended the MR-

MapKey approach to perform hierarchical joins by adding more jobs. 
We refer to this extension as MR-Hierarchized. Although the MR-MapKey

and MR-Hierarchized approaches avoid multiple jobs, there is significant 
replication of data among subsets of Reducers.

Another common strategy to accelerate the processing of Star Joins 
is the use of filters to prune the fact table before joining with the di-

mensions. For instance, one very simple improvement on top of the 
3

Table 1

List of the approaches outlined (Section 3) and used in the performance eval-

uation (Section 5). The approaches proposed in this paper are highlighted in 
bold with gray background. The second and third columns distinguish the ac-

cess method used by each approach (random access vs. full scan). The fourth 
and fifth columns identify optimization techniques, if any, as described in the 
main text (Section 3).

MapReduce 
algorithms

Random 
access

Full 
scan

Optimization

Filter Broadcast

MR-Bitmap ✓

MR-Cascade ✓

MR-MapKey ✓

MR-Hierarchized ✓

MR-Broadcast ✓ ✓

MR-Bloom-ScatterGather ✓ ✓

MR-Bloom-MapKey ✓ ✓

MR-Bloom-Cascade ✓ ✓

MR-Bitmap-Filter ✓ ✓

Spark 
algorithms

Random 
access

Full 
scan

Optimization

Filter Broadcast

SP-Bitmap ✓

SP-Broadcast-Bitmap ✓ ✓

SP-Broadcast ✓ ✓

SP-Bloom-Cascade ✓ ✓

SP-Cascade ✓

MR-Cascade is to use Bloom filters [40] to prune the fact table and 
perform the join with the dimensions, thus avoiding propagation of un-

necessary data. We implemented this method in this paper, which is 
referred to as MR-Bloom-Cascade. Because MR-Bloom-Cascade requires 
as many jobs as dimension tables, Han et al. [22] proposed an approach 
(hereafter, MR-Bloom-ScatterGather) that only requires three jobs: (1) 
application of Bloom Filters, (2) join between each vertical partition of 
the fact table with corresponding dimensions and (3) merge of all verti-

cal partitions. Zhang et al. [23] extended the MR-MapKey approach by 
including an additional job to build Bloom filters. We refer to this exten-

sion as MR-Bloom-MapKey. However, although these strategies proved 
the use of Bloom filters improved their performance, filtering requires 
one extra job. In analogy with MR-Bloom-ScatterGather, Zhu et al. [41]

used Join Bitmaps as filters to prune the fact table, thus referred to as 
MR-Bitmap-Filter. Although this bitmap data structure used in this ap-

proach is similar to that presented in this paper, it employs full scan to 
retrieve data from the HDFS. Thus, the MR-Bitmap-Filter approach uses 
the bitmap data structure as a filter rather than an index, introducing 
an additional overhead to low-selectivity queries due to the lack of ran-

dom access. In this paper, we redefine the bitmap index in a distributed 
context and employ random access to leverage the advantages of an 
index in solving low selectivity queries.

Finally, in our previous paper [24], we proposed and studied in 
detail two Spark approaches that minimize disk spill and network com-

munication. Namely, these approaches are (i) the SP-Bloom-Cascade, 
which uses Bloom filters to prune the fact table and then performs the 
joins; and (ii) the SP-Broadcast, which implements the broadcast join. 
While the SP-Broadcast presented the best performance overall when 
enough memory was available, the SP-Bloom-Cascade strategy was re-

markably resilient to scenarios with scarce memory per node, probably 
because the Bloom filters require minimal storage.

3.3. Contrasting our contribution

We summarize in Table 1 all approaches introduced so far, and 
include the approaches proposed in the present paper. Solutions are 
discriminated according to their access method (second and third 
columns) and whether they use optimization techniques (fourth and 
fifth columns). The approaches presented in this paper (namely SP-

Bitmap, SP-Broadcast-Bitmap, and MR-Bitmap) are the only ones that 
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employ random access, and excel at queries with low selectivity (as 
shown in Section 5.3). Because the underlying methodology only as-

sumes two independent layers (one Access Layer and one Processing 
Layer), our solution is framework agnostic and can be further extended 
beyond the MapReduce and Spark frameworks. That is, to the best of 
our knowledge, there is no related work that employs random access

to process Star Joins for data residing on a HDFS. Therefore, our pro-

posal is innovative in the sense that, in a system intended for a general 
purpose the methodologies displayed in Table 1 can be selected on de-

mand to solve a broader spectrum of queries, including high and low 
selectivity (see Sections 4.1 and 4.5).

4. Proposal

We introduce the following solutions to the fundamental challenges 
listed in Section 1:

1. We propose a strategy that operates on top of an architecture com-

posed of a Processing Layer and an Access Layer that provides both 
full scan and random access (Section 4.1).

2. By employing an Access Layer able to perform random access, we 
propose a distributed Bitmap Join Index (dBJI) that leverages the 
parallelism provided by the Processing Layer to solve Star Joins 
(Section 4.2).

3. We present a scalable distributed algorithm for constructing dBJI 
(Section 4.3).

4. We propose an algorithm that solves low-selectivity join predicates 
using the dBJI (Section 4.4).

5. We instantiate the Access Layer with HBase, and the Processing 
Layer with either Spark or MapReduce (Section 4.5).

4.1. Combining processing and access layers

We propose the use of an architecture based on an Access Layer and 
a Processing Layer (Fig. 1c). Depending on the specific query, the Ac-

cess Layer is responsible to employ either random access or full scan, 
and coordinate with the Processing Layer. This is important to separate 
concerns and not depend on technologies such as Spark to deliver ran-

dom access. How the selection between random access and full scan is 
made should be addressed elsewhere. In fact, this strategy is similar to 
how relational databases solve queries by using query optimizers [42, 
43]. Depending on which strategy is chosen, this system will behave in 
a slightly different way, as described below.

Full scan. The overall strategy is to request from the Access Layer 
a full scan of the fact table and the dimensions involved in the given 
query, and then the Processing Layer computes the join in parallel. We 
reviewed in Section 3.2 the existing algorithms available for full scan.

Random Access. In order to take full advantage of the parallel 
frameworks, the distributed index is first loaded and computed by the 
Processing Layer and, then, a request for the resulting tuples is sent to 
the Access Layer. Once the Access Layer receives this request, the tuples 
are retrieved from the appropriate cluster nodes using a random access 
method. The index loaded by the Processing Layer is called a secondary 
index, and the index used by the Access Layer is called a primary index. 
This strategy is described in detail in the next section.

4.2. Distributed Bitmap Join Index (dBJI)

The distributed Bitmap Join Index (dBJI) is a set of bitmap arrays 
that are stored on a distributed system and is designed to leverage the 
advantages of parallel processing to solve Star Joins. In the construction 
of the dBJI, it is not assumed that indices related to a partition of the 
tables are located on the same node (i.e., no assumption of collocation). 
For every value 𝑥 of an attribute 𝛼, the bitmap array 𝑖𝑡𝑃

𝛼=𝑥 contains 
one bit for each tuple in the fact table that is indexed by the primary 
keys 𝑝𝑘𝑓 ∈ 𝑃 . The set 𝑃 represents a subset of the primary keys of the 
4

fact table, and is used to split the index into many nodes. Let us assume 
that the sequence 1, 2, … , 𝑁

represents a partition of the complete 
set  of all primary keys that compose the fact table, with 𝑁 being 
the number of partitions. As in the original bitmap join index, each of 
these bits represents the occurrence (1) or not (0) of the value 𝑥 in the 
corresponding tuple. Thus, the set of 𝑝𝑘𝑓 that solve a simple predicate 
such as 𝛼 = 𝑥 is given by the list of all bits set to 1 in 𝑖𝑡𝑗

𝛼=𝑥 in all 
partitions,

𝑆 =
𝑁⋃
𝑗=1

{
𝑝𝑘𝑓 ∈ 𝑗 ∶ 𝑖𝑡

𝑗

𝛼=𝑥
[
𝑝𝑘𝑓

]
= 1

}
, (1)

where 𝑖𝑡𝑗

𝛼=𝑐
[
𝑝𝑘𝑓

]
is the bit associated with 𝑝𝑘𝑓 ∈ 𝑗 .

Distributing the index. To fully exploit parallelism and to balance 
the workload in the cluster, partitions are uniformly distributed across 
the nodes (Fig. 3b). Metadata containing information about the location 
of each partition is stored in the namenode (master). To optimize the 
loading time of the index files, the bitmap arrays 𝑖𝑡𝑗

𝛼=𝑥 are stored in a 
different file for each attribute 𝛼 and value 𝑥 of that attribute. Without 
loss of generality, let us assume that the primary keys are the integers 
1, 2, 3, … , 𝑁𝑡, i.e., 𝑝𝑘𝑓 ∈ ℤ ∩ [1, 𝑁𝑡], with 𝑁𝑡 being the number of tuples 
in the database. Within partitions and for each attribute and attribute 
value, the bitmap arrays are organized into blocks of size 𝑏𝑠 that consists 
of: (i) the primary key 𝑝𝑘𝑓 of the first tuple indexed by that block; and 
(ii) a sequence of 𝑏𝑠 bits that represent the bitmap values associated 
with the tuples between the 𝑝𝑘𝑓 and 𝑝𝑘𝑓 + 𝑏𝑠 − 1. Fig. 3b shows an 
example of bitmap partitions with block size 𝑏𝑠 = 4 tuples.

Solving join predicates. Because the Star Joins often involve pred-

icates with two or more distinct attributes or ranges of attributes, joins 
may require the use of multiple bitmap arrays associated with the same 
partition. Consider a query  consisting of 𝑚 predicates 𝑝𝑘 composed as 
𝑝1 ⊗1 𝑝2 ⊗2 … ⊗𝑚−1 𝑝𝑚, where ⊗𝑘 is the logical operator linking predi-

cates 𝑝𝑘 and 𝑝𝑘+1. Although extending this formalism to a wider range 
of predicates is straightforward (as mentioned in Section 2.1), our goal 
is to solve predicates 𝑝𝑘 ≡ 𝛼𝑘 = 𝑥𝑘 involving an attribute 𝛼𝑘 and one of 
its possible values 𝑥𝑘. To solve this chain of predicates, each node will 
compute a partial solution 𝑖𝑡𝑗


as follows:

𝑖𝑡
𝑗


=𝑖𝑡

𝑗

𝛼1=𝑥1 ⊗1 𝑖𝑡
𝑗

𝛼2=𝑥2 ⊗2 …⊗𝑚−1 𝑖𝑡
𝑗

𝛼𝑚=𝑥𝑚 . (2)

Finally, the set of all required primary keys,

𝑆 =
𝑁⋃
𝑗=1

{
𝑝𝑘𝑓 ∈ 𝑗 ∶ 𝑖𝑡

𝑗



[
𝑝𝑘𝑓

]
= 1

}
, (3)

is aggregated by the master node and sent to the Access Layer. If a 
precedence order is required, the same precedence should be applied on 
the chain of operations with bitmap arrays. For example, the predicate 
(𝑎1 = 10 AND 𝑏1 = 5) OR 𝑏2 = 10, similar to the predicate in Fig. 3c, is 
solved by performing

𝑖𝑡
𝑗


=
(
𝑖𝑡

𝑗

𝑎1=10
∧𝑖𝑡

𝑗

𝑏1=5
)
∨𝑖𝑡

𝑗

𝑏2=10
(4)

for 𝑗 = 1, 2, … 𝑁 , where ∧ is the bitwise logical AND operator and ∨, 
the OR operator.

Complexity analysis. Because the cardinality ||𝑆
|| is proportional 

to the selectivity of the query , low-selectivity queries have low mem-

ory demand. Additionally, because Star Joins are solved by employing 
bitwise operations on bitmap arrays 𝑖𝑡𝑗

𝛼=𝑥 that share the same par-

tition, the index structures with the same partition should ideally be 
stored on the same node. If not, then the index needs to be appropri-

ately transmitted across the cluster, creating additional delays on the 
query processing. Finally, because computing 𝑆 involves computing a 
cascade of predicates and an aggregation, it is important to study its 
complexity:
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Fig. 3. A representation of our distributed Bitmap Join Index (dBJI). (a): Example of instance of a bitmap index considering the same tables in Fig. 1(a). (b): Physical 
storage of the dBJI. (c): Example of application of the dBJI to solve an AND operation.
Theorem 1. For a given query 𝑄 consisting of 𝑚 predicates 𝑝𝑘 composed as 
𝑝1 ⊗1 𝑝2 ⊗2 … ⊗𝑚−1 𝑝𝑚, where ⊗𝑘 are logical operators, computing 𝑆 has 
time complexity 

(
(𝑚 + 1)𝑁𝑡

)
, where 𝑁𝑡 is the number of tuples in the fact 

table.

Proof. If 𝑚 = 0, then there is only one predicate 𝑝𝑘 ≡ 𝛼 = 𝑥 and 𝑆 is 
computed by the aggregation in Equation (3) for all partitions 𝑖𝑡𝑗

𝛼=𝑥. 
Because that requires scanning all 𝑁𝑡 elements of the bitmap structure, 
the complexity in this case is (𝑁𝑡). If 𝑚 > 0, then for each pair of 
predicates 𝑝𝑗 ⊗𝑗 𝑝𝑗+1 with 𝑗 = 1, … , 𝑚, first the bitwise logical operation 
between the bitmaps associated with predicates 𝑝𝑗 and 𝑝𝑗+1 are com-

puted (as in Equation (2)). Given a number 𝑁 of partitions with same 
size, each bitwise operation has time complexity (𝑁𝑡∕𝑁 ) =(𝑁𝑡). Af-

ter performing all operations, the final aggregation of all primary keys 
is performed, which results in a total complexity of 

(
(𝑚 + 1)𝑁𝑡

)
. □

4.3. Constructing the dBJI

Because the size of the index structure scales with the number of 
tuples in the fact table, we propose in Algorithm 1 a distributed algo-

rithm to construct and store the dBJI on a distributed file system. Our 
algorithm controls how the partitions are distributed in the cluster, the 
size of each partition and the block size 𝑏𝑠. It receives as input the fact 
(𝐹 ) and dimension (𝐷) tables, the attribute (𝛼) and value (𝑥) being 
indexed, the number of partitions (𝑁 ) and the block size (𝑏𝑠). Algo-

rithm 1 starts by collecting the primary keys from the dimension table 
and stores the keys that correspond to the indexed value (i.e., 𝛼 = 𝑥) 
into a hash map (lines 1-6). Then, the fact table is split into 𝑁 hor-

izontal partitions (line 7). Each partition is processed and generates a 
corresponding bitmap partition (line 8-29). Within each partition, a new 
bitmap block is created to incorporate the next 𝑏𝑠 tuples (line 11). The 
primary key of the first tuple is stored at the beginning of the blocks 
(line 12). Next, the boolean values indicating whether the tuple 𝑡 has 
the indexed value or not generate bitmap blocks (lines 14-25). Finally, 
the algorithm outputs the dBJI for 𝛼 = 𝑥. We provide a MapReduce im-

plementation of Algorithm 1 on Appendix A. The implementation is also 
available at GitHub [28].

Theorem 2. Algorithm 1 has time complexity (𝑁𝑡), where 𝑁𝑡 is the num-

ber of tuples in the fact table.

Proof. For a given dimension 𝐷 with 𝑁𝑑 entries, the complexity 
to compute lines 1-6 is (𝑁𝑑 ). Between lines 9-29, the two nested 
loops scan the fact table a single time. Thus, the complexity becomes 
5

(𝑁𝑑 ) + (𝑁𝑡). Because in star schemas 𝑁𝑑 ≪ 𝑁𝑡, the complexity is 
(𝑁𝑡) regardless of the number 𝑁 of partitions or the block size 𝑏𝑠. □

Algorithm 1 Constructing the dBJI.

Input: 𝐷, 𝐹 , 𝛼, 𝑥, 𝑁 and 𝑏𝑠
𝐷: dimension table
𝐹 : fact table
𝛼: indexed attribute
𝑥: indexed value from 𝑎
𝑁 : number of partitions
𝑏𝑠 : block size

Output: all partitions 𝑖𝑡𝑗

𝛼=𝑥 of the bitmap join index for 𝛼 = 𝑥

Legend: = means attribution; ← means append/push to array.

∕ ∗ Creating a hash map to store the selected primary keys from 𝐷 ∗ ∕
1: 𝐻 = ∅
2: for each 𝑑 in 𝐷 do

3: if 𝑑.𝛼 == 𝑥 then

4: 𝐻 ← 𝑑.𝑝𝑘𝐷
5: end if

6: end for

∕ ∗ Splitting the fact table into 𝑁 horizontal partitions ∗ ∕
7: R[ ] = Split( 𝐹 , 𝑁 )
8: Bitmap = ∅

∕ ∗ Constructing each partition 𝑖𝑡𝑗

𝛼=𝑥 ∗ ∕
9: for 𝑗 = 0; 𝑗 < 𝑁 ; 𝑗++ do

10: BitmapPartition = ∅
11: BitmapBlock = ∅
12: BitmapBlock ← 𝑡.𝑝𝑘𝐹
13: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1
14: for each 𝑡 in 𝑅[𝑗] do

15: if 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 % 𝑏𝑠 + 1 == 0 then

16: BitmapPartition ← BitmapBlock
17: BitmapBlock = ∅
18: BitmapBlock ← 𝑡.𝑝𝑘𝐹
19: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1
20: end if

∕ ∗ Evaluates the value of the index for 𝑡 ∗ ∕
21: if H.has( 𝑡.fk𝐷 ) then

22: BitmapBlock ← 1
23: else

24: BitmapBlock ← 0
25: end if

26: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟++
27: end for

28: Bitmap ←BitmapPartition
29: end for

30: return Bitmap

4.4. Processing Star Joins with the dBJI

The Star Join processing pipeline proposed in this paper is divided in 
two phases. First, for a query  the Processing Layer computes 𝑖𝑡𝑗 in 
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each node using the distributed Bitmap Join Indices (dBJI). The corre-

sponding bitmap partitions are then combined into a set 𝑆 of primary 
keys. As discussed in Section 4.2, because we store corresponding parti-

tions in the same nodes, this procedure is executed locally. The second 
phase consists of sending 𝑆 to the Access Layer to execute random 
access based on its primary indexing schema. Thus, only the required 
tuples from the fact table are retrieved from the distributed filesystem 
and joined to the dimension tables.

dBJI as a secondary index with loose binding. To successfully em-

ploy this strategy with existing distributed systems, the dBJI connects to 
a primary index used in the distributed random access performed by the 
Access Layer. The primary index is a map between a primary key 𝑝𝑘𝑗
and an address PI(𝑝𝑘𝑗 ) in the distributed filesystem (specifying cluster 
node and disk address). Thus, for a set of primary keys 𝑆 that solve a 
query , a function DistributedRandomAccess(⋅) interfaces with the Ac-

cess Layer to employ random access to retrieve records from addresses 
PI(𝑝𝑘𝑗 ), ∀𝑝𝑘𝑗 ∈ 𝑆. Although this two-level structure adds a small over-

head, it does not change the complexity of the Star Join and can be 
minimized if performed in bulk.

Processing algorithm. Algorithm 2 computes the Star Join using 
random access, as depicted by the workflow in Fig. 4. The algorithm re-

ceives as input a Star Join query 𝑄, a fact table 𝐹 , a set of dimensions 
{𝑗}, and a set of dBJIs {𝑖𝑡}. Lastly, the argument JoinMethod(⋅) of 
Algorithm 2 can be any join algorithm (e.g. cascade join or a broadcast 
join). The algorithm starts by the Processing Layer loading the necessary 
bitmap structures and construct S𝑄 = ∪𝑗𝑖𝑡

𝑗


on line 1 (green lines in 

Fig. 4). In line 2, this list is passed through DistributedRandomAccess(⋅)
to the Access Layer to employ the primary index and retrieve the neces-

sary tuples from the fact table (blue lines). Then, the dimension tables 
required in the query 𝑄 are loaded via full scan (blue lines below the 
Full Scan sign), filtered, and joined with the fact table in lines 3-6 (red 
lines). If necessary, the result can be grouped and/or sorted between 
lines 6 and 7, depending on the clauses present in the query 𝑄.

Algorithm 2 Processing Star Join Queries with the dBJI.

Input: 𝑄, 𝐹 , {𝑗} and 𝑖𝑡, JoinMethod
𝑄: star join query
𝐹 : fact table
{𝑗}: set of dimension tables used in 𝑄
{𝑖𝑡}: set of bitmap join indices
JoinMethod: join methodology (e.g. cascade or broadcast)

Output: result of 𝑄
∕ ∗ Execute bitwise logical operations over the bitmap indices {𝑖𝑡} according to the 
predicates of 𝑄 in order to obtain a list of primary keys from 𝐹 (𝑝𝑘𝑓 ) ∗ ∕
1: S𝑄 = RunParallelBitwiseLogicalOperations( 𝑄, {𝑖𝑡} )

∕ ∗ The list of selected 𝑝𝑘𝑓 is used for random access to the fact table ∗ ∕
2: 𝑅𝑒𝑠𝑢𝑙𝑡𝐹 = DistributedRandomAccess( 𝐹 , S𝑄 )

∕ ∗ Performing full scan dimension tables applying filters according to the predicates 
of 𝑄, and joining with fact table ∗ ∕

3: for each 𝐷 in {𝑗} do

4: Result𝐷 = FilteredFullScan( 𝐷, 𝑄 )
5: Result𝐹 = JoinMethod( Result𝐹 , Result𝐷 )
6: end for

7: return Result𝐹

Complexity. Because of the complexity in evaluating  from The-

orem 1, Algorithm 2 processes Star Joins in linear time. Although the 
specific methodology depends on the specific implementation, the dis-

tributed random access performed in line 2 retrieves the list in  one by 
one, i.e., it runs in linear time. Lines 3 through 6 in Algorithm 2 retrieve 
the dimensions involved and performs a join operation.

4.5. Instance based on Hadoop systems

Both the architecture presented in Section 4.1 and the dBJI can be 
implemented in a distributed system based on Hadoop-related software. 
The most natural candidate for the distributed filesystem is the HDFS. 
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Fig. 4. Workflow of our solution on a Hadoop-based instance of the architecture 
and distributed Bitmap Join Index (dBJI).

The Processing Layer can be realized by either MapReduce or Spark 
frameworks to deliver massive parallel computations. Finally, HBase is 
a good candidate for Access Layer for its trade-off between full scan 
and random access and the fact that HFile are suitable for star schemas. 
The connection between the dBJI and HBase’s primary index is per-

formed through its API function BulkGet(⋅). There are two important 
low-level features specific to HBase that may affect the performance 
of our system: (i) how HFile blocks are read and (ii) their size. First, 
although HBase’s BulkGet(⋅) can use a primary index to locate HFile 
blocks associated with a set of primary keys, it performs a sequential 
search within HFile blocks. Second, the block size used by HBase HFile 
(64KB) is larger than the common size employed by most relational sys-

tems (PostgreSQL’s default page size is 8KB). This difference in block 
size influences the performance of random access due to additional 
read/write. We investigated the effect of the block size empirically in 
section 5.6. We provide two implementations of Algorithm 2 in Appen-

dices B and C (also in GitHub [28]). This setup and algorithms are used 
in Section 5 to validate the performance of our proposal.

5. Performance evaluation

In this section, we evaluate the performance of the proposed strate-

gies using the distributed Bitmap Join Index (dBJI) and compare it to 
those of previously published algorithms. To perform both random ac-

cess and full scan, we use the architecture in Fig. 2 and the instantiation 
proposed in Section 4.5. We explored both MapReduce and Spark as 
candidate Processing Layers and HBase as an Access Layer. All imple-

mentations used in this section are available on GitHub [28].
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Table 2

Characteristics of the datasets and bitmap indices used in the performance evaluations.

SF Number of tuples 
(×108)

Size (GB) of each 
dataset on disk

Tuples per Hbase 
region (×106)

Size (MB) of each 
bitmap array

Number of partitions 
per bitmap array

100 0.6 326 1 71.9 100
200 1.2 655 2 143.4 200
300 1.8 982 3 214.6 300
400 2.4 1310 4 286.2 400

Table 3

Predicate and approximate selectivity of all queries used in our performance evaluations.

Query Predicates Selectivity (%)

Q2.3 𝑝_𝑏𝑟𝑎𝑛𝑑 = ‘MFGR#2221’ and 𝑠_𝑟𝑒𝑔𝑖𝑜𝑛 = ‘EUROPE’ ≈ 0.020
Q3.3 (𝑐_𝑐𝑖𝑡𝑦 = ‘UNITED KI1’ or 𝑐_𝑐𝑖𝑡𝑦 = ‘UNITED KI5’) and (𝑠_𝑐𝑖𝑡𝑦 = ‘UNITED KI1’ or 𝑠_𝑐𝑖𝑡𝑦 = ‘UNITED KI5’) and 𝑑_𝑦𝑒𝑎𝑟 >= 1992 and 𝑑_𝑦𝑒𝑎𝑟 <= 1997 ≈ 0.0059
Q3.4 (𝑐_𝑐𝑖𝑡𝑦 = ‘UNITED KI1’ or 𝑐_𝑐𝑖𝑡𝑦 = ‘UNITED KI5’) and (𝑠_𝑐𝑖𝑡𝑦 = ‘UNITED KI1’ or 𝑠_𝑐𝑖𝑡𝑦 = ‘UNITED KI5’) and 𝑑_𝑦𝑒𝑎𝑟𝑚𝑜𝑛𝑡ℎ = ‘Dec1997’ ≈ 0.000083
Q4.3 𝑐_𝑟𝑒𝑔𝑖𝑜𝑛 = ‘AMERICA’ and 𝑠_𝑛𝑎𝑡𝑖𝑜𝑛 = ‘UNITED STATES’ and (𝑑_𝑦𝑒𝑎𝑟= 1997 or 𝑑_𝑦𝑒𝑎𝑟= 1998) and 𝑝_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = ‘MFGR#14’ ≈ 0.0077
Q4.4 𝑐_𝑟𝑒𝑔𝑖𝑜𝑛 = ‘AMERICA’ and 𝑝_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = ‘MFGR#14’ and 𝑑_𝑦𝑒𝑎𝑟 = 1998 ≈ 0.071
Q4.5 𝑐_𝑟𝑒𝑔𝑖𝑜𝑛 = ‘AMERICA’ and 𝑝_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = ‘MFGR#14’ and 𝑑_𝑦𝑒𝑎𝑟 >= 1996 and 𝑑_𝑦𝑒𝑎𝑟 <= 1998 ≈ 0.31
Q4.6 𝑐_𝑟𝑒𝑔𝑖𝑜𝑛 = ‘AMERICA’ and 𝑝_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = ‘MFGR#14’ and 𝑑_𝑦𝑒𝑎𝑟 >= 1994 and 𝑑_𝑦𝑒𝑎𝑟 <= 1998 ≈ 0.56
5.1. Experimental setup

Cluster. We set up a cluster in Microsoft Azure with 1 master and 
20 slave D3v2 instances. Each instance had four 2.4 GHz Intel Xeon 
E5-2673, 14GB of memory, and a hard disk of 1TB. We used Hadoop 
MapReduce 2.6.0 and Spark 1.4.1 as processing engines, YARN 2.6.0 
as cluster manager, and HBase 1.1.2. It is worth noting that Apache 
Spark 2 became stable after we performed our experiments, and recent 
optimizations of Apache Spark 2 may reflect in further performance 
gains for our proposed strategy, which combines a distributed Bitmap 
Join Index (dBJI) and a two-layer architecture based on open-source 
frameworks to speed up Star Join queries with low selectivity.

Dataset. We used the Star Schema Benchmark (SSB) [44] to gener-

ate synthetic datasets to study the performance of Star Joins. The size 
of each dataset was controlled by the Scaling Factor (SF). Table 2 shows 
detailed information about the datasets used in our tests. Each table was 
stored into a single column family and partitioned across 600 HBase re-

gions. We used the default size for HBase blocks (64KB). We abbreviated 
the column names and the family qualifiers to reduce the data volume 
because HBase replicates this information for every value.

Workload. We used four Star Join queries with low selectivity from 
the SSB, namely Q2.3, Q3.3, Q3.4, and Q4.3. Table 3 details the queries 
used in our tests. The queries defined on the SSB approximately main-

tain their selectivity regardless of the SF. To test the impact of increas-

ing query selectivity values on the computation time, we changed the 
predicate of the query Q4.3 and created queries Q4.4, Q4.5, and Q4.6, 
also defined in Table 3. All results represent the average over 5 runs, 
and bars represent the standard error. Queries from the SSB or similar 
to them are largely used to compare competing solutions to Star Joins 
in cloud environments [22, 24, 39, 41]. Although these queries gener-

ally encompass at most four Star Join operations, our proposal nicely 
scales for queries with more operations since its complexity varies lin-

early with the number of predicates, as stated in Theorem 1. To ensure 
that each replicate was not influenced by the cache, all nodes’ memories 
were flushed between each execution.

Distributed Bitmap Join Indices (dBJI). The indices dBJI nec-

essary to solve the predicates in Table 3 were constructed following 
Algorithm 1. Each bitmap array was split into 100 partitions and with 
the block size corresponding to 3 million tuples (Table 2). The indices 
were stored as sequence files in HDFS and were distributed across the 
20 slave nodes. We did not assume collocation between partitions of the 
dBJI and the fact table. Further, because our primary goal is to evaluate 
the solution of Star Joins with random access in distributed systems, we 
did not apply any of the optimization techniques listed in Section 2.1

(i.e., binning, compression, and coding). For instance, binning could be 
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used to improve the structure when indexing attributes that can assume 
a large range of values or numeric values that are not discrete.

Tested algorithms. We compared the performance of our proposed 
algorithms SP-Bitmap, SP-Broadcast-Bitmap, and MR-Bitmap against 11 
different approaches based on full scan, as summarized in Table 1. 
This table groups the strategies by the following criteria: (i) access 
method (random access vs. full scan); (ii) processing framework em-

ployed (MapReduce vs. Spark); and (iii) whether filters or broadcasting 
were used.

5.2. Optimization of MapReduce parameters

To ensure that the performance of MapReduce strategies can be com-

pared to that of Spark strategies, we optimized the two parameters that 
are influential in performance tests: the number of reducers and the slow 
start ratio. The number of reducers defines how many reducers are con-

currently instantiated in each Map/Reduce cycle. In some strategies, 
the number of reducers should present a strong impact because it in-

duces an increased amount of replicated data that is transferred during 
the join operation. The slow start ratio defines the number of map tasks 
that must be completed before scheduling reduce tasks for the same job. 
By default, this ratio is 0.05. For the tests reported in this section, we 
used a dataset with SF=100 and investigated queries Q2.3, Q3.3, Q3.4, 
and Q4.3.

All of the MapReduce strategies based on full scan presented a region 
of values of the number of reducers in which their performance was ei-

ther optimal or very close to optimal, regardless of the query (Fig. 5). In 
particular, the optimal number of reducers was higher for strategies that 
do not apply filtering optimizations (e.g., MR-MapKey and MR-Cascade). 
This is probably because the total workload, including data shuffling 
and processing, was balanced across all the available reducers. Ap-

proaches based on filtering techniques were optimized with very few re-

ducers (e.g., MR-Bloom-MapKey and MR-Bloom-ScatterGather). The only 
exception was the MR-Bitmap-Filter: its performance remained stable for 
a number of reducers below 100. Furthermore, all full scan MapReduce 
strategies showed an improvement in performance when the slow start 
ratio was set to 0.99, which is a higher value than the default (Fig. 6). 
The improvement in performance ranged from 9.6% to 49.9%.

Finally, the MR-Bitmap strategy, which we propose in this paper, 
showed optimal performance with a low number of reducers and the 
same high value for the slow start ratio (Fig. 7). For a number of reduc-

ers smaller than 100, the performance of our approach remained mostly 
constant (Fig. 7a). Regarding the slow start ratio (Fig. 7b), the compu-

tation time either remained the same (query Q2.3) or improved by a 
factor between 24% and 36%.
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Fig. 5. Performance of the MapReduce strategies based on full scan as a function of the number of reducers.

Fig. 6. MapReduce strategies based on full scan showed better performance with a value of slow start ratio equal to 0.99.

Fig. 7. Performance of our proposed MR-Bitmap as a function of (a) the number of reducers and (b) the slow start ratio.
Based on the results described in this section, in each strategy we set 
the number of reducers to the value corresponding to their best elapsed 
time, according to Figs. 5 and 7(a). We also set the slow start ratio of 
all algorithms to 0.99.

5.3. Performance across different approaches

Especially in queries that have low selectivity, our strategies, based 
on the dBJI, presented the best performance regardless of the frame-

work used for their implementation (compare green bars with red 
and blue in Fig. 8). For the tests reported in this section, we used a 
dataset with SF=100 and investigated queries Q2.3, Q3.3, Q3.4, and 
Q4.3. Regarding the MapReduce framework, our strategy MR-Bitmap

dropped the computation time by a factor between 39.7% and 88.3%. 
In the Spark framework, the performance increase of our strategies SP-

Bitmap and SP-Broadcast-Bitmap varied from 77.3% up to 88.3%. These 
results demonstrate the advantage of associating random access with 
the use of our dBJI to process low selectivity Star Join queries. More-

over, although Spark implementations tend to outperform those in 
the MapReduce framework, our MR-Bitmap algorithm outperformed all 
Spark strategies based on full scan by a factor from 30.3% up to 68.2%. 
Therefore, the application of the appropriate access method may have 
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a stronger influence on query performance than that of the choice of 
framework.

Because MR-Bitmap-Filter employs a Bitmap Join structure to filter 
the fact tables, the fact that it significantly underperforms our method 
MR-Bitmap agrees with our overarching hypothesis that the proper use 
of random access is likely to improve the performance of Star Joins sub-

stantially. Moreover, the MR-Bitmap-Filter was slightly slower than ap-

proaches that use Bloom filters with full scan (MR-Bloom-ScatterGather, 
MR-Bloom-MapKey, and MR-Bloom-Cascade). Despite this fundamental 
difference, both MR-Bitmap-Filter and MR-Bitmap were the only two that 
presented a constant performance for a number of reducers smaller than 
100 (Figs. 7 and 5).

Comparing MapReduce solutions based on full scan, the use of filters 
significantly reduced the computation time (compare blue and red bars 
in Fig. 8). For the MapReduce strategies, the use of optimizations im-

proved the elapsed time from 0.7% up to 50.7%. For the Spark strategies, 
the optimized full scan strategies showed an improvement in the perfor-

mance ranging from 7.0% to 37.9%. Considering all full scan strategies, 
the Spark algorithms outperformed those in MapReduce, reducing the 
computation time by a factor of between 15.8% to 69.5%.

For the remainder of the performance tests, we will only use the best 
two approaches based on full scan to compare with our proposed meth-
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Fig. 8. The proposed strategies SP-Bitmap, SP-Broadcast-Bitmap and MR-Bitmap (green bars) outperformed all full scan strategies for all queries with low selectivity. 
Strategy names follow Table 1. Red and blue bars refer to full scan approaches. Optimized approaches (blue bars) refer to the use of filters and broadcast (indicated 
at the last column of Table 1).
ods. Based on the results presented in this section, the two MapReduce 
strategies with computation times closest to that of our MR-Bitmap were 
the full scan strategies MR-Broadcast and MR-Bloom-MapKey. The Spark 
strategies with the computation times closest to that of our SP-Bitmap

and SP-Broadcast-Bitmap were the full scan SP-Bloom-Cascade and SP-

Broadcast.

5.4. Effect of query selectivity

Our strategies based on random access outperformed competitor 
strategies based on full scan when the query selectivity was below 
0.6% (Figs. 9a,c). In these experiments, for each framework (Spark and 
MapReduce) we compare our algorithms with the two full scan runner-

up approaches, as indicated at the end of Section 5.3. We fixed the 
dataset with SF=100 and used queries Q4.3, Q4.4, Q4.5 and Q4.6, 
which have increasing query selectivity values (Table 3). In the Spark 
framework, both SP-Broadcast-Bitmap and SP-Bitmap outperformed SP-

Bloom-Cascade and SP-Broadcast that use full scan for all query selectiv-

ities under 0.6% (Fig. 9a). When the query selectivity was below 0.2%, 
using the dBJI resulted in a performance gain ranging from 62% to 78%
with respect to the full-scan strategies. Similarly, the MR-Bitmap also 
outperformed MR-Broadcast and MR-Bloom-MapKey in the same region 
of values for the query selectivity (Fig. 9c). The best performance results 
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of MR-Bitmap were also with query selectivities below 0.2%, providing 
a performance gain ranging from up 67% to 74%. When query selec-

tivity was 0.56% (query Q4.6), SP-Broadcast-Bitmap trailed its full scan 
counterparts, SP-Bloom-Cascade and SP-Broadcast, by a factor of 1.6%. 
Additionally, SP-Bitmap and MR-Bitmap still outperformed their respec-

tive Spark and MapReduce counterparts but by a small margin.

5.5. Effect of block selectivity

In analogy to standard relational databases, solutions based on in-

dices tend to outperform other methodologies in a broader range of 
selectivity values (in some cases, at least up to 5% [18]). The discrep-

ancy between the range of selectivity in which random access solutions 
are preferred can be explained by two independent factors: (i) because 
the dBJI is a secondary index with loose binding, there is an addi-

tional overhead in the communication with the primary index; and (ii) 
because HBase performs sequential searches within the HFile blocks, 
while standard relational databases use offsets to locate a record within 
a data block. Hereafter, we define the fraction of blocks retrieved to 
solving a query as its block selectivity. Indeed, using the same queries 
and SF as in Section 5.4, the block selectivity in which our strategies 
based on indices outperformed those based on full scan ranged up to 
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Fig. 9. The proposed strategies based on random access (green markers), both 
for Spark and MapReduce, outperformed the two fastest full scan strategies 
(blue markers) when the query selectivity was smaller than 0.6%. (a,c) Perfor-

mance results as a function of query selectivity. (b,d) Performance results as a 
function of block selectivity.

Fig. 10. The performance of our strategies based on random access (green 
markers) outperformed the two fastest full scan strategies (blue markers) on 
a broader range of selectivity values when the database was sorted. (a,c) Per-

formance results as a function of query selectivity. (b,d) Performance results as 
a function of block selectivity.

Fig. 11. All strategies presented their best performances with a HFile block size 
of 64 KB, regardless of the query selectivity.

45% (Fig. 9b,d). This observation means that 45% of the total of HFile 
blocks were accessed.

Sorting the dataset by some of the query predicates reduced the 
block selectivity dramatically, consequently decreasing the computa-

tion time of our strategies based on random access (Fig. 10). We sorted 
the fact table according to the predicates of query Q4.4 (i.e., 𝑑_𝑦𝑒𝑎𝑟, 
𝑐_𝑟𝑒𝑔𝑖𝑜𝑛 and 𝑝_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦). With the database sorted, the block selectivity 
(Figs. 10b,d) decreased substantially (from 45% to 0.6%) and was com-

parable to the query selectivity (Figs. 10a,c). Furthermore, comparing 
results from Figs. 10(a,c) and 9(a,c) shows that our strategies based on 
random access became robust to a larger range of values of both query 
and block selectivities. On average, SP-Bitmap and SP-Broadcast-Bitmap

were 78% faster than SP-Bloom-Cascade and SP-Broadcast (Fig. 10a,b). 
MR-Bitmap also outperformed the best MapReduce strategies based in 
full scan by a factor between 44% and 74% (Fig. 10c,d).

5.6. Effect of block size

For methods based on random access, there exists a trade-off be-

tween a large block size (excessive readout) and a small block size 
(increased disk seeks and index complexity). Setting a block size in any 
of these extremes dropped the computation time of Star Joins by ap-

proximately 15% (Fig. 11). We report performance results with HFile 
block sizes of 8KB, 64KB and 256KB, using a dataset with SF=100 and 
queries Q4.3, Q4.4, Q4.5, and Q4.6. Regardless of the query selectiv-

ity, our algorithms SP-Bitmap and SP-Broadcast-Bitmap presented their 
best performances when the block size was 64KB. The performance of 
SP-Broadcast-Bitmap slightly dropped 14.6% when the block size was 
8KB (compared to a 64KB block size). This is due to the increase in the 
main memory required to store block indices and hash maps. Further-

more, the performance of SP-Broadcast-Bitmap and SP-Bitmap dropped 
16% when the block size was increased to 128KB (compared to a 64KB 
block size). This drop in performance was caused by the unnecessary 
amount of data read and increased sequential searches. For the smallest 
selectivity value (Fig. 11a), the performance gains of our algorithms re-

mained remarkably constant. Interestingly, the full scan strategies also 
presented their best performances with a block size of 64KB, regard-

less of the query selectivity. Because once the database is deployed the 
block size cannot be changed, this result is important to show that, re-
10
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Fig. 12. The performance of our proposed algorithms (green bars) presented a linear dependency with the scaling factor of the dataset.
gardless of the access method (full scan or random access), all strategies 
perform the best at the same block size.

5.7. Effect of the data volume

Regarding the scalability of our approaches, the performance of MR-

Bitmap, SP-Bitmap and SP-Broadcast-Bitmap remained linear with the 
Scaling Factor 𝑆𝐹 (Fig. 12). We report performance evaluations for 
query Q4.3, with a block size of 64KB and varying SF. The performance 
of our Spark solutions SP-Bitmap and SP-Broadcast-Bitmap remained re-

markably constant with respect to 𝑆𝐹 (Fig. 12a). Comparing the two 
full scan runner-up approaches, as indicated at the end of Section 5.3, 
both SP-Bitmap and SP-Broadcast-Bitmap outperformed by a factor be-

tween 83% and 94%. In MapReduce, our strategy MR-Bitmap outper-

formed both MR-Broadcast and MR-Bloom-MapKey by a factor between 
74% and 81% (Fig. 12b).

6. Conclusions

In this paper, we proposed a distributed Bitmap Join Index (dBJI) 
and an index-based distributed strategy to compute Star Joins that 
overcomes the lack of broad support to random access in available 
open-source distributed systems. Our solution is based on an archi-

tecture composed of two independent elements: a Processing Layer 
that performs massively distributed computation; and an Access Layer 
that delivers both full scan and random access on demand. The Ac-

cess Layer serves as a middleware that supports random access between 
the HDFS and processing frameworks (Spark and MapReduce, in our 
tests). Among all eleven alternative solutions tested, three were based 
on Spark [24], and eight were based on the MapReduce framework [21, 
22, 23, 27, 39, 41].

Our experiments showed that dBJI and an efficient processing al-

gorithm outperform alternative full scan solutions for queries with low 
selectivity (Fig. 8). In our implementation, the dBJI used HBase’s API 
to perform random access on HFiles and retrieve only the blocks that 
were pertinent to solve the query at hand. We noticed, however, that 
the HFile format slightly inflated the dataset, which had a small nega-

tive influence on the computation. The gain in computation time due 
to the dBJI, however, makes up for the additional delay due to the data 
inflation.

We also learned that a query optimizer should take into consider-

ation, in addition to the estimated query selectivity, the proportion 
of blocks to be accessed, namely the block selectivity, when deciding 
between random access and full scan. Indeed, the strongest impact in 
the computation time was observed when the block selectivity was sig-

nificantly reduced as a consequence of sorting the dataset (compare 
panels b and d from Figs. 9 and 10). Although this fact indicates that a 
large block size penalizes the computation time of the indexed strate-

gies probably due to the repeated sequential searches within blocks, 
computation time is also hurt by a block size too small. Therefore, a 
distributed file system’s block size should poise both of these opposing 
effects (as shown in Fig. 11) to deliver an optimal query performance. 
We also confirmed a pronounced increase in the performance of queries 
with predicates that involve an attribute sorted in the distributed file 
11
system (compare performance in Figs. 9 and 10). Thus, besides improv-

ing the performance, the range of block selectivity under which random 
access solutions were optimal became broader (Figs. 10). This indicates 
that the use of indices becomes more robust and is likely very favorable 
whenever predicates use sorted attributes.

As Star Joins are ubiquitous and expensive operations, our contri-

bution consists of a general strategy to handle low-selectivity queries 
and mitigate the absence of native methods for random access in, for 
instance, the Hadoop software family. There is, of course, much ground 
to be covered in terms of construction, optimization, and use of in-

dices to solve complex queries and analytical processes in the cloud. 
One strong candidate that offers native support to random access is the 
Apache Kudu [45], a distributed storage specialized in fast analytics. It 
provides an intermediary step between the fast capabilities provided by 
Apache Parquet [46] for full scans, and the nimble random access pro-

vided by HBase. In addition, Pilosa [47] is another open-source project 
that offers distributed bitmap indexing with the promise to accelerate 
queries of massive datasets. As the gap in support for random access hin-

ders further development of such a promising research area, the concept 
behind combining a secondary index with Access and Processing Layers 
can be extended to implement other kinds of indices (e.g., B-Trees) and 
operations (e.g., drill-down). Furthermore, many studies may directly 
or indirectly benefit from using proper random access in distributed 
systems, such as [41, 48], and our paper paves the way for such appli-

cations with minimal tailoring and tinkering. We believe that our ideas 
may contribute to foster discussion and collaborative efforts to create 
novel tools that are also openly available to the community.
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