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VEGF-B-induced vascular growth leads to
metabolic reprogramming and ischemia resistance
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Abstract

Angiogenic growth factors have recently been linked to tissue metab-
olism. We have used genetic gain- and loss-of function models to
elucidate the effects and mechanisms of action of vascular endothe-
lial growth factor-B (VEGF-B) in the heart. A cardiomyocyte-specific
VEGF-B transgene induced an expanded coronary arterial tree and
reprogramming of cardiomyocyte metabolism. This was associated
with protection against myocardial infarction and preservation of
mitochondrial complex I function upon ischemia-reperfusion. VEGF-B
increased VEGF signals via VEGF receptor-2 to activate Erk1/2,
which resulted in vascular growth. Akt and mTORC1 pathways
were upregulated and AMPK downregulated, readjusting cardio-
myocyte metabolic pathways to favor glucose oxidation and mac-
romolecular biosynthesis. However, contrasting with a previous
theory, there was no difference in fatty acid uptake by the heart
between the VEGF-B transgenic, gene-targeted or wildtype rats.
Importantly, we also show that VEGF-B expression is reduced in
human heart disease. Our data indicate that VEGF-B could be used
to increase the coronary vasculature and to reprogram myocardial
metabolism to improve cardiac function in ischemic heart disease.
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Introduction

Paracrine signaling between the major cell types in the heart

(cardiomyocytes, endothelial and smooth muscle cells, and fibro-

blasts) is important for normal cardiac development and function,

as well as for the remodeling and repair of damaged and diseased

myocardium (Tirziu et al, 2010; Doroudgar & Glembotski, 2011).

In physiological and compensated hypertrophy, there is a coordi-

nated regulation of cardiac growth, metabolism and coronary

angiogenesis (Shiojima et al, 2005; Sano et al, 2007; Tirziu et al,

2007), but the responsible signals and mechanisms are not fully

understood. Recently, a link between vascular endothelial growth

factor (VEGF), VEGF-B and regulation of tissue metabolism has

been established (Arany et al, 2008; Hagberg et al, 2010, 2012).

A better understanding of the factors that regulate myocardial

angiogenesis and metabolism could lead to the development of

new therapies for the treatment of heart failure, which is one of

the most common causes of morbidity and mortality in developed

countries.

Members of the VEGF family, comprising five mammalian pro-

teins, are major regulators of blood and lymphatic vessel develop-

ment and growth (Lohela et al, 2009). Until recently, VEGF-B has

been regarded as an exception in the family, as efforts to promote

angiogenesis with VEGF-B have given largely negative results

(Rissanen et al, 2003; Karpanen et al, 2008). VEGF-B is highly

expressed in cardiomyocytes; however, mice lacking VEGF-B are

viable and display mild cardiac phenotypes, such as a slightly

smaller heart size and dysfunctional coronary vasculature in one
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strain (Bellomo et al, 2000) and a prolonged PQ interval in the elec-

trocardiogram in another strain (Aase et al, 2001). On the other

hand, an overdose of VEGF-B via adenoviral delivery into the myo-

cardium transiently enlarged myocardial vessels (Lahteenvuo et al,

2009; Serpi et al, 2011), and ameliorated angiotensin II-induced dia-

stolic dysfunction (Serpi et al, 2011), while transgenic (TG) overex-

pression of VEGF-B in the rat myocardium induced cardiac

hypertrophy and growth of the epicardial and subendocardial coro-

nary vessels (Bry et al, 2010). Furthermore, adeno-associated virus

(AAV)-mediated administration of VEGF-B167 preserved cardiac

contractility in rats after experimental myocardial infarction (Zenti-

lin et al, 2010), as well as in dogs subjected to tachypacing-induced

dilated cardiomyopathy (Pepe et al, 2010). Interestingly, placenta

growth factor (PlGF), which binds to the same receptors as VEGF-

B, was recently shown to induce myocardial angiogenesis and car-

diac hypertrophy through an NO-dependent mechanism via the

Akt/mTORC1 pathway (Jaba et al, 2013). However, in another

report, PlGF only secondarily supported pressure-overload induced

cardiac hypertrophy through a paracrine mechanism via endothelial

cells and fibroblasts (Accornero et al, 2011).

Interestingly, VEGF-B and mitochondrial gene expression are

coordinately regulated (Mootha et al, 2003; Hagberg et al, 2010),

and endogenous VEGF-B levels are highest in tissues with high met-

abolic activity, such as the heart, skeletal muscle and brown adipose

tissue (Olofsson et al, 1996; Aase et al, 1999). The absence of

VEGF-B was reported to lead to decreased expression of fatty acid

(FA) transport proteins (Fatp3 and Fatp4) in endothelial cells, which

correlated with decreased lipid droplets in cardiomyocytes and skel-

etal muscle fibers (Hagberg et al, 2010), and improved insulin sensi-

tivity in diabetic models (Hagberg et al, 2012).

We show here that VEGF-B increases functional coronary vascu-

lature, reprograms cardiomyocyte metabolic pathways and protects

the rat heart from ischemic damage. In addition, we show that the

expression of VEGF-B is decreased in human heart disease.

However, in contrast to recent studies using VEGF-B deleted mice,

fatty acid uptake was not significantly changed in VEGF-B deficient

or VEGF-B overexpressing rats. Overall, our results indicate that

VEGF-B has therapeutic potential, as the cardiac hypertrophy

induced by VEGF-B does not progress into pathological cardiac

remodeling or heart failure even in aged rats, and the VEGF-B

induced hypertrophic and metabolic changes are beneficial in

myocardial ischemia.

Results

VEGF-B TG rats have a significantly enhanced functional
coronary vasculature

To study the effects of VEGF-B on the entire coronary arterial tree,

coronary arteries were filled ex vivo with a contrast agent and ana-

lyzed with high-resolution micro-computed tomography (lCT). This
revealed a striking increase in arteries of all sizes in the VEGF-B TG

hearts when compared to wildtype (WT) controls (Fig 1A and C).

The increase was about two-fold in arteries of <100 lm diameter,

whereas in the larger vessels (>150 lm), the increase was more than

five-fold. Since the increase in cardiomyocyte size and heart weight

was about 20–30% (Bry et al, 2010), this indicated an increased arte-

riole/cardiomyocyte-ratio. In addition, transmission electron micros-

copy revealed capillaries with increased diameter in the TG hearts

(Fig 1B and D), and scanning electron microscopy confirmed the

presence of large vessels in the subendocardium (Fig 1E).

The cardiac hypertrophy is physiological even in old
VEGF-B TG rats

The TG rats showed more arterialized vessels in the heart (Supple-

mentary Fig 1A), and an increased heart-to-body weight ratio com-

pared to WT rats already at postnatal day 8 (7.9 � 0.6 TG versus

4.7 � 0.1 mg/g WT, P = 0.00001). The increased heart-to-body

weight ratio was maintained in 2-month-old as well as in aged 22-

month-old rats (P = 0.001) (Supplementary Fig 1B). Echocardiogra-

phy revealed that the ejection fraction and fractional shortening were

maintained in the old TG rats, and the stroke volume was increased

(Supplementary Table 1). Maximal exercise capacity did not differ

significantly between the TG and WT rats (471 � 88 versus

412 � 83 m, respectively), and there were no differences in maximal

oxygen uptake or carbon dioxide production (Supplementary Fig 1C

and D). The amount of connective tissue was also similar in the WT

and TG rats at the respective time points (Supplementary Fig 1E).

To further determine the nature of the VEGF-B induced hyper-

trophy, we analyzed the expression of genes associated with patho-

logical remodeling. There were no differences between the

genotypes in Anp, Bnp, Myh6, Myh7 or ActA gene expression, or in

the Myh7/Myh6 ratio (Supplementary Fig 1F), confirming that the

hypertrophy was physiological rather than pathological. Among

exercise-induced transcription factors associated with hypertrophy

(Bostrom et al, 2010), only the RNA encoding CyclinD1 (Ccnd1)

was significantly upregulated in the TG rats (P = 0.006) (Supple-

mentary Fig 1G).

VEGF-B TG hearts are protected from ischemic damage

To study whether the increased vasculature seen in the VEGF-B TG

rats was functional and could provide protection from ischemic

myocardial damage, TG and WT rats were subjected to experimen-

tal myocardial infarction (MI). Echocardiography was performed

before ligation of the left coronary artery as well as 1 and 4 weeks

after the MI. The decrease in the ejection fraction and fractional

shortening as well as the increase in left ventricular systolic and

diastolic diameters as a result of the MI were markedly less severe

in the TG rats when compared to their WT controls both 1 and

4 weeks after the MI (Supplementary Fig 2A–C, P = 0.0001–0.02).

Positron emission tomography (PET) using 11C-acetate perfusion

showed a significantly smaller infarct region in the TG hearts

4 weeks after the MI (P = 0.0001, Fig 2A and B), while the non-

infarcted TG myocardium consumed less oxygen than the WT myo-

cardium (P = 0.02) (Fig 2C). Furthermore, the TG hearts showed a

better perfusion of the non-infarcted septum (P = 0.04, Fig 2D), and

a better residual perfusion of the infarcted and border areas

(P = 0.006, Fig 2E).

Post mortem and histological analysis of the hearts confirmed

that the infarct and scar tissue areas were smaller in the VEGF-B TG

hearts (Fig 2F and G). The remote myocardium in the TG hearts
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had an increased total arterial area and larger capillaries than the

WT hearts (Supplementary Fig 2D–H), similarly to what was

observed in non-infarcted hearts. The scar tissue in the infarcted

TG hearts also had fewer myofibroblasts than in the WT hearts

(Supplementary Fig 2I and J). In line with the perfusion data, the

TG rat hearts also had more arteries in the border areas of the

infarction scars (13.2 � 1.8 versus 8.2 � 0.8 arteries/field,

P = 0.013).

VEGF-B protects cardiomyocyte mitochondria from ischemia/
reperfusion injury

Since the coronary vasculature was enhanced in the VEGF-B TG

hearts, we assessed the myocardial area-at-risk (AAR) upon coro-

nary artery ligation as well as the infarct areas 24 h after the MI.

The AAR was comparable in the WT and TG hearts, but there was a

trend towards smaller scars in TG hearts already 24 h after ligation

A B

C

E

D

Figure 1. Increased coronary vasculature in aMHC-VEGF-B TG rats.

A Representative arterial lCT images of WT and TG hearts at 3 months of age.
B Transmission electron micrographs (TEM) of WT and TG hearts. TG rats had numerous large capillaries and microvessels (asterisks). Arrowheads indicate erythrocytes

of the same size in both groups. Scale bars = 20 lm.
C Quantification of the number of vessels of various sizes from two-dimensional transverse lCT images.
D Quantification of the relative percentages of subendocardial capillaries of different sizes from the TEM images. The number of rats used is shown in the columns.
E Scanning electron microscopic images of vascular casting. Note several large vessels in the subendocardium of the VEGF-B TG hearts.

Data information: Data are shown as mean � s.e.m. (Student’s t-test). This figure is accompanied by Supplementary Fig 1.
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(Fig 2H and I). Thus, although the initial ischemic insults were

comparable in size, the TG cardiomyocytes were better protected

from ischemic damage. There were no differences in the inflamma-

tory response in the infarct/border area 24 h or 4 weeks after the

MI, but in the remote myocardium expression of CD68 (macrophag-

es) was significantly higher in TG rats 4 weeks after the MI (2.8–fold

upregulation, P = 0.0003).

To assess the potential protective mechanism of VEGF-B in

cardiomyocytes, we performed an ischemia/reperfusion (I/R)

experiment, which mimics therapeutic reperfusion in human

patients. The hearts were subjected to ischemia by ligating the left

anterior descending (LAD) coronary artery for 30 min, followed by

reperfusion for 2 h. Mitochondrial function was analyzed from the

ischemic areas using carbohydrate and FA substrates. Mitochondrial

respiratory chain complex I activity was significantly better main-

A B

C

F

H I

G

D E

Figure 2. Infarct size and cardiac perfusion in VEGF-B TG and WT rats.

A Representative PET images and polar maps of the left ventricle (LV) myocardial
perfusion using 11C-acetate 4 weeks after theMI (***P = 0.0001).

B Quantification of the MI size in 11C-acetate PET perfusion images.
C Oxygen consumption measured by 11C-acetate PET in the non-infarcted

myocardium (*P = 0.016)
D Perfusion in non-infarcted myocardium (*P = 0.046)
E Residual perfusion in infarcted and border areas (**P = 0.006).
F Masson’s trichrome staining of heart sections 4 weeks after the MI.
G Quantification of scar tissue area in the endocardial side

(***P = 6.1 × 10�6) or epicardial plus endocardial sides
(***P = 7.5 × 10�6).

H, I (H) Area-at-risk (AAR) and (I) infarct area in relation to AAR were evaluated
by Evans blue perfusion and TTC staining 24 h after MI. The number of
rats used is shown in the columns.

Data information: Data are shown as mean � s.e.m. (Student’s t-test). This
figure is accompanied by Supplementary Fig 2.

A

B

C

D

Figure 3. Mitochondrial complex I function is maintained in TG hearts
after ischemia/reperfusion.

A Mitochondrial respiration with carbohydrate substrates.
B Flux control ratios normalized for physiological non-coupled respiration

(ETS) with carbohydrates.
C Mitochondrial respiration with palmitoylcarnitine as a substrate.
D Flux control ratios with palmitoylcarnitine.

Data information: Data are shown as mean � s.e.m. (Student’s t-test), N = 4
WT + 5 TG. (MPG = malate, pyruvate, glutamate; CytC = cytochrome C;
Suc = succinate; FCCP = carbonilcyanide p-triflouromethoxyphenylhy-
drazone; Rot = rotenone; MPal = malate, palmitoylcarnitine;
Glu = glutamate; CI/II = complex I/II; ETS = electron transfer system).
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tained in the TG hearts using both carbohydrates and FAs, providing

strong evidence that VEGF-B protected cardiomyocyte mitochondria

during the I/R stress (Fig. 3). In basal conditions, there were no

differences in mitochondrial function between the WT and TG hearts.

VEGF-B deficient rats have normal vasculature in the heart

In order to study the effects of VEGF-B deficiency in rats, we

generated a VEGF-B knockout (KO) rat model. The construct and

verification of the model is presented in Supplementary Fig 3.

There was no difference in the body weight or weight of the

heart, lung, liver, kidney, epididymal fat pads or interscapular

brown adipose tissue between WT and KO rats at 8 weeks of age.

Furthermore, the capillary diameter (6.1 � 0.1 versus 6.3 �
0.2 lm), capillary density (1313 � 34 versus 1224 � 35 capillar-

ies/field) and average arterial size (87 � 6 versus 85 � 7 lm2)

and number (5.7 � 0.6 versus 6.2 � 1.0 arteries/field) were simi-

lar between the WT and KO hearts. The KO rats and controls

were also subjected to MI, where no differences in cardiac

function could be seen during a 16-week follow-up. Interestingly

however, in histochemical analyses 16 weeks post-MI, the two-

dimensional infarct size was significantly larger in KO compared

to WT rats (43.4 � 3.6% of endocardial length in KO versus

23.8 � 4.8% in WT, P = 0.004 and 58.7 � 3.5% of epi- and endo-

cardial length in KO versus 36.3 � 3.6% in WT, P = 0.0005),

suggesting mild dysfunction of the vasculature in KO rat hearts in

this pathological setting.

AAV-VEGF-B administration mimics the effects of the
VEGF-B transgene

To address the therapeutic potential of VEGF-B, we analyzed

if the phenotype of the VEGF-B TG hearts is reproducible via

AAV-gene transfer to adult rats. We confirmed VEGF-B expression

in the heart by immunofluorescence staining and western blotting

after AAV-VEGF-B administration via a tail vein (Fig 4A). A signif-

icantly increased heart-to-body weight ratio was observed when

the vector was expressed for 2 months in female rats or 4 months

in male rats (Fig 4C). As in the TG hearts, the AAV-VEGF-B trans-

duced hearts also had larger capillaries and a maintained capil-

lary-to-cardiomyocyte ratio (Fig 4B, D and E). Importantly, lCT
imaging confirmed an approximately 2.5-fold increase in the

number of coronary arteries of 100–240 lm in diameter in AAV-

VEGF-B hearts compared to AAV-human serum albumin (HSA)

hearts (Fig 4F).

Quantification of leukocytes by CD45-immunostaining (21.6 �
5.2 cells/field in AAV-VEGF-B versus 19.0 � 4.4 cells/field in

AAV-HSA hearts, P = 0.84) or ED-1 -positive macrophages

(P = 0.86) did not reveal increased inflammatory cells in AAV-

VEGF-B hearts. Furthermore, AAV-VEGF-B and AAV-HSA injected

rats showed no differences in a spectrum of clinical serum param-

eters including blood electrolytes, glucose, lipoproteins or liver

enzymes.

Upregulation of blood vasculature development pathways in
VEGF-B overexpressing hearts

Genome-wide RNA microarray analysis identified 244 signifi-

cantly upregulated and 40 downregulated genes, which were

found in both VEGF-B TG and AAV-VEGF-B hearts (Supple-

mentary Table 2). Functional clustering revealed that the most

significantly upregulated gene ontologies were related to blood

vessel growth and angiogenesis, which supports the observed

A

B

C

F

ED

Figure 4. AAV-VEGF-B induces cardiac hypertrophy and increased
capillary size and number of arteries in adult rats.

A Immunofluorescence staining of VEGF-B in the myocardium 2 months
after systemic administration of AAV-VEGF-B.

B Representative images of RECA-1 staining for endothelial cells.
C Quantification of heart-to-body weight ratios two (females, *P = 0.046)

and four (males, *P = 0.043) months after the treatment.
D, EQuantification of the capillary size (females *P = 0.0016, males *P = 0.033)

and density (CMC, cardiomyocyte; n.s., not significant;
P = 0.06).

F Quantification of lCT analysis of the arterial tree in AAV-VEGF-B treated
and control hearts, *P < 0.05.

Data information: Data is shown as mean � s.e.m (Student’s t-test). Scale
bars = 100 lm.
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A B

C

ED

Figure 5. VEGF-B induces angiogenic gene expression and Erk1/2/Akt/mTORC1 signaling by potentiating the effects of VEGF.

A Venn-diagram and functional clustering of genes upregulated by VEGF-B (N = 6 + 6 in both experiments).
B mRNA expression of genes involved in the Notch signaling pathway. TG versus WT Dll4 *P = 0.046, Jag1 **P = 0.009, Notch4 *P = 0.017, Notch1 *P = 0.016; AAV-

VEGF-B versus AAV-HSA Dll4 *P = 0.033, Jag1 P = 0.14, Notch4 *P = 0.031, Notch1 *P = 0.037.
C In vivo signal transduction 10 min after i.v. injection of VEGF to VEGF-B KO and TG mouse hearts and to VEGF-B KO, TG and WT rat hearts. VEGF induced

phosphorylation of VEGFR-2 and Erk1/2; however the effect was stronger in VEGF-B TG mice than VEGF-B KO mice and in WT rat than in KO rats. A stronger effect
was also seen in TG rats compared to WT rats. FC = fold-change.

D Representative immunoblots of cardiac protein extracts probed with antibodies against phosphorylated and total Erk1/2, p38, Akt, S6K1, rpS6 and P-4EBP1.
E Densitometric quantification of the blots. All signals were normalized to total protein (AU: arbitrary units) and the exact p-values are reported in the text. *P < 0.05,

**P < 0.01, ***P < 0.001.
Data information: Data are shown as mean � s.e.m. The number of hearts analyzed is indicated in the bars (Student’s t-test). This figure is accompanied by
Supplementary Figs 3 and 4.
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vascular phenotype of the rats (Fig 5A and Supplementary

Table 3). Furthermore, the Notch signaling pathway and tran-

scripts involved in the regulation of calcium transport and actin

binding were upregulated in the TG and AAV-VEGF-B hearts

(Fig 5B).

VEGF-B increases VEGF–VEGFR-2 signal transduction in the heart

In order to explore the mechanistic basis for the VEGF-B signals, we

stimulated VEGF-B KO and TG mouse hearts with VEGF165 protein

via tail vein injection. We detected increased VEGFR-2 and Erk1/2

phosphorylation in the VEGF-B TG hearts when compared to the

VEGF-B KO hearts after 10 min of VEGF stimulation (Fig 5C and

Supplementary Fig 4A), suggesting that an excess of VEGF-B in the

heart allowed more VEGF to bind to and activate VEGFR-2. We fur-

thermore confirmed that VEGF stimulated more Erk1/2 phosphory-

lation in the TG compared to WT and in WT compared to KO rat

hearts (Fig 5C).

VEGF-B induces activation of Erk1/2, Akt, and mTORC1 pathways

The downstream signaling of VEGF-B has not previously been stud-

ied in detail. Protein homogenates from the left ventricle of the TG

rat hearts were analyzed for major growth factor signal transduc-

tion pathways (Fig 5D and E). Overexpression of VEGF-B induced

strong Erk1/2 (Thr202/Tyr204) phosphorylation (P = 0.0097),

whereas no change was observed in p38 Thr180/Tyr182 or Akt Ser473

phosphorylation. However, phosphorylation of Akt at Thr308

(P = 0.02) and of the downstream components of the mTORC1

pathway S6K1 (Thr389) (P = 0.0004) and rpS6 (Ser240/244 and

Ser235/236) (P = 0.002 and 0.001) were significantly increased in the

VEGF-B TG hearts. Phosphorylation of Akt at Ser473 and at Thr308 is

considered to reflect the activation of mTORC2 and mTORC1,

respectively (Shiojima & Walsh, 2006). There was also a trend

towards increased 4EBP1 phosphorylation (P = 0.06) in the TG

hearts. Immunohistochemistry further showed strong phosphoryla-

tion of rpS6 in arterial smooth muscle cells in the TG hearts, and a

somewhat increased signal in the capillary endothelium and in the

cardiomyocytes (Supplementary Fig 4C). These results indicate that

VEGF-B signaling engages major regulators of cell growth and

metabolism.

Soluble VEGFR-2 inhibits the VEGF-B-induced
capillary enlargement

We have previously shown that VEGFR-1 tyrosine kinase activity

plays a role in the VEGF-B–induced myocardial hypertrophy (Bry

et al, 2010). To investigate the role of VEGFR-2, we conducted a

VEGF-blocking experiment using soluble (s) VEGFR-2 coupled with

VEGF-B overexpression in mice. Administration of an AAV encoding

sVEGFR-2 did not significantly affect the hypertrophy induced by

AAV-VEGF-B, but it blocked the enlargement of capillaries (Fig 6A

and B). Interestingly, by immunostaining and staining for beta-

galactosidase activity in heterozygous VEGFR-2/LacZ mice, we

found that both VEGFR-1 and VEGFR-2 are present in myocardial

capillaries whereas only VEGFR-1 is present in the coronary arteries

(Fig 6C). AAV-mediated administration of mouse VEGF-B186

increased expression of the arterial marker Dll4 when combined

with an empty vector, but not when co-injected with AAV-sVEGFR-

2, indicating that sVEGFR-2 affected also the VEGF-B induced

arteriogenic response (Fig 6D).

A

B

C

D

Figure 6. Blocking VEGF-VEGFR2 signaling inhibits VEGF-B induced
capillary enlargement.

A Serum levels of VEGF-B186 (B186) and soluble VEGFR-2 (sR2) 4 weeks after
AAV injections.

B Effect of soluble VEGFR-2 and VEGF-B alone or in combination. Note that
sR2 does not seem to change the VEGF-B induced heart-to-body weight –
ratio but blocks the increase in capillary diameter induced by VEGF-B.
***P < 0.0001, **P = 0.002 compared to controls #P = 0.014 compared to
VEGF-B186.

C Beta-galactosidase staining of the VEGFR-2/LacZ mouse heart. Note
VEGFR-2 expression in capillary endothelium but not in arteries (arrow) or
cardiomyocytes. Double staining for VEGFR-1 (red) and VEGFR-2 (green) in
mouse heart. Note expression of both in the capillary endothelium but
only VEGFR-1 in the arterial endothelium (arrows). Scale bars 50 lm.

D Dll4 mRNA expression, used as an arterial marker in the heart.
**P = 0.003, *P = 0.02, n.s. = non-significant.

Data information: Data are shown as mean � s.e.m. (one-way ANOVA with
LSD post hoc test).
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VEGF-B-induced hypertrophy is not dependent on
nitric oxide signaling

A recent publication indicates that PlGF induces cardiac hypertro-

phy via a nitric oxide (NO) mediated mechanism (Jaba et al, 2013).

To test if this mechanism applies to the VEGF-B induced cardiac

growth, we administered AAV-mVEGF-B186 to endothelial nitric

oxide synthase (eNOS) deficient mice as well as to mice treated with

the NOS inhibitor L-NAME. Interestingly, blocking NO production

did not have any effect on VEGF-B-induced cardiac hypertrophy

(Supplementary Fig 5).

VEGF-B overexpressing hearts shift from fatty acid to glucose
oxidation pathways

To our surprise, the most significantly downregulated gene cluster

in the VEGF-B transgenic hearts comprised genes that function in

fatty acid metabolism (Supplementary Table 4). Gene Set Enrich-

ment Analysis (GSEA) of unfiltered data from both the TG and AAV

sample sets confirmed this result (Fig 7A and B). In contrast, most

of the intermediate products of glycogen breakdown and glycolysis

were increased in the VEGF-B TG hearts when compared to WT

hearts (Supplementary Fig 6). To further analyze the mechanisms of

A

C

F G

D E

B

Figure 7. VEGF-B induced metabolic changes in the heart.

A Venn-diagram and functional clustering of genes downregulated by VEGF-B (N = 6 + 6 in both experiments). Functional clustering showed that most of the forty
genes downregulated in both TG and AAV-VEGF-B hearts are related to fatty acid metabolism.

B Heat map from the GSEA analysis, showing significant downregulation of genes related to fatty acid degradation in both AAV-VEGF-B and VEGF-B TG hearts.
C Malonyl-CoA content was significantly increased in TG hearts. *P = 0.005
D AMPK phosphorylation (*P = 0.019) and perilipin 5 expression (***P = 3.8 × 10�5) were significantly reduced in TG hearts, whereas the expression of fatty acid

synthase (FASN) was increased (*P = 0.022). There was no change in pyruvate dehydrogenase kinase 4 (PDK4), PGC-1a or cytochrome c (CytC). Fold change (FC)
shows the relative expression in the TG hearts compared to the WT hearts (N = 6 + 6).

E Triglyceride content was reduced in the TG hearts (**P = 0.007) but not changed in the KO hearts. Expression of metabolic genes in TG (F) and KO (G) hearts
compared to their respective controls.

Data information: Data are shown as mean � s.e.m. (Student’s t-test). This figure is accompanied by Supplementary Fig 6.
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the metabolic adaptation in the VEGF-B TG hearts, we studied the

expression of several key genes and proteins related to metabolic

regulation. Phosphorylation of AMPK was significantly reduced in

the TG hearts and in WT hearts after acute VEGF and VEGF-B stimu-

lation (Fig 7D and Supplementary Fig 4B). There was also a trend

towards decreased acetyl-CoA carboxylase phosphorylation. This

was accompanied with increased malonyl-CoA levels and decreased

malonyl-CoA decarboxylase (Mlycd) RNA expression together with

increased fatty acid synthase (FASN) protein expression in the TG

hearts (Fig 7C, D and F). These changes indicated that decreased

fatty acid oxidation and increased lipid/macromolecule synthesis

support the cell growth associated with the cardiac hypertrophy and

vessel growth.

Fatty acid uptake is not altered in VEGF-B TG or KO hearts

Despite the decreased expression of beta-oxidation genes, the

levels of long-chain free FAs and triglycerides were lower in the

TG than in the WT hearts (Fig 7E and Supplementary Table 5).

This was supported by the finding that one of the most down-

regulated RNAs in the microarray analysis of the TG hearts was

perilipin 5. This major lipid droplet coating protein was

decreased also in western blotting analysis (Fig. 7D). There

were no differences in total tissue cholesterol (4.0 � 0.1 lmol/

mg in WT versus 4.1 � 0.2 in TG), phospholipid levels

(10.4 � 0.5 lmol/mg in WT versus 10.3 � 0.9 in TG), or serum

free fatty acid and triglyceride levels. Co-expression of Vegfb

RNA and various RNAs encoding mitochondrial proteins has

been reported in large data sets (Mootha et al, 2003; Hagberg

et al, 2010). However, VEGF-B did not seem to affect mitochon-

drial biogenesis, as PGC-1a and cytochrome c protein levels

were similar in the WT and TG rat hearts (Fig 7D). In agree-

ment with previous reports, we observed decreased fatty acid

transport protein 4 (Fatp4/Slc27a4) mRNA levels in the KO

hearts and increased levels in the TG hearts (Hagberg et al,

2010), but no change in Fatp1 or Fatp3 expression in either

model (Fig 7F, G).

Since loss of VEGF-B has been reported to decrease the uptake

of FAs in the mouse heart and skeletal muscle (Hagberg et al,

2010), we tested if FA uptake was affected in the TG and KO rat

models. We did not observe a decrease in 14C-oleate or 14C-palmi-

tate uptake in the KO rats nor an increase in the TG rats 24 h

after ingestion of the radioactive FAs (Fig 8A, B). Using tail vein

injection of labeled glucose and FA, we found increased glucose

uptake in the TG hearts compared to the WT hearts 30 min after

injection, whereas there was no significant difference in FA

uptake (Fig 8C).

Vascular remodeling precedes the metabolic changes

In order to see if the metabolic changes in the VEGF-B trans-

duced hearts are mediated directly or represent adaptation to

long-term transgene expression, we overexpressed VEGF-B for

2 weeks in rats using the AAV-vector. Analysis at this time point

showed enlarged myocardial capillaries (48% increase, P = 0.007)

and microarray analysis indicated increased expression of angio-

genic genes similarly as in the longer-term experiments. At this

early timepoint, the heart-to-body weight-ratio was not yet

significantly changed, but there was a 10% increase in the cross-

sectional area of cardiomyocytes in the AAV-VEGF-B hearts

(P = 0.01). However, no change was observed in the metabolic

gene expression patterns, including Fatp3 and Fatp4. We also

analyzed the FA and glucose uptake 2 weeks after AAV-VEGF-B

administration. There was no significant difference in the uptake

of either substrate between the AAV-VEGF-B and control hearts

(214 � 25 dpm/mg 3H-2DG in WT versus 151 � 37 in TG,

P = 0.23 and 124 � 5 dpm/mg 14C-OA in WT versus 76 � 43 in

TG, P = 0.34).

A

B

C

Figure 8. No difference in fatty acid uptake in the VEGF-B TG or KO rat
hearts.

A 14C-oleate and 14C-palmitate uptake in the heart and skeletal (soleus)
muscle of TG or

B KO rats 24 h after oral gavage. Note the slightly increased uptake in KO
soleus muscle, *P = 0.011.

C Glucose uptake and oleate uptake 30 min after tail vein injection of
substrates. *P = 0.035.

Data information: Data are shown as mean � s.e.m. (Student’s t-test).
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Myocardial VEGF-B expression is decreased in heart failure

Decreased expression of VEGF-B was observed in mice treated for

2 weeks with angiotensin II (Fig 9A), which provides a model of

pathological cardiac hypertrophy. To further explore the transla-

tional potential of our findings, we analyzed VEGF-B expression in

diseased human myocardium. The results from two independent

data sets indicated that VEGF-B expression is significantly decreased

in both ischemic heart disease and dilated cardiomyopathy com-

pared to non-failing hearts (Fig 9B and C).

Discussion

In this study, we show that VEGF-B dramatically expands the coro-

nary arterial tree and increases functional coronary reserve, accom-

panied by cardiac hypertrophy and increased glucose uptake.

Together, these changes provided significant cardiac protection

against ischemic damage. Importantly, the cardiac function in

VEGF-B TG rats was maintained even in old age, and the hypertro-

phy did not advance to heart failure.

The increase in functional coronary arterial reserve observed

in lCT imaging of the VEGF-B TG hearts is striking, revealing at

least a doubling of the number of arteries of all size classes. At

the capillary level, the vessel diameter was increased, but the

capillary-to-cardiomyocyte ratio was not affected. It is interesting

that the effect was strongest in the larger arteries, which are

mainly affected in coronary artery disease, whereas PlGF was

recently reported to primarily increase capillary density and arteri-

olar branching, along with cardiac hypertrophy (Jaba et al, 2013).

Importantly, in contrast to the hypertrophy induced by PlGF,

blocking NO signaling did not affect the VEGF-B induced cardiac

hypertrophy.

Systemic delivery of the AAV-VEGF-B vector to adult rats

resulted in strong VEGF-B expression in the heart, and reproduced

both the vascular and hypertrophic phenotypes. These results,

together with the observation that the long-term expression does

not have adverse effects on cardiac function, are important for the

possible future use of VEGF-B as a therapeutic agent in ischemic

cardiovascular diseases. Angiogenesis has been shown to be

crucial for physiological (adaptive) hypertrophy, as disruption of

coordinated tissue growth and angiogenesis leads to heart failure

(Shiojima et al, 2005; Sano et al, 2007). The fact that even the

aged VEGF-B TG rats showed preserved cardiac function in spite

of the long-term hypertrophy indicates coordination of the vascu-

lar and cardiomyocyte growth, emphasizing the importance of

endothelial cell – cardiomyocyte crosstalk. The outcome was dif-

ferent from that observed in TG mice, which develop cardiac

hypertrophy but lack an arteriogenic phenotype, eventually devel-

oping cardiomyopathy (Karpanen et al, 2008). In the mice the

transgene encoded only the isoform VEGF-B167, whereas in the

rats the whole genomic construct encoding both 167 and 186 iso-

forms was used. The biggest difference we have observed between

mice and rats is in the VEGF-B–induced arteriogenesis, which may

reflect species and/or strain specific differences in collateral artery

formation. Indeed, enlargement of myocardial capillaries was seen

in both species and already after 2 weeks of VEGF-B expression in

the rats. It is conceivable that the expansion of the arterial tree in

the TG rats results from increased pulsatile fluid shear stress

initially caused by distal capillary enlargement (reviewed in

Schaper, 2009).

Following the MI, the infarct areas were significantly smaller in

the VEGF-B TG than in the WT rat hearts although the areas-at-risk

after ligation were similar. Also, despite the fact that blood perfu-

sion in the VEGF-B TG and WT hearts was similar in the basal state

(Bry et al, 2010), the VEGF-B TG hearts had better perfusion in the

non-infarcted myocardium and border region after MI, indicating

that the significance of the improved coronary collateral reserve and

associated changes in substrate utilization becomes apparent in

pathological settings. Mechanistically, at least part of this protection

Figure 9. VEGF-B expression is reduced in diseased human myocardium
and in angiotensin II treated mouse hearts.

A Cardiac VEGF-B expression in mice treated for 2 weeks with angiotensin
II compared to control mice (Student’s t-test).

B, C VEGF-B expression in ischemic heart disease (IHD) and dilated
cardiomyopathy (DCMP) compared to non-failing hearts in two
independent datasets (B: Leiden C: Helsinki).

Data information: Data is shown as mean � s.e.m. (one-way ANOVA with
Dunnett’s post hoc test). The number of patients/mice in each group is
indicated in the bars.

EMBO Molecular Medicine Vol 6 | No 3 | 2014 ª 2014 The Authors

EMBO Molecular Medicine VEGF-B reprogramming of the myocardium Riikka Kivelä et al

316



was shown to arise from the maintained function of mitochondrial

respiratory chain complex I in the TG hearts after ischemia/reperfu-

sion injury. It should be mentioned here that defects in complex I

function have been linked to the development of heart failure in

both animal and human studies (Lemieux et al, 2011; Karamanlidis

et al, 2013).

Some previous studies have also suggested a protective role for

VEGF-B in the heart (Lahteenvuo et al, 2009; Serpi et al, 2011).

However, the adenoviral-mediated expression of VEGF-B used in

these studies is robust and transient, and its effects were modest

compared to our present findings after MI. Zentilin et al (2010)

reported that AAV-VEGF-B167 has direct antiapoptotic effects on

cardiomyocytes following experimental myocardial infarction in rats

but no obvious vascular phenotype. The various VEGF-B studies

thus suggest distinct but complementary roles for VEGF-B in the

maintenance of cardiac contractility and coronary perfusion, and

our present study indicates mechanisms involving enhanced coro-

nary vasculature and metabolic reprogramming.

We did not observe any vascular phenotype in the hearts of the

VEGF-B KO rats. In addition, VEGF-B deficiency did not affect

cardiac function, even after MI. However, the infarct scars were

two-dimensionally larger in the KO hearts, which might reflect

coronary artery dysfunction similarly to that previously reported for

VEGF-B KO mice (Bellomo et al, 2000). These data point to compen-

satory mechanisms for the maintenance of the vasculature both

during development as well as postnatally, at least with constitutive

gene-deletion.

Several major signaling pathways were activated downstream of

VEGF-B in the heart, including the Akt/mTORC1 and Erk1/2 MAPK

pathways, known to be associated with e.g. cardiomyocyte growth

and arteriogenesis (Ren et al, 2010; Rose et al, 2010; Sussman

et al, 2011). Downstream of Erk1/2 and Akt (T308), VEGF-B acti-

vated the mTORC1 complex, which is an important metabolic

node involved in the development of cardiac hypertrophy

(Shiojima & Walsh, 2006). The mTORC1 pathway has been related

to the regulation of protein synthesis, cardiac function, myocardial

response to stress, and myocyte survival (Zhang et al, 2010), and

it has been shown to be activated by physiological hypertrophy

and inactivated by pressure overload (Kemi et al, 2008). Interest-

ingly, VEGF-B also decreased AMPK phosphorylation. Recently in

another study, increased MAPK and decreased AMPK signaling

were related to protection from ischemia-reperfusion injury

(McLean et al, 2013). However, activation of AMPK has been

shown to play an important role in the myocardial response to

ischemia, pressure overload, and heart failure (recently reviewed

by Zaha & Young, 2012).

Decreased phosphorylation of VEGFR-2 and Erk1/2 was

observed upon intravenous administration of VEGF to VEGF-B KO

rats and mice when compared to the corresponding TG or WT ani-

mals. This suggests that at least some of the effects of VEGF-B are

mediated indirectly by VEGF-B occupying VEGFR-1, which would

increase the availability of VEGF for activation of VEGFR-2. This

mechanism of vessel growth would be limited by the availability of

VEGF; thus the phenotype of VEGF-B overexpression does not reca-

pitulate VEGF overexpression, which can lead to pathological angio-

genesis at supraphysiological VEGF doses (Nagy et al, 2008; Bry

et al, 2010; Chung & Ferrara, 2011). This finding is in agreement

with a recent report showing that global deletion of Vegfr1 in adult

mice supports angiogenesis after myocardial infarction by increasing

VEGFR-2 levels (Ho et al, 2012). The tyrosine kinase domain of

VEGFR-1 seems to be required for the VEGF-B induced hypertrophy

while neuropilin-1 binding may not be needed (Bry et al, 2010).

Thus, our results suggest that VEGF-B acts both directly via VEGFR-

1 and indirectly via VEGF-VEGFR-2 signaling pathways. In fact, our

recent studies have shown that although VEGF-B can bind to VEG-

FR-1 with high affinity, it cannot induce signaling downstream of

VEGFR-1 as efficiently as PlGF (Anisimov et al, 2013). VEGF-B, by

binding to VEGFR-1, could perhaps also prime VEGFR-2 for

enhanced signaling, as has been suggested for PlGF (Autiero et al,

2003).

In addition to angiogenesis, cardiac energy substrate metabolism

plays a key role in the pathogenesis of heart failure. Collectively,

metabolic data indicated increased FA synthesis and decreased FA

oxidation in the VEGF-B overexpressing hearts, whereas intermedi-

ates of glycogen and glucose breakdown were increased. However,

lactate levels and lactate dehydrogenase RNA expression did not

change, most likely due to an efficient coupling of the aerobic TCA

cycle to the increased glycolysis. Decreased expression of FA oxida-

tion genes, accompanied by a decrease in FA oxidation and a paral-

lel increase in glucose oxidation, are associated with a significant

improvement in the recovery of cardiac function after ischemia

(Burkart et al, 2007), suggesting that shifting energy substrate utili-

zation toward glucose oxidation can improve cardiac function and

slow the progression of heart failure (Lopaschuk et al, 2010). The

VEGF-B–induced metabolic changes may protect cardiomyocyte

mitochondria from I/R injury, which occurs during reperfusion,

when oxidative metabolism is again activated.

We also analyzed cardiac FA uptake, since Hagberg et al (2010)

have reported that VEGF-B upregulates endothelial fatty acid trans-

port via Fatp3 and Fatp4. Consistent with their findings, we

observed increased Fatp4 RNA in the TG hearts and decreased levels

in the KO hearts. However, there was no difference in oleate or

palmitate uptake between TG, KO or WT hearts. It is important to

note that fatty acid and triglyceride levels were actually reduced in

the TG hearts. Recent evidence suggests that Fatp4 is in fact a fatty

acyl-CoA synthase that resides in the endoplasmic reticulum, rather

than a fatty acid transporter on the plasma membrane (Digel et al,

2011; Lenz et al, 2011). Thus while our results confirm that VEGF-B

has metabolic effects in the heart, these do not seem to occur at the

level of substrate uptake. Instead, VEGF-B readjusts the main meta-

bolic signaling pathways via AMPK and mTORC1 and directs FAs to

synthetic pathways rather than to FA oxidation.

It was recently shown that plasma levels of VEGF-B increase

after MI in human patients and correlate with preservation of

cardiac function, whereas low levels of VEGF-B accurately predict

adverse left ventricular remodeling (Devaux et al, 2012). We show

here that the expression of VEGF-B is significantly decreased in

diseased human myocardium, suggesting that enhancing the levels

of VEGF-B might also be beneficial in human cardiac patients.

The same was true for mice that we treated with angiotensin II

and in mice following transverse aortic constriction (Huusko et al,

2012), further supporting the translational potential of our current

findings.

Proper communication between different cell types in the heart is

required to maintain cardiac homeostasis and to build up appropri-

ate responses to stress. It has been suggested that stimulating the
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expression of endogenous repair-promoting cardiac proteins could

be an effective strategy for the prevention of cardiac damage and

enhancement of tissue repair (Doroudgar & Glembotski, 2011). The

present data provide evidence for the therapeutic potential of VEGF-

B as a protective and repair-enhancing protein in ischemic heart fail-

ure, as its overexpression induces favorable changes in the coronary

vasculature, cardiac function and myocardial metabolism. Impor-

tantly, the therapeutic window for the use of VEGF-B is much wider

than for VEGF or VEGF-C, since even high amounts of VEGF-B were

well tolerated. In general, our findings highlight the importance of

endothelial-cardiomyocyte crosstalk in fine-tuning cardiac responses

to stress.

Materials and Methods

More detailed methods are described in the online Supporting Infor-

mation.

VEGF-B TG and KO rats

aMHC-VEGF-B TG rats of outbred HsdBrl:WH Wistar background

have been previously described (Bry et al, 2010). VEGF-B deficient

rats of Sprague-Dawley background were generated with a zinc-

finger nuclease based technique by Sigma Advanced Genetic

Engineering Labs, Sigma-Aldrich Biotechnology (St. Louis, Missouri,

USA). All experiments involving animals were approved by the

Provincial State Office of Southern Finland and carried out in

accordance with institutional guidelines. TG and WT rats used for

the analyses were 2–3 months or 20–22 months old, and in the

myocardial infarction experiment 6–7 weeks old.

MicroCT imaging of the cardiac vessels

High-resolution micro-computed tomography (lCT) imaging was

performed in 2-month-old rats as previously published (Tirziu et al,

2005). The aorta was cannulated retrogradely proximal to the

brachiocephalic trunk. The hearts were perfused with heparin

(100 IU/kg) in 0.9% saline followed by adenosine (1 mg/ml). The

hearts were then perfusion-fixed with 4% paraformaldehyde, and

the coronary arterial tree was filled with contrast agent consisting of

20% bismuth oxychloride (Sigma-Aldrich) in 5% gelatin, until the

agent reached the apex, aiming at filling only the arterial vessels.

Filled hearts were imaged with a high-resolution lCT imaging sys-

tem (GE eXplore Locus SP) followed by morphometric analysis of

the arterial vessels.

Immunohistochemistry and immunofluorescence

Paraffin sections were stained with hematoxylin-eosin and Masson’s

trichrome. The primary antibodies used for immunostaining are

described in the Online Data Supplement. Image analysis was

carried out using the ImageJ software (NIH).

Western blotting

The antibodies used are detailed in the Online Supporting Informa-

tion.

Experimental myocardial infarction (MI)

Myocardial infarction was induced in vivo by ligation of the left cor-

onary artery (LCA). Echocardiography was performed before the

operation, as well as 1 and 4 weeks after the operation. The area-at-

risk and infarct size were analyzed from another set of animals 24 h

after ligation with Evans blue and triphenyltetrazolium chloride

(TTC) staining as published previously, with the modification that

Evans blue was used instead of phthalocyanine blue (Bohl et al,

2009).

Assessment of myocardial perfusion, infarct size and oxygen
consumption with positron emission tomography (PET)

The infarcted rats (11 TG, 17 WT) were imaged with a small animal

PET scanner (Inveon or DPET, Siemens, Knoxville, TN, USA)

4 weeks after coronary occlusion. 45 � 11 MBq of 11C-acetate was

administered via the rat tail vein in 0.4–1.0 ml over 10 s. In order to

validate measurement of myocardial infarct size by 11C-acetate, a

subgroup of the rats (N = 16) was injected with 40 � 5 MBq of 18F-

FDG, a marker of myocardial glucose metabolism and viability in a

separate imaging session.

Mitochondrial function after ischemia-reperfusion

In 5 WT and 5 TG rats, the proximal left anterior descending (LAD)

artery was ligated for 30 min and the heart was then reperfused for

2 h. After the reperfusion, samples from the infarcted area were

homogenized and immediately analyzed with Oroboros Oxygraph-2k

for mitochondrial function. Both carbohydrate and fatty acid (palmi-

tate) SUIT protocols were used as previously described with slight

modifications in the injection order (Lemieux et al, 2011).

In vivo stimulation with VEGF

VEGF-B deficient mice of C57Bl/6 background (Bellomo et al, 2000)

and TG mice (Bry et al, 2010) backcrossed for eight generations to

C57Bl/6 background were injected with 2.5 lg of purified VEGF165
protein via a tail vein. Ten minutes after injection, the mice were

sacrificed and the left ventricle was prepared and snap-frozen in

liquid nitrogen before homogenization for western blotting. A simi-

lar experiment was conducted with TG, KO and WT rats with 25 lg
of VEGF.

Microarray analysis

RNA samples from TG versus WT rats and AAV-VEGF-B versus

AAV-HSA rats (N = 6 in all groups) were analyzed with the genome-

wide Illumina RatRef-12 Expression BeadChip (BD-27-303; Illumina

Inc.). Detailed data analyses were performed with the Chipster soft-

ware as detailed in the supplemental methods (http://chipster.

csc.fi) (Kallio et al, 2011). The gene array data have been deposited

in the Gene Expression Omnibus, accession number GSE38457.

Fatty acid and glucose uptake in vivo

Oleate and palmitate uptake in vivo was measured as previously

described (Hagberg et al, 2010). Briefly, adult rats were administered
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14C-oleate or 14C-palmitate dissolved in olive oil by oral gavage and

tissues were collected after 24 h. In another experiment, 3H-2-deoxy-

glucose or 14C-oleate was administered via a tail vein, and hearts

and blood were collected 30 min later. Tissues were lysed and radio-

activity was measured from serum and lysates by liquid scintillation

using Optiphase HiSafe 3 (Perkin-Elmer) and Wallac LS Counter

(Turku, Finland).

Human myocardial samples

Leiden dataset
Myocardial tissue samples were taken from patients undergoing car-

diac surgery. The patient population has been described previously

(Kortekaas et al, 2013). Baseline samples were taken before the sur-

gery from dilated cardiomyopathy (n = 7), ischemic cardiomyopa-

thy (n = 9) or from non-heart failure (n = 6) patients, and they

were analyzed in the present study. This study was carried out in

accordance with the Declaration of Helsinki and was approved by

the local ethics committee. All patients provided written informed

consent.

Helsinki dataset
Human myocardial samples were obtained from patients undergo-

ing cardiac transplantation due to dilated cardiomyopathy

(n = 15) or ischemic heart disease (n = 10) or from organ donors

without cardiac disease (n = 15) whose hearts could not be used

as grafts. The investigation conformed with the principles

outlined in the Declaration of Helsinki, and the protocol was

approved by the Ethics Committee of Helsinki University Central

Hospital. All patients signed an informed consent form. The

National Authority for Medicolegal Affairs (TEO) approved the

use organ donor tissues.

Statistical analysis

Values are reported as means � s.e.m. Data were checked for nor-

mality and statistical analysis was performed with the two-tailed

unpaired Student’s t-test for two-group comparisons (for microarray

and metabolomics statistical analysis see Supporting Information).

For multiple group comparisons one-way ANOVA with the LSD or

Dunnett’s post-hoc test was used. For correlation between two

continuous variables, linear regression with Spearman’s rank test

was used. The number of samples in each analysis is shown in the

figures. Differences were considered statistically significant at

P < 0.05.

Supplementary information for this article is available online:

http://embomolmed.embopress.org
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The paper explained

Problem
Ischemic heart disease is among the leading causes of death in the
Western world. Despite intensive efforts, growth factors suitable for
angiogenic gene therapy have not yet provided significant help in the
treatment of cardiovascular disease. This is likely to change as we
gain a better understanding of the underlying biology of these growth
factors as well as of their regulation and functions. We therefore
sought to elucidate the role of VEGF-B in the regulation of myocardial
and vascular function in the heart, as well as its therapeutic poten-
tial.

Results
In this study, we show that transgenic expression of VEGF-B in the
rat heart leads to a dramatic expansion of the coronary arterial tree
and an increase in functional coronary reserve, accompanied by a
shift in myocardial metabolism from fatty acid to glucose utilization.
These changes led to favorable changes in cardiac function, both dur-
ing ischemia and in old age. Importantly, VEGF-B levels were found to
decrease in human cardiomyopathy, and the vascular and metabolic
changes were reproducible using gene transfer to adult rats.

Impact
Our results indicate that VEGF-B could be used to enhance the coro-
nary vasculature and to reprogram myocardial metabolism to improve
cardiac function in ischemic heart disease. Our models also highlight
the interaction between the endothelium and the cardiomyocytes.
Indeed, the effects of vascular growth factors on metabolism as well
as the overall interplay between angiogenesis, cell growth and metab-
olism are the focus of growing interest in the field.
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