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Abstract

Microangiopathy, including proliferation of small diameter capillaries, increasing vessel tortuosity, and increased
capillary blockage by leukocytes, was previously observed in the aged rTg4510 mouse model. Similar gene
expression changes related to angiogenesis were observed in both rTg4510 and Alzheimer’s disease (AD). It is
uncertain if tau is directly responsible for these vascular changes by interacting directly with microvessels, and/or if
it contributes indirectly via neurodegeneration and concurrent neuronal loss and inflammation. To better
understand the nature of tau-related microangiopathy in human AD and in tau mice, we isolated capillaries and
observed that bioactive soluble tau protein could be readily detected in association with vasculature. To examine
whether this soluble tau is directly responsible for the microangiopathic changes, we made use of the tetracycline-
repressible gene expression cassette in the rTg4510 mouse model and measured vascular pathology following tau
reduction. These data suggest that reduction of tau is insufficient to alter established microvascular complications
including morphological alterations, enhanced expression of inflammatory genes involved in leukocyte adherence,
and blood brain barrier compromise. These data imply that 1) soluble bioactive tau surprisingly accumulates at the
blood brain barrier in human brain and in mouse models, and 2) the morphological and molecular phenotype of
microvascular disturbance does not resolve with reduction of whole brain soluble tau. Additional consideration of
vascular-directed therapies and strategies that target tau in the vascular space may be required to restore normal
function in neurodegenerative disease.
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Introduction
Vascular dysfunction is increasingly recognized as a co-
occurring pathological feature of neurodegenerative diseases
including Alzheimer’s [3, 20]. The Alzheimer’s Disease Neu-
roimaging Initiative identified that MRI measures of cerebral
blood flow were among the first alterations in human sub-
jects with mild cognitive impairment [36], and several other
groups have confirmed disturbed blood flow with increasing
clinical disease [15, 25, 48, 75]. Reductions in blood flow and
other vascular pathologies evident by neuroimaging have

been shown to be closely related to the neuropathological ac-
cumulation of tau protein [16, 40]. In tauopathies including
Alzheimer’s disease and frontotemporal lobar dementia with
MAPT mutations, regional changes in cerebral blood flow
have been observed [10, 24, 64], implicating vascular dys-
function as a common feature of diseases that include tau
accumulation.
Two broad explanations for these relationships were

considered: altered tissue metabolism in the presence of
neurodegeneration due to neuronal loss and diminished
metabolic demand [50], or processes related to inflam-
mation [28] arising from a direct action of tau on the
microvasculature. Pathological accumulation of Alzhei-
mer’s disease proteins are known to have consequences
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on vasculature in the brain. Both oligomeric and depos-
ited amyloid beta, for example, are toxic to vascular cells
in penetrating arterioles, accumulating within smooth
muscle and endothelial cells over time and contributing to
vascular dysfunction and cell death in cerebral amyloid
angiopathy (CAA) [1, 6, 13, 38, 41, 68, 69]. In addition to
CAA, mice that develop amyloid beta plaques also have
reduced cerebral blood flow, altered vascular density, and
abnormal vascular morphology [11, 22, 45].
More recently, the release of tau by neurons into the

extracellular space and its subsequent uptake into non-
neuronal cells has been highlighted as a major consider-
ation for disease pathophysiology [32, 43, 51, 60]. Of
note, tau protein accumulation in and around vascular
cells has been reported and may provide a direct link to
vascular dysfunction [18, 44, 53, 72]. Exploring this pos-
sibility, animal studies have uncovered a role for tau in
altering blood vessel function. In the rTg4510 P301L tau
overexpressing mouse model, disrupted blood flow was
evident by increased numbers of capillaries occluded by
leukocytes [8]. This pronounced phenotype was accom-
panied by increased numbers of small diameter capillar-
ies (< 5 μm), increased vessel tortuosity and upregulated
endothelial cell expression of angiogenesis and hypoxia-
related genes [8].
To better understand the relationship between tau

protein accumulation and vascular alterations, we made
use of the tetracycline-repressible promoter in the
rTg4510 mouse model to determine if turning off tau
expression impacts the microangiopathy phenotype that
was observed previously. These data have important im-
plications for tau-reduction based therapies that are cur-
rently in development [21] and suggest that depending
on the timing of events, alterations in vascular function
may not be impacted by tau suppression.

Methods
Animals
Mice used in these experiments were handled and
housed according to the animal protocols of Massachu-
setts General Hospital and the McLaughlin Research In-
stitute. The rTg4510 mice (FVB-Tg4510xB6.TgCK-tTA)
are commercially available from Jackson Laboratories
(stock no. 024854) and have been extensively character-
ized [26, 56, 61, 63]. Wild-type littermates included in
these studies possessed either the tetO-MAPT*P301L or
the Camk2a-tTA transgenes. At 12months of age, equal
numbers of male and female mice were randomized to ex-
perimental groups and fed chow containing doxycycline
(n = 6 wild-type and n = 6 rTg4510, Bio-Serv cat no.
S3888, 200mg/kg) or standard chow (n = 6 wild-type and
n = 6 rTg4510, Lab Diet cat no. RMH3000 5P75). A sec-
ond group of male transgenic mice was treated identically
and used for blood vessel isolations (n = 4 standard chow,

n = 3 doxycycline chow). Doxycycline results in repression
of the tau transgene in these mice [61].

In vivo imaging
Following a 12-week treatment, all mice were anesthe-
tized with ketamine/xylazine and underwent a cranial
window procedure to remove the skull overlying the
somatosensory cortex and a glass coverslip was secured
with dental cement. Fluorescein-conjugated 70 kDA
dextran was injected intravenously (100 μl, 12.5 mg/ml,
Invitrogen) and vasculature was immediately imaged
using an Olympus two-photon microscope equipped
with a Ti: Sapphire laser (MaiTai, Spectra Physics, 800
nm excitation). A minimum of six regions of interest
containing vessels < 20 μm in diameter (capillaries) were
imaged with a 25x (n.a. = 1.05) water immersion lens at
3x digital zoom. Z-stacks began 50 μm below the surface
of the cortex and included 50 planes at 2-μm steps for a
total imaging depth of 100 μm.
Mice were immediately killed by isofluorane and car-

diac puncture following imaging. One hemisphere was
fixed for histology and one hemisphere was dounce ho-
mogenized in phosphate buffered saline (PBS) with pro-
tease inhibitors (Roche) and centrifuged at 3000 x g for
10 min. The resulting supernatant was reserved for HEK
cell assay, western blotting, and ELISA. The pellet was
reserved for subsequent sarkosyl extraction.
For analysis of images, Analyze 3D objects in Image J

was used to quantify blood vessel volumes and the
Skeletonize function was used to measure lengths. Cor-
tical thickness measurements from histological slices were
used to scale these values and take into account atrophy
in the rTg4510 mouse model. For quantitative measure-
ments of the number of vessels without blood flow
(blocked capillaries), the number of unique blood vessel
branches were manually counted in Image J and the pres-
ence of red blood cells (which appear black within fluores-
cently labeled lumens) was tracked. If a red blood cell
appeared in the same location of a capillary in at least two
planes of the z-stack, the vessel was considered blocked.

Human tissue selection
Human tissue was provided by the Massachusetts Alz-
heimer’s Disease Research Center, which conducted an
extensive neuropathological characterization of each
case. Tissue was selected based on the presence or ab-
sence of tau pathology and neuropathological diagnosis
[33]. A total of n = 9 cases with Alzheimer’s disease
pathology (Braak stage V-VI) and n = 9 control cases
(Braak stage 0-II) were used for microvessel isolation
from temporal cortex (Brodmann area 22). Both groups
included five male and four female subjects of similar
ages (average 83 +/− 9 STD and 80 +/− 15 years old re-
spectively). Tissue was specifically selected from these
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Alzheimer’s subjects because they lacked concurrent
cerebral amyloid angiopathy (CAA), though evidence of
cerebrovascular disease was noted in three cases. One
control case showed evidence of focal mild CAA in
leptomeningeal vessels.
To compare another tauopathy, frontotemporal lobar

dementia (FTLD) with tau pathology cases were selected
(n = 5) and corresponding control cases (n = 5) were
similarly sex matched though the control group was on
average greater in age than the FTLD group (93 +/− 5
vs. 73+/− 15 years). Frontal cortex (Brodmann area 9)
was used. Two of these FTLD cases were mutant
MAPT(P301L) mutation carriers and the other three had
no known familial FTLD mutations. All FTLD-tau cases
had evidence of tau accumulation in neurons including
dystrophic neurites, neurofibrillary tangles, and Pick
bodies and did not have TDP-43 pathology. One familial
FTLD-tau carrier also had amyloid beta deposition in
cortex and hippocampus consistent with Thal stage 2
and one had amyloid beta deposition consistent with
Thal stage 1. Additional details of all human tissue can
be found in Supplemental Table 1.
From each frozen tissue block, ~ 250 mg of grey mat-

ter was separated and used for microvessel isolation and
additional tissue (when available) was dounce homoge-
nized in PBS with protease inhibitors, centrifuged at
3000 x g for 10 min to remove debris, and reserved for
HEK cell assay, western blotting, and ELISA.

Microvessel isolation and Immunofluorescent labeling
Blood vessels were isolated from frozen mouse and hu-
man tissue following published protocols [14] with mod-
ifications. First 200–300 mg tissue was minced into
small ~ 1–2 mm pieces with a razor blade in ice cold
buffer (Hanks Balanced Salt Solution with 10 mM HEPE
S, pH 7; ThermoFisher Scientific) and then manually
dounce homogenized with 12 up/down strokes. The
resulting homogenate was transferred to a 50 mL conical
containing 20 mLs buffer and centrifuged at 2000 x g for
10 min at 4C. The supernatant was discarded and the
pellet was resuspended by shaking in 20 mls of myelin
removal buffer (18% dextran in HEPES-Buffered HBSS).
Samples were centrifuged at 4400 x g for 15 min at 4C.
The myelin layer was removed by carefully pouring out
the supernatant. The pellet was resuspended in 2 mL
chilled 1% bovine serum albumin (BSA; Sigma-Aldrich)
HEPES-Buffered HBSS and filtered through a 20 μm
mesh (Millipore). The filter was rinsed with 30 mLs 1%
BSA HEPES-Buffered HBSS and then blood vessels were
collected by immersing the filter in a new conical con-
taining 30 mLs of the same buffer and centrifuging for 5
min at 2000 x g at 4 C.
For western blotting, the resulting pellets were then

rinsed in PBS (pH 7) twice to remove BSA and then

sonicated in PBS with proteinase inhibitors. For im-
munofluorescent labeling, pellets were fixed in 4% PFA,
rinsed in PBS, and then blocked in 5% goat serum 0.25%
Triton-X in PBS before incubating overnight in primary
antibodies. All antibodies were used at a 1:200 dilution
including: mouse anti-ZO-1 (ThermoFisher, cat no. 33–
9100, RRID: AB_87181), rabbit anti-Collagen IV (Bio-
Rad, cat no. 2150–1470, RRID:AB_2082660), mouse
anti-smooth muscle actin (Sigma-Aldrich, cat no. A5228,
RRID: AB_262054), rabbit anti-GLUT1 (Millipore, cat
no. 07–1407, RRID: RRID:AB_10616217), or mouse
anti-tau (ThermoFisher, cat no. MN1000B, RRID: AB_
223453). Alexafluor-conjugated anti-mouse or anti-
rabbit secondaries were incubated at 1:1000 in blocking
buffer the following day. After the final wash in PBS,
vessels were resuspended in 10 μl of Fluoromount-G
mounting media with DAPI (Southern Biotech) and im-
aged using a confocal microscope (Olympus FV3000).

Tau bioactivity assay
Human embryonic kidney cells (HEK-293) stably ex-
pressing a CFP/YFP FRET biosensor containing the tau
repeat domain (ATCC, cat no. CRL-3275) were cultured
in 96-well plates to ~ 70% confluency and used to assess
tau seeding bioactivity following published protocols
[31]. Protein extracts were prepared from either total
cortex, blood vessels, or whole blood (obtained from
rTg4510 facial vein draw) and were diluted to a total
protein concentration of 1 mg/mL in PBS. One micro-
gram of protein in 1% lipofectamine OPTIMEM was
added to triplicate wells and incubated with cells for 24
h. Cells were detached using 1X trypsin, fixed in 2%
paraformaldehyde, rinsed in PBS, and flow cytometry
measures of the percent of cells containing aggregates
and the median fluorescence intensity (ex. 405 nm, em.
525 nm). The percentage of aggregate containing cells
and median fluorescence intensity was multiplied to give
the integrated FRET density (IFD), reported here as tau
bioactivity arbitrary units. All measures were normalized
to a lipofectamine only (FRET negative) control.

Sarkosyl insolubility assay
Tissue pellets were subject to biochemical fractionation to
measure soluble and insoluble tau species following previ-
ously published protocols [23]. In short, pellets are ho-
mogenized in extraction buffer (20mM Tris-HCl pH 7.5
with 1mM Dithiothreitol, 1 mM Egtaizic Acid) containing
1% Triton-X and incubated for 30min at 37 °C before
centrifuging at 100,000 x g for 30min at 4 °C. The super-
natant was used as the Triton-X fraction and the pellet
was resuspended in extraction buffer containing 1% sarko-
syl. After incubation for 30min at 37 °C, samples were
centrifuged at 100,000 x g for 30min at 4 °C and the sar-
kosyl soluble supernatant was reserved. Sarkosyl insoluble
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proteins were solubilized by briefly sonicating in 8M urea
in 50mM Tris-HCl pH 7.5. Protein concentrations of all
fractions were measured by BCA.

Western blotting
Samples were prepared for Western blots using NuPAGE
LDS Sample Buffer and Sample Reducing Agent (Invitro-
gen). Ten micrograms of protein per lane was loaded on a
NuPAGE 4–12% Bis-Tris gel and run at 120 V for 90min
in MES SDS Running Buffer (Invitrogen) before transfer-
ring to 0.2 μm nitrocellulose (Invitrogen) at 90 V for 90
min. Blots were rinsed in Tris-buffered saline (TBS) and
blocked in Odyssey Blocking Buffer (LI-COR) prior to incu-
bation with primary antibodies. Antibodies that were used
in these experiments include: rabbit anti-Tau (DAKO, cat
no. A0024, RRID: AB_10013724), mouse anti-human tau
(HT7, Invitrogen, cat no. MN1000, RRID: AB_2314654),
mouse anti-tau (Tau46, Cell Signaling Technology, cat no.
4019S, RRID:AB_10695394), mouse anti-NeuN (Millipore,
cat no. MAB377, RRID: AB_2298772), rabbit anti-Glut1,
and chicken anti-Tubulin (Aves Labs, cat no. TUJ, RRID:
AB_2315518). For protein loading normalization of sarkosyl
fraction experiments, prior to incubation with antibodies,
blots were rinsed in distilled water and incubated with Re-
vert 700 Total Protein Stain (LI-COR) following the manu-
facturer’s instructions.

Histology
One hemisphere from each mouse brain was drop fixed
in 4% paraformaldehyde for 48 h and then equilibrated
in 30% sucrose before sectioning on a freezing micro-
tome. Nine sets of 40 μm thick sections were collected
such that each set contained sections at 360 μm inter-
vals. For immunostaining, sections were rinsed in TBS
and endogenous peroxidases were blocked with 0.3%
H2O2 in TBS for 10 min and then incubated in blocking
buffer containing 3% normal goat serum in TBS with
0.25% Triton-X (TBS-X) for 30 min. Anti-Tau (Thermo-
Fisher, cat no. MN1000B) was applied overnight at 4C in
blocking buffer and then detected with 1:200 ABC
horse-radish peroxidase (Vector Labs, cat no. PK-6100)
and diaminobenzidine (DAB, Sigma-Aldrich). For tau
detection, the biotinylated antibody was used to avoid
non-specific mouse IgG labeling. Alternatively, horse
anti-mouse IgG was incubated for 3 h at room
temperature in 2% normal horse serum in TBS-X before
following the same HRP detection procedure (Vector
labs, cat no. PK-4002).
For immunofluorescent labeling, sections were rinsed

in TBS, incubated in 3% NGS TBS-X for 30 min and
then incubated overnight in blocking buffer with anti-
human tau (biotinylated HT7 to avoid cross-reactivity
with endogenous mouse IgG) and anti-Glut1. Alexa-
fluor 555-conjugated streptavidin and alexa-fluor 488-

conjugated anti-rabbit IgG were applied in TBS-X the
following day and images were captured using an Olym-
pus VS-120 slide scanning system with a 20x objective.
For in situ hybridization, a human Mapt probe that

does not cross-react with mouse tau was purchased from
Advanced Cell Diagnostics (cat no. 417491). In situ
hybridization was performed according to the manufac-
turer’s instructions using the RNAscope Multiplex
Fluorescent V2 Assay (Advanced Cell Diagnostics, cat
no. 23110). Glut1 antibody labeling and subsequent im-
aging of in situ fluorescence (Cy5 labeled) and Glut1
(Alexa 488 labeled) was performed using an Olympus
FV3000RS confocal microscope.

Quantitative PCR on mouse brains
RNA was isolated from 20 to 30mg of frontal cortex tissue
using RNeasy Mini Kit (Qiagen, cat no. 74104) according to
manufacturer’s instructions. Final RNA was eluted using 30
μl of RNase, DNase free water and the concentration was
measured with Nanodrop spectrometer. cDNA was synthe-
sized, per mouse sample, with 20 ng of input RNA using
the QuantiTect Reverse Transcription kit (Qiagen, cat no.
205311). Specific gene primers (Qiagen, cat no. 249900)
were plated into 96 well qPCR plate with appropriate
amount of cDNA synthesis product and QuantiTect SYBR
green Master mix (Qiagen, cat no. 204143). Plates were
sealed with Bio-Rad Micro Seals (Bio-Rad, cat no.
MSB1001) and spun at 300 g for 30 s. All qPCR reactions
were performed using Bio-Rad CFX96 Real-Time system
C1000 Touch Thermocycler (settings: 95 C for 15min and
40 cycles of 94 C for 15 s, 56 C for 30 s and 72 C for 30 s).
Mouse QuantiTect assay primers were used to detect the
following genes: Actb (Qiagen, cat no. QT00095242), Hprt
(cat no. QT00166768), Gapdh (cat no. QT00199388), Vcam1
(cat no. QT00128793), Icam1 (cat no. QT00155078), Icam2
(cat no. QT00097041) and Serpine1 (cat no. QT00154756).

Total tau ELISA
Total human tau levels were detected using electroche-
miluminescence assay, MSD MULTI-Spot phospho
(Thr231)/ Total tau Assay (Meso Scale Discovery,
K15121D) following manufacturer’s instructions. All
protein samples were initially diluted to 1 mg/ml. Fur-
ther dilutions were performed using 10% blocker A
(MSD, R93BA-4) in 1X Tris wash buffer (R61Tx-2) as
diluent. All blood vessel samples (human and mouse)
were diluted to 1:50 from 1mg/ml stock protein and all
frontal cortex samples (human and mouse) were diluted
to 1:1000 from 1mg/ml stock protein. Twenty-five μl of
diluted samples were added to each well. The plate was
read using MESO QuickPlex SQ120 (Meso Scale Discov-
ery). Tau concentration per sample were calculated
using the calibration curve.
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Statistics
A Shapiro-Wilks normality test was used on all datasets
with n > 5 and use of non-parametric tests are indicated
in-text. Student’s t tests or Mann-Whitney U tests were
used for comparisons of two groups. Two-way ANOVA
investigating genotype and sex did not reveal any signifi-
cant impact of sex on any measure included in these
studies. To compare doxycycline treated and untreated
groups, two-way ANOVA was used followed by Sidak’s
multiple comparisons test. Repeated measures ANOVA
followed by Sidak’s multiple comparisons test was used
when investigating differences between brain and blood
vessel bioactivity and tau measures in mice. Significant
p-values of < 0.05 are reported. All data were plotted
and analyzed using GraphPad Prism version 7.00 for
Windows (GraphPad Software).

Results
Tau is closely associated with vasculature in humans and
mice
We hypothesized that tau may directly be contributing
to the downstream vascular phenotype previously de-
scribed in rTg4510 tau expressing mice [8]. Tau has
been observed to be closely associated with vasculature
in histology [18, 44, 53, 72]. To further explore these ob-
servations, we first isolated blood vessels from frozen
human postmortem temporal cortex (Alzheimer’s) or
frontal cortex (frontotemporal lobar dementia). In this
modified protocol from Boulay et al. [14], tissue is first
dounce homogenized, cell debris and myelin are re-
moved using a dextran solution, and vessels are captured
using nylon filters. We immunolabeled the resulting vas-
cular preparations to confirm their purity, and observed
classic endothelial cell markers such as von Willebrand
factor (Fig. 1a, vWF), junction proteins such as zona-
occludins (ZO-1), in addition to basement membrane
(Fig. 1b, collagen IV) and smooth muscle cells (smooth
muscle actin, SMA). Vessels purified by this method ap-
peared to range from ~ 5–40 μm in diameter and pri-
marily consist of capillaries. Importantly, vessels isolated
from Alzheimer’s brain were occasionally observed to
have tau labeling in close proximity to endothelial cells
(Fig. 1c).
Immunoblotting of blood vessel isolates indicated that

vessels are considerably enriched for vascular protein
(Glut1) and not neuronal markers (NeuN), and that tau
is common in these samples (Fig. 1d). A sensitive FRET-
based HEK cell assay that measures bioactive tau, which
are soluble tau species capable of inducing tau aggrega-
tion and are believed to contribute to the pathological
spread of tau in the brain [31, 66], indicated bioactive
tau is enriched in vessel preparations from Alzheimer’s
disease (Fig. 1e) and appears to be elevated in fronto-
temporal lobar dementia-tau (FTLD-tau, Fig. 1f) and

some control brains (Braak stages ≤ II). Although tau
bioactivity was readily detectable, ELISA measurements
of tau protein in vasculature were low and did not differ
between Control and FTLD-tau samples (Fig. 1g, 0.12
+/− 0.05 ng tau per μg total protein in FTLD-tau vessels
versus 4.0 +/− 1.4 ng tau per μg total protein in FTLD-
tau cortex), suggesting that bioactive tau is enriched in
association with microvasculature.
We also examined whether a comparable association

of bioactive tau occurred in vessels in rTg4510 mice.
Immunolabeling of rTg4510 or wild-type mouse brain
showed that tau was observed in close proximity to vas-
culature, often appearing to encircle Glut1-positive
endothelial cells (Fig. 2a-c). Tau was also detected in
rTg4510 blood vessels by Western blot and total human
tau ELISA (Fig. 2d, f) and tau present in vascular prepa-
rations retained bioactivity (Fig. 2e). Whole blood col-
lected from a rTg4510 and prepared identically to
vascular protein was not observed to possess any
bioactivity in this measure (Tau bioactivity A.U. = 0.57
+/− 0.05, across three technical replicates), indicating re-
sidual blood in isolated vessels does not induce biosen-
sor aggregation. As an additional control, in situ
hybridization confirmed that endothelial cells do not ex-
press the tau transgene, (Fig. 2g). Together, these data
confirm that bioactive tau species are present in the vas-
cular bed and indicate tau may be directly responsible
for some of the effects previously observed in rTg4510
mice.

Suppressing tau expression is not sufficient to impact
vascular remodeling
In the rTg4510 model, tau is expressed under a
tetracycline-repressible promoter and feeding mice a diet
containing doxycycline can halt the progression of tau
pathology and neurodegeneration [61]. Due to the previ-
ously described increase in small diameter capillaries at
15 months, but not at 12 months of age in these mice
[8], we fed mice doxycycline from 12 to 15months of
age. Turning off tau expression at this age appeared to
eliminate tau in the surrounding neuropil/parenchyma,
leaving only neurofibrillary tangles (Fig. 3a). Total tau
burden was reduced by nearly half as measured by west-
ern blotting (Supplemental Figure 1A, B, 45% +/− 11%
Dox + versus Dox-). Further biochemical fractionation
confirmed that soluble tau species were significantly re-
duced (Supplemental Figure 2, Fig. 3b-d; Triton X, 16.4%
+/− 4.7% Dox + versus Dox-; Sarkosyl soluble, 15.3% +/−
10% Dox + versus Dox-) but not sarkosyl insoluble tau
(Fig. 3b, e; 79.7% +/− 33% Dox + versus Dox-). Levels of
NeuN, an indicator of neurons, were unaltered between
transgenic mice with and without doxycycline treatment
(Supplemental Figure 1A, C).
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Fig. 1 (See legend on next page.)

Bennett et al. Acta Neuropathologica Communications           (2020) 8:137 Page 6 of 16



To investigate changes in vascular associated tau, we
isolated blood vessels from rTg4510 and wild-type con-
trol mice. By western blot, control mice were also ob-
served to have endogenous tau associated with blood
vessels (Supplemental Figure 3). Tau reduction did not
alter the total amount of human tau associated with
blood vessel isolates (Fig. 3f, g) and tau bioactivity was
retained in isolated vessels from doxycycline treated
mice versus whole brain (Fig. 3h).
To assess vascular remodeling in mice with reduced cor-

tical tau burden, two-photon imaging of brain vasculature
revealed an increase in total blood vessel volume (Fig. 4a,
b) and length (Fig. 4c) in rTg4510 mice with and without
doxycycline. In accord with this, we also observed that
rTg4510 mice had a greater number of vessels devoid of
red blood cell flow compared to wild-type, and suppress-
ing tau expression did not affect this (Fig. 4d).
Considering the increased proportion of capillaries

without normal blood flow in rTg4510 mice, which we
previously observed to be due to leukocyte adhesion to
the endothelium [8], we investigated whether increased
expression of cell adhesion molecules (CAMs) could be
contributing to this phenotype. In rTg4510 mice,
Vcam1, Icam1, and Icam2 were all observed to be upreg-
ulated in the brains of 12-month-old mice with in-
creased Vcam1 and Icam1 expression persisting at 15
months in transgenic mice (Fig. 5a). No differences be-
tween control and rTg4510 mice were observed at 6
months of age. Suppressing tau expression did not affect
the increase in cell adhesion molecules (Fig. 5b). Simi-
larly, elevation of Serpine1, a gene previously shown to
be elevated in vasculature remodeling [8], was not af-
fected by doxycycline treatment. Thus, despite wide-
spread suppression of soluble tau, vascular-associated
tau is retained and vascular remodeling and related
inflammation-associated gene expression changes
persist.

Blood brain barrier (BBB) compromise is not reversible in
aged mice
A previous report has detailed vascular compromise in
the rTg4510 mouse model is evident at 9 months and

can be prevented by doxycycline suppression of the tau
transgene [12]. Given the vascular changes that we ob-
serve at 15 months, we assessed blood brain barrier leak-
age by IgG immunostaining (Fig. 6a-c) and saw that
both wild-type and rTg4510 mice had IgG labeling
within the walls of blood vessels at this age but that the
amount of this labeling was increased in rTg4510 mice.
Sparse labeling of glia indicates extravasation and uptake
into cells near leaky vessels [58]. Similar to other vascu-
lar phenotypes, doxycycline treatment and tau suppres-
sion from 12 to 15 months of age did not reduce the
extent of IgG labeling that was observed in the cortex of
rTg4510 mice.
To further explore changes contributing to the in-

creased BBB leakage in rTg4510 mice, we performed
western blotting for the tight junction proteins ZO-1
and Occludin and normalized to the total amount of
Glut1 (endothelial cells; Fig. 6d-g). No difference was
observed in the total amount of ZO-1, but Occludin was
reduced in rTg4510 mice and was not improved with
doxycycline treatment. These data indicate that vascular
barrier functions continue to be impaired at this later
age, even with significant reduction of soluble tau.
Of note, doxycycline has been reported to specifically

reduce both protein and transcript levels of matrix metal-
loproteinase 9, which is capable of degrading tight junc-
tion proteins including Occludin [29, 73, 77]. To examine
whether this effect of doxycycline per se was relevant
using the mouse model and doses examined in our study,
qPCR of Mmp-9 in the brains of treated and untreated
mice was performed. In these mice, treatment did not re-
veal a significant difference in any group (Two-way
ANOVA, genotype p = 0.66, treatment p = 0.36).

Discussion
From these data, it is apparent that tau protein is closely
associated with vasculature in both human and mouse
brain and that reduction of soluble tau burden, dramat-
ically reducing tau outside of neuronal cell bodies, is not
sufficient to reduce vascular tau and prevent microangi-
opathy in this mouse model. This indicates that micro-
angiopathy, including increased numbers of small

(See figure on previous page.)
Fig. 1 Tau protein in human vasculature. a Blood vessel isolations containing capillaries were validated by immunofluorescent labeling. DAPI-
positive nuclei were also positive for endothelial cell markers such as von Willebrand factor (vWF) and zona occludins (ZO-1). b Isolates also
contained basement membrane (collagen IV, ColIV) and some vessels were arteriolar in origin, indicated by the presence of smooth muscle actin
(SMA). c Glut1 labeled endothelial cells were also occasionally observed to be surrounded by tau (HT7 antibody). d Western blotting of blood
vessel isolations from human temporal cortex samples with varying degrees of tau pathology (Braak stage) indicates that vessels are frequently
positive for tau (DAKO), but not other neuronal components (NeuN). Vessels are also enriched in Glut1 compared to total brain extracts. e When
applied to a tau biosensor cell assay, vessels appear to retain their bioactivity with AD vessels exhibiting elevated seeding potential compared to
controls (Mann-Whitney U test, p = 0.007, A.U. = arbitrary units). f Total frontal cortex protein from subjects with frontotemporal lobar dementia
(FTLD) with tau exhibited greater bioactivity than control brains (Student’s t test, p = 0.038). g Total tau protein in total brain versus blood vessel
protein preparations as measured by ELISA. All graphs are plotted with means +/− standard deviations. * indicates p < 0.05, ** p < 0.01
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diameter capillaries, increased capillaries without normal
blood flow, and increased BBB leakiness may be irrevers-
ibly set in motion at 12 months of age.
Analogous changes to vasculature have been reported in

other diseases, possibly shedding light on the underlying
cause of microangiopathy. In particular, increased

expression of cell adhesion molecules such as VCAM1,
ICAM1, and ICAM2 is a feature of proliferative diabetic
retinopathy (PDR), where they increase recruitment of
leukocytes to the endothelium and disrupt blood flow, a
process termed leukostasis [19]. In PDR, high glucose
levels in blood leads to inflammatory gene expression in

Fig. 2 Tau protein in vasculature from transgenic mice. a Tissue sections from rTg4510 or wild-type controls at 15 months of age were labeled for
tau (HT7) and endothelial cells (Glut1). b An enlarged view of the box from (a) shows the extent of tau pathology at this age in transgenic (TG)
and not wild-type (WT) mice. c Numerous blood vessels were observed to be closely associated with tau. d Western blotting of total cortex and
isolated vessels indicates tau is present in vessels, but not other neuronal components such as NeuN. Glut1 is highly enriched. Vessels and cortex
protein were run on the same blot, but separated here for clarity. e Tau bioactivity in a biosensor cell assay shows increased tau bioactivity in
transgenic brain versus wild-type (Repeated Measures ANOVA, Sidak’s post hoc, p = 0.003) and in transgenic blood vessels versus wild-type
(Sidak’s post hoc, p = 0.01). f Tau protein ELISA measures in total brain versus blood vessel protein. g Expression of the human Mapt transgene
was observed by in situ hybridization in neurons but did not co-localize with Glut1-positive endothelial cells. Image is of a single plane captured
using a confocal microscope. All graphs are plotted with means +/− standard deviations. * indicates p < 0.05, ** p < 0.01
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endothelial cells including upregulation of CAMs [49].
Upon restoration of normal glucose metabolism, worsen-
ing of retinopathy can occur with persistent inflammation
in the endothelium, disrupted blood flow, and sprouting
of new, often leaky, vessels [5, 19].
Here, we see similar changes: even after tau produc-

tion is suppressed, upregulated CAM expression and
blood brain barrier leakage persists (although see below
regarding the relatively long residence time of tau asso-
ciated with vasculature in these experiments). In mice,
we cannot completely rule out the possible contribution
of genetic disruptions due to transgene insertions [26].

However, all experiments were conducted by compar-
ing to littermate controls that possess the same genetic
disruptions but do not express the tau transgene, indi-
cating that these changes are likely due to tau and tau-
driven inflammatory processes. In addition, these
changes appear to reflect human disease; for example,
increased soluble VCAM has been detected in the cere-
brospinal fluid and plasma of Alzheimer’s disease sub-
jects [37, 80]. Similarly, ultrastructural studies have
provided evidence of altered blood brain barrier prop-
erties in Alzheimer’s [65] which have also been ob-
served using contrast MRI reveal changes in blood

Fig. 3 Doxycycline treatment reduces soluble tau but does not alter vascular tau. a Sections from rTg4510 mice (TG) with and without
doxycycline treatment were labeled for tau protein (HT7) showing a significant reduction in tau outside of neurofibrillary tangles. Insets show
higher magnification images of cortical pathology. Scale bar = 10 μm. b Western blotting of human tau (HT7) present in Triton X (TX), sarkosyl
soluble (SS) and sarkosyl insoluble (SI) fractions from a protein insolubility assay. c Quantification of western blots confirms reduced soluble tau
present in TX (Student’s t test, p = 0.001) and (d) SS fractions (p = 0.0002) and (e) no change in SI fractions (p = 0.31). Tau measures were
normalized to a total protein stain to control for loading differences, which can be found along with uncropped blots in the supplement. f
Western blotting of human tau in brain and isolated brain vessels from doxycycline treated (+) and untreated (−) mice. Glut1 is included to show
enrichment of endothelial protein in vessels preparations. g Quantification of total human tau in vessels normalized to Glut1. h A biosensor cell
assay shows retained tau bioactivity in transgenic blood vessels from Dox +mice (Repeated Measures ANOVA, Sidak’s post hoc p = 0.04) and no
difference in Dox- mice (p = 0.89). All graphs are plotted with means +/− standard deviations. * indicates p < 0.05, ***p < 0.001
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brain barrier function [47, 52]. Altered expression of
tight junction proteins have also been reported in Alz-
heimer’s disease, notably including reduced Occludin
with increasing tau accumulation [76], which was also
observed in this mouse model.
Considering the close association that we observed of

bioactive tau and blood vessels, and its retention within
the vascular compartment despite overall tau reduction,
we also cannot rule out a direct effect of tau on stimulat-
ing endothelial cell inflammation. In fact, recent evi-
dence indicates LRP1, a receptor enriched in this cell
type, is a major route of tau endocytosis in cells and
contributes to the internalization of pathological tau spe-
cies [46, 57]. We observed limited co-localization of tau
in endothelial cells in our experiment, however, and
conclude that internalization and aggregation of tau in
endothelial cells is likely a rare event in this model. Fur-
ther, transcriptomic studies of brain endothelial cells
from mouse and human indicate that endothelial cells
do not produce endogenous tau [30, 59, 70, 78, 79].
Thus, the tau protein we observed in the vascular compart-
ment is most likely of neuronal origin, and enrichment of
tau in both para- and perivascular spaces is probably the re-
sult of brain clearance pathways [4, 34, 35, 54]. Presence of
non-pathological endogenous mouse tau in blood vessel
isolates supports this. Whether or not tau may directly lead

to inflammatory changes in endothelial cells or if inflamma-
tory signaling from glia and neurons leads to these changes
is an important future direction.
Other important future studies might assess the con-

tribution of concurrent vascular pathologies including
CAA and cerebrovascular disease to the changes ob-
served here. While in these studies we specifically
avoided selecting Alzheimer’s cases with CAA to reduce
potential confounds due to the presence of amyloid beta,
evidence from mice indicates that CAA inhibits brain
vascular clearance pathways and thus might enhance ac-
cumulation of vascular tau [2, 71]. This could provide
some explanation for the apparent synergistic effect be-
tween CAA and the development of pathological tau ac-
cumulation [39, 53, 72, 74].
Related to this, the presence of amyloid beta has

been shown to increase bioactive tau [7, 27, 42, 55].
Tau isolated from vasculature of Alzheimer’s disease
blood vessels appeared to possess greater seeding ac-
tivity on the biosensor assay than FTLD-tau vessels,
which performed similar to some controls. While this
could be due to inherent differences between vessels
in temporal versus frontal cortex and further assess-
ment of regional variability is necessary, we propose
that the low amyloid plaque load in these FTLD-tau
brain could be one possible reason for these

Fig. 4 Vascular remodeling is not altered in mice with reduced tau burden. a 100 μm thick z-projection images of fluorescein-labeled vasculature
from wild-type (WT) and transgenic (TG) mice captured by two-photon microscopy. b The volume of blood vessels in each mouse was calculated
and normalized to the cortical thickness to account for atrophy. Blood vessel volume was increased in transgenic mice and was not altered by
treatment (Two-way ANOVA, genotype p = 0.04, treatment p = 0.4). c Total blood vessel length was also increased in transgenics (Two-way
ANOVA, genotype p = 0.007, treatment p = 0.74). d The total percentage of all vessels imaged without red blood cell flow was also increased
(Two-way ANOVA, genotype p < 0.0001, treatment p = 0.19). All graphs are plotted with means +/− standard deviations. * indicates p < 0.05, **
p < 0.01, ***p < 0.001
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differences, though it is worth noting that FTLD-tau
is a broad category encompassing multiple pathologies
which may be more or less associated with vascular
changes [67]. In general, our data comparing FTLD-
tau and control tissue tau levels is in line with previ-
ous reports indicating total tau is less effected in
FTLD-tau subjects than in Alzheimer’s disease [62].
Further, CSF-tau levels are not frequently elevated in
FTLD-tau [9], possibly reflecting differentially affected
brain clearance pathways in these diseases which
might contribute to reduced bioactivity in vasculature
as measured here.
These data have clear implications for treating tauopa-

thies including Alzheimer’s disease. In particular, this
work highlights the importance of not only considering
the critical timing of tau reduction therapeutics, but also
various time scales of tau elimination from different
compartments. For example, although doxycycline treat-
ment leads to reductions in soluble tau, the number of
aggregated neurofibrillary tangles is unchanged [61]. In
the current study, we find little reduction in tau levels in

vascular compartments even after 3 months of genetic
suppression, suggesting that tau measured either bio-
chemically or by a bioactivity assay in this compartment
is unusually stable. By comparison, transgene suppres-
sion in younger mice [61] and similarly aged mice [17],
has been shown to reduce soluble tau levels and pro-
mote better neuronal and behavioral outcomes. Thus, ei-
ther more extensive reduction in tau, or a substantially
longer treatment, may be necessary to impact tau
dependent vascular alterations.
Alternatively, novel therapies directed at alleviating

vascular dysfunction alongside tau-reducing strategies
may be beneficial. An exciting target as suggested by this
work is inhibition of endothelial cell adhesion molecule
upregulation, which we observed concurrent with de-
creased numbers of blood vessels exhibiting normal
blood flow. It is unknown whether this is similarly the
substrate for reduced blood flow observed by neuroim-
aging studies [25, 36, 75], though it suggests that thera-
peutics aimed at alleviating leukocyte-endothelial
interactions may provide some benefit.

Fig. 5 Increased cell adhesion protein expression in tau expressing mice. a Quantitative PCR revealed an increase in Vcam1 (Two-way ANOVA,
age p = 0.0117, genotype p = 0.0002, interaction p = 0.01), Icam1 (age p < 0.0001, genotype p < 0.0001, interaction p < 0.0001), and Icam2 (age p <
0.04, genotype p < 0.004, interaction p = 0.05). Increased expression was observed in transgenic 12-month mice and 15-month mice; Sidak’s
multiple comparisons p-values are indicated. b Doxycycline treated and untreated transgenic mice had elevated Vcam1 (Two-way ANOVA,
genotype p < 0.0001, treatment p = 0.06, interaction p = 0.56), Icam1 (genotype p = 0.002, treatment p = 0.90, interaction p = 0.94) and Serpine1
(genotype p = 0.02, treatment p = 0.16, interaction p = 0.19), but not Icam2 (genotype p = 0.13, treatment p = 0.50, interaction p = 0.74). Untreated
15-month mice are the same in panels (a) and (b). RQ = relative quatification using comparative Ct method. All graphs are plotted with means
+/− standard deviations. * indicates p < 0.05, ** p < 0.01
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Finally, given the clear overlap between the path-
ways of vascular dysfunction observed in tau mice
and AD with that of common co-morbid diseases
such as diabetes, this suggests that reinforcing path-
ways might lead to cumulative or even synergistic
microvascular changes in some patients. In following,
specific patient subgroups would benefit from an ap-
proach targeted to microvascular dysfunction, and
identifying specific biomarkers to identify these indi-
viduals should be a priority.
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