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Microbiome spectra serve as critical clues to elucidate the evolution-
ary biology pathways, potential pathologies, and even behavioral
patterns of the host organisms. Furthermore, exotic sources of
microbiota represent an unexplored niche to discover microbial sec-
ondary metabolites. However, establishing the bacterial functional-
ity is complicated by an intricate web of interactions inside the
microbiome. Here we apply an ultrahigh-throughput (uHT) microfluidic
droplet platform for activity profiling of the entire oral micro-
bial community of the Siberian bear to isolate Bacillus strains
demonstrating antimicrobial activity against Staphylococcus aureus.
Genome mining allowed us to identify antibiotic amicoumacin A
(Ami) as responsible for inhibiting the growth of S. aureus. Proteo-
mics and metabolomics revealed a unique mechanism of Bacillus self-
resistance to Ami, based on a subtle equilibrium of its deactivation
and activation by kinase AmiN and phosphatase AmiO, respectively.
We developed uHT quantitative single-cell analysis to estimate anti-
biotic efficacy toward different microbiomes and used it to deter-
mine the activity spectra of Ami toward human and Siberian bear
microbiota. Thus, uHT microfluidic droplet platform activity profiling
is a powerful tool for discovering antibiotics and quantifying exter-
nal influences on a microbiome.
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The latest insights into microbiome revealed close links be-
tween the spectra of coexisting bacteria and progression of

several pathologies in human hosts (1–3). Microbiome spectra
turned out to be a viable marker of behavior and habits of Homo
sapiens and Neanderthals, as well as the environmental and histor-
ical conditions they lived in (4). The bactericide properties of
microbiome spectra and bacterial coexistence are becoming a hall-
mark of present-day biomedical investigations in humans (5, 6).
Scrutinizing the microbiota of a plethora of organisms is becoming a
mainstream of modern microbiology. The microbiota of wild, cap-
tive, and domesticated animals as well as birds, reptiles, and gene-
modified animal models (6–10) were analyzed, offering valuable
answers to the long-standing issues of biology. Microbiomes have
also come into the limelight of evolutionary studies (11).
The revolution in screening technologies complemented by

that of functional and structural analyses of large arrays of
microbiota species on a single-cell level (12) allows us to isolate
and characterize clones with different activities, such as micro-
bial killers, antifungi and antiparasite drugs, as well as probiotic
bacterial strains. Microbiota of wild animals is an under-
estimated resource for this type of screenings. The ability of wild
animals to thrive while surrounded by aggressive microorganisms
may be partially mediated by their microbiota, making this kind
of microbiota a potentially attractive niche for a targeted

screening of antibiotics and prospective probiotic strains. In this
work, we adjusted our ultrahigh-throughput (uHT) microfluidic
droplet platform (13) to perform functional screening of wild-
animal microbiota. Our platform allows for packaging the indi-
vidual bacterial clones in double emulsion droplets and screening
these microcompartments by FACS. This technique enables
functional screening of the cell libraries with an enormous bio-
diversity displaying productivity reaching 108 variants per hour.
The critical advantage of the system lies in the possibility of
microbiome functional profiling on a single-cell level.
Here we present the analyses of the microbiome collected

from East Siberian brown bear (Ursus arctos collaris) obtained
immediately after capture in the taiga. We aimed to screen this
microbiome resource and search for probiotics and physiologi-
cally active compounds. A Bacillus pumilus strain producing an
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unstable antibiotic amicoumacin A (Ami) was isolated, enabling
us to identify the B. pumilus Ami biosynthetic gene cluster and
discover a crucial role of Ami kinase/phosphatase in the regu-
lation of Ami production. We than applied uHT screening to
quantify the external influence on the microbiome diversity, thus
obtaining a detailed description of Ami activity spectra toward
human and Siberian bear microbiota.

Results
Microfluidic Selection of Antibiotic Activity. The saliva samples col-
lected from an oral cavity of the Siberian brown bear were screened

for bacteria inhibiting the growth of pathogenic Staphylococcus
aureus cells using a microfluidic platform (Fig. 1). It is based on
cocultivation of oral microbiota members with the target S. aureus
strain producing GFP reporter in droplets of microfluidic double
water-in-oil-in-water emulsion (MDE).
The combination of three independent fluorescent signals was

used to isolate MDE droplets by FACS. The isolated droplets had
to conform to the following criteria simultaneously; they exhibited
a high initial S. aureus load and a low S. aureus count after in
droplet cocultivation accompanied by the presence of live, meta-
bolically active cells. The overall throughput of this platform was
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Fig. 1. (A) Principal scheme of bacteria isolation demonstrating antimicrobial activity against the target S. aureus from oral microbiota of the Siberian bear
using the uHT microfluidic droplet platform. The isolated microbiota was coencapsulated with the target pathogen producing a GFP reporter. After in droplet
cocultivation, the bacteria were stained and sorted for isolating the droplets with a high initial target load, low GFP level, and high metabolic activity. (B) MDE
droplets with coencapsulated target S. aureus cells and microbiota species after in droplet cocultivation. (Scale bar: 50 μm.)
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Fig. 2. Amultiomics approach applied to discover the regulation of Ami production. (A) NGS and genomemining were used to identify Ami biosynthetic gene clusters.
Comparison of Ami biosynthesis gene clusters from producing the B. pumilus 124 strain (NCBI QENN00000000), nonproducing B. pumilus 123 strain (NCBI
QENO00000000), and the previously reported B. subtilis 1779 strain (18). Scale bar indicates protein identities. (B) Proteomics was used to determine the borders of the
Ami cluster. Differential profile of protein level in activated (F) and inactivated (N) conditions on a proteome level and Ami biosynthetic cluster. Scale bar indicates a fold
difference between F and N. (C) Metabolomics was used to confirm the biological functions of AmiN and AmiO. Ami activation via dephosphorylationwas observed after
amiN knockout and amiO heterologous expression in B. subtilis. (D) General scheme illustrating Ami interconversion by AmiN and AmiO and its spontaneous inactivation
by deamidation. AmiA (Ami) denotes amicoumacin A; AmiB and AmiC, amicoumacin B and C; and AmiA-P and AmiB-P, phosphorylated AmiA and AmiB, respectively.
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estimated to embrace 30,000 droplets per second, which enabled
deep probing of microbial community based on anti-S. aureus ac-
tivity. Several bacterial clones with anti-S. aureus activity were se-
lected and identified as Enterococcus casseliflavus, Weissella confusa,
and B. pumilus. These strains were not selected during the pre-
liminary standard testing of bear’s microbiota. This indicates a
substantial enrichment of bacteria displaying antagonistic properties
against S. aureus after uHT screening in MDE droplets. In what
follows, we focus on the isolated B. pumilus, as it was the most ef-
ficient inhibitor of S. aureus growth in a plate overlay assay.

Antibacterial Activity of B. pumilus Is Mediated by the Production of
Amicoumacin A. The isolated B. pumilus 124 strain displaying anti-
bacterial activity against S. aureus was analyzed for the biologically
active metabolites and found to produce Ami, an antibiotic pre-
viously discovered for Bacillus (14–16) and Xenorhabdus bovienii
(17). Whole-genome sequencing with a subsequent mining of the B.
pumilus 124 genome identified a hybrid PKS–NRPS cluster of Ami
biosynthetic genes. The identified cluster had a similar architecture,

but limited similarity to the previously described Ami cluster (18)
from Bacillus subtilis (Fig. 2A).
Using genome mining, we found the biosynthetic clusters re-

lated to Ami cluster (SI Appendix, Fig. S1), some of which were
previously described as responsible for producing the following
antibiotics: zwittermicin (19), paenilamicin (20), xenocoumacin
(21), and colibactin (22, 23) (Fig. 3).
The notable peculiarity of these clusters is the presence of a gene

coding the specific peptidase, activating cognate preantibiotics dur-
ing the export process. There is, however, an additional gene
encoding N-acetyltransferase AmiS inactivating Ami in the case of
Ami-like gene cluster from X. bovienii (17). The fact that amiS
homolog is absent in both B. pumilus 124 and B. subtilis 1779 strains
gave rise to an idea that Bacilli should have an alternative mecha-
nism of self-resistance. Hashimoto et al. (24) have reported the
presence of a phosphorylated Ami, produced by B. pumilus, and
demonstrated that the phosphorylated Ami is inactive. We found
two genes, amiN and amiO, encoding a putative kinase and an
alkaline phosphatase, respectively, adjacent to the core biosynthetic

Bacillus sp. FJA

Marininema halotolerans 

Pseudobacteroides cellulosolvens A

Paenibacillus sp. FJA

Clostridium puniceum 

Paenibacillus sp. 

Paenibacillus sp. 

Clostridium sp. 

Paenibacillus sp. 

Bacillus pumilus 

Bacillus subtilis 

Fulvivirga imtechensis 

Paenibacillus larvae SA

Chitinophaga sp. 

Paenibacillus macquariensis A

Xenorhabdus bovienii puntauvense

Bacillus bingmayongensis FJA

Paenibacillus sanguinis 

Paenibacillus sp. FJA

Niastella vici 

Brevibacillus brevis 

Paludifilum halophilum 

Escherichia coli 

Xenorhabdus nematophila 

Bacillus thuringiensis 

Paenibacillus larvae 

N
R'

O

O

N
O

NR
O

O

O

N

S 5

O

O

R N
N

N
O

O

O

O

4

R N
N

N
O

O

O

O

O

O

O

R N
N

N

O

O O

O

O

O

R N
N

N
O

O

O

O

O

O

O

N
N

N
N

N
N

N N
O

O

O

O

O

O

O

O
N

O

R

O
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genes of the Ami cluster and hypothesized that their products
may contribute to both self-resistance and Ami biosynthesis. The
tandem-mass spectral analysis was used to find molecular weight of
Ami derivates, namely the phosphorylated AmiA-P and AmiB-P
(Fig. 2D). It was shown that these compounds have exactly the
same mass value as described by Hashimoto et al. (24), where the
site of Ami phosphorylation by NMR was determined.

The Regulation of Ami Production in B. pumilus. The essential role of
genes amiA–amiM in Ami biosynthesis was previously demonstrated
through a homologous B. subtilis 1779 cluster (18); yet the mecha-
nism was not elucidated. Here we observe Ami production to be
inducible and regulated at several additional levels in B. pumilus.
Ami production was induced while cultivated in a thin layer without
shaking. Cultivation with limited aeration and shaking resulted in
more than a 20-fold decrease in Ami production, which was in-
sufficient to inhibit Staphylococcus (SI Appendix, Fig. S2). Meta-
bolomic analysis of B. pumilus 124 cultivated in “activated” (F) and
“inactivated” (N) conditions revealed that the inactive phosphory-
lated Ami derivatives were present exclusively inside the bacterial
cells, and absent in the culture medium. A dramatic difference in
Ami phosphorylation balance between F and N states was also
manifested, suggesting that Ami was efficiently inactivated via
phosphorylation in N conditions.
Ami production in F conditions entailed the formation of a

slimy film that was essential for inhibiting S. aureus during co-
cultivation (SI Appendix, Fig. S3). This biofilm enabled B. pumilus
to entrap S. aureus and restrict its growth and was further effi-
ciently attacked by DNase treatment. While biofilm production
was observed both for Ami-producing B. pumilus 124 and B.

pumilus 123 without the Ami cluster, only B. pumilus 124 inhibited
S. aureus growth (SI Appendix, Fig. S3).
We analyzed the proteome of B. pumilus 124 in cells cultivated

under the activated and inactivated conditions to reveal the
mechanism by which Ami synthesis is activated and regulated (Fig.
2B). We observed the increased levels of enzymes involved in de
novo inosine monophosphate (IMP) biosynthesis, peptidoglycan
synthesis and remodeling, as well as flagellum organization. We
speculate that the enzymes involved in peptidoglycan synthesis and
remodeling influence the process of biofilm formation, while the
improved flagella biosynthesis helps overcome an increased vis-
cosity and contribute to S. aureus entrapment. The protein levels
of AmiA–AmiM as well as AmiN, AmiO, and putative MFS family
major facilitator transporter AmiP were significantly higher upon
activation. Moreover, a drastic difference in the protein level was
documented in case of a putative Ami transporter AmiP, activating
peptidase AmiB and phosphatase AmiO (Fig. 2B).
Recombinant AmiN and AmiO were produced in Escherichia

coli (SI Appendix, Fig. S4). We observed a rapid phosphorylation of
Ami by AmiN in vitro using purified AmiN, while purified AmiO
dephosphorylated phosphorylated Ami (Ami-P). As expected, the
major difference between the minimum inhibitory concentration
(MIC) of Ami and Ami-P (0.25 and >100 μg/mL) was observed
using S. aureus reporter, indicating that Ami was inactivated via
phosphorylation and further reactivated by dephosphorylation.
The biological function of AmiN was elucidated using E. coli

BL21(DE3) and B. subtilis 168 surrogate hosts (SI Appendix, Table
S1). Transformation of E. coli with a plasmid encoding AmiN
conferred the resistance to Ami. B. subtilis 168 has an amiN ho-
molog (yerI) that also phosphorylates Ami, mediating natural
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B. subtilis resistance to the drug. A knockout of yerI made B. subtilis
susceptible to Ami (MIC 0.8 μg/mL) but its resistance was restored
after transformation with a plasmid expressing amiN.
Production of AmiO by B. subtilis 168 ΔyerI resulted in Ami-P

dephosphorylation (Fig. 2C). We did not observe any back-
ground phosphatase activity in B. subtilis even though it encodes
two homologous alkaline phosphatases 3 and 4, pointing at
AmiO specificity toward Ami-P.

Technique for uHT Profiling of Ami Activity in Different Microbiota
Sources. Differential levels of antibiotic resistance, growth rate,
and intricate interactions between members hamper analysis of
microbial communities. To devise a simple technique for uHT
profiling of external influence on microbiome, we developed a
method grounded in the MDE platform (Fig. 4A).
The main idea of this approach is based on cultivating the in-

dividual cells from microbiota samples together with antibiotic
inside MDE droplets. Subsequently, the droplets are stained for
metabolic activity, selected using FACS, and analyzed by NGS and
bioinformatic analysis. The single-cell in droplet cultivation abol-
ishes any effect of proximal bacterial clones and allows the use of
uHT of broad microbial biodiversity. To validate the procedure,
we determined the effects of Ami administration on the oral
microbiota from the Siberian bear and human fecal microbiota
from a patient with colitis and a healthy donor (Fig. 4B).
The composition of bear oral microbiota dramatically differs from

human oral microbiota and has much more in common with human
fecal microbiota (SI Appendix, Fig. S5). We observed that 83% of
bacteria were culturable in droplets (SI Appendix, Fig. S6). Cultiva-
tion of fast-growing species in droplets restricted their propagation to
MDE compartments, thus allowing assessment of minor microbiota
species that represent less than 0.1% of the initial population.

uHT screening of Ami activity brought about an increase in fre-
quency of some bacteria and a decrease in frequency of others (Fig.
5A), which enabled us to estimate susceptibility/resistance to Ami
for each particular bacterium in every microbiota sample (Fig. 5B).
Our estimations were confirmed using clinical isolates. We found
that the MIC ranges obtained using microbiota composition shifts
after a single-cell cultivation in MDE compartments were in
agreement with MIC of clinical isolates measured using the standard
assay (Fig. 5B). Furthermore, we observed a strong correlation be-
tween the values of composition shift (scores) and MIC measured
in vitro. This correlation analysis allowed us to predict the ranges of
MIC for each investigated bacterium (SI Appendix, Fig. S7).
Gram-negative Proteus mirabilis, Acinetobacter baumannii, Morga-

nella morganii, and Enterobacter cloacae were resistant, while Gram-
positive Macrococcus caseolyticus, Staphylococcus (except Staphylo-
coccus vitulinus),Aerococcus viridans, andW. confusa were sensitive to
Ami. Bacilli (B. subtilis, Bacillus licheniformis, and B. pumilus) were
also resistant, likely due to the presence of AmiN or its homologs.
The major components which were overrepresented in the patient
microbiota over the donor one (SI Appendix, Fig. S8), i.e., Entero-
coccus faecium and Bacteroides vulgatus, were also susceptible to Ami.
Hence, Ami-producing B. pumilus 124 may hold promise as a pro-
biotic for controlled remodeling of human gut microbiota.

Discussion
Exploration of uncommon microbiota sources appears to be a
promising approach to search for and select both antibiotics and
probiotics from wild nature. Classical microbiology, however, is
inefficient for deep functional profiling of entire microbiomes.
Here we show how microfluidic uHT screening technologies could
be applied for classical microbiological problems, i.e., antibiotic/
probiotic selection and susceptibility/resistance testing. The
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technological advantage of MDE encapsulation provides an op-
portunity of a single-cell manipulation and detailed ultrahigh-
throughput functional characterization of microbial communities.
Our technique enabled an efficient and straightforward single-

step isolation of bacteria displaying the desirable anti-S. aureus
activity from an exotic microbiota source. Subsequent meta-
bolomic analysis, sequencing, and genome mining revealed the
main active compound (Ami) and its biosynthetic cluster in the
genome of a promising probiotic candidate B. pumilus. When we
were analyzing the metagenomes of the bacteria selected after
uHT screening, we observed the amplification of numerous bac-
teria that were unculturable under the specific conditions of the
experiment. Although B. pumilus was selected by uHT screening
as a culturable component of bear microbiome, we believe that
this principle is particularly interesting as a source of data for deep
metagenome mining and selection of unexplored biosynthetic
clusters as well as for uHT analysis of unculturable species.
The selected Ami cluster from B. pumilus was characterized

using proteomics and heterologous expression, which revealed a
specific mechanism of Ami inactivation/activation via kinase AmiN
and phosphatase AmiO activity. We found that the Ami cluster is
present only in a few B. pumilus reference genomes; the presence
of amiN, however, is almost ubiquitous (SI Appendix, Fig. S9A). B.
pumilus have amiN and the Ami cluster in the same neighborhood
(Fig. 2A), while strains without the Ami cluster have a stand-alone
amiN homolog (SI Appendix, Fig. S9B). We hypothesize that stand-
alone AmiN-like kinases have a promiscuous specificity toward
Ami analogs (or related antibiotics like zwittermycin, Fig. 3), while
the bona fide AmiN is a dedicated enzyme that evolved for effi-
cient inactivation of and self-resistance to Ami.
AmiN homologs are found in numerous Bacillus species that

stress their functional significance (SI Appendix, Fig. S10).
Moreover, we found it in thermoactinomycete Paludifilum hal-
ophilum that also contains a homologous Ami cluster (Fig. 3). To
probe the effectiveness of a particular external influence on the
entire microbial community, we developed the uHT technique
based on a single-cell in droplet cultivation. The only limitations
of this method lie in in droplet cultivability and accuracy of
bioinformatic analysis. We observed, however, that the over-
whelming majority of bacterial species in our samples were cul-
turable in droplets and lending themselves well to the freely
available algorithms such as MetaPhlAn2. The spectrum of Ami
activity was analyzed using different microbiomes and quantita-
tive estimations of Ami activity on bacteria were made. We
found Ami to be especially active against Gram-positive bacteria.
Furthermore, it is active against some bacteria relevant to dys-
biosis, and we suppose that Ami-producing strains could be used for
controlled microbiota remodeling. Further investigations of this

approach, however, must be done in terms of its safety and efficiency
in vivo. Finally, we assume that the demonstrated approach is not
limited to bacterial communities and could be efficiently expanded to
the deep functional profiling of eukaryotic cells in applications such
as biomarker probing and chemotherapy resistance/efficiency
screening.

Materials and Methods
Selection of Bacteria Displaying Anti-S. aureus Activity. The detailed selection
procedure was previously described in ref. 13 and is specified in SI Appendix,
SI Materials and Methods.

Microbiota Collection and Storage. The study was approved by the Local Ethics
Committee of the Federal Research and Clinical Centre of Physical-Chemical
Medicine (FRCC PCM), conclusion No. 2017/02 from 13.04.2017. All donors
provided written informed consent.

NGS Sequencing. The selected MDE droplets were freeze dried and total DNA was
isolated using the QIAamp DNA Investigator Kit (Qiagen). Whole-genome amplifi-
cationwasperformedusing theREPLI-gSingleCellKit (Qiagen). For individual strains,
genomic DNA (100 ng for each sample)was disrupted into 400- to 550-bp fragments
using the Covaris S220 System (Covaris). Sequencing of librarieswas performed using
the genetic analyzer HiSeq2500, the HiSeq PE Cluster Kit v4 cBot and the HiSeq SBS
Kit v4 (250 cycles) (Illumina) according to themanufacturer’s instructions. For detailed
information please refer to SI Appendix, SI Materials and Methods.

Deep Profiling of Ami Activity. Different microbiota samples were serially coen-
capsulated with Ami to the final concentrations of 0, 10, and 100 μg/mL Ami inside
MDE droplets. Calcein Violet AM (Thermo Fisher Scientific) was added to the
droplet emulsion to the final concentration of 10 μM for metabolic activity
staining after 10 h of incubation at 35 °C. Following the incubation for 30 min at
room temperature, the droplets with Calcein Violethigh fluorescence (450/50-nm
filter) were sorted using a FACSAria III cell sorter (BD Biosciences). The collected
droplets were frozen in liquid nitrogen, freeze dried, and analyzed by whole-
genome sequencing, and bioinformatics resulted in quantification of bacteria in
samples (Fig. 5B). Bacteria distributions in samples with Ami were normalized to
the respective distribution in samples without Ami, resulting in shift fold calculated
for each bacterium in the sample (Fig. 5A). The natural logarithm of the shift fold
was defined as a score. Bacteria that have negative scores (depleted) at 10 μg/mL
Ami concentration were defined as susceptible (MIC < 10 μg/mL), positive
scores (increased) at 100 μg/mL as resistant (MIC > 100 μg/mL), and positive
scores at 10 μg/mL and negative scores at 100 μg/mL as intermediate (MIC =
10–100 μg/mL), respectively. Confidential intervals of MICs were predicted
using a linear regression between the scores and the mean values of MIC
measured in vitro for particular bacterial strains using bacterial collection.
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