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Rheumatoid arthritis (RA) is a progressive autoimmune disease affecting

the joints. In this study, we investigated the role of the pro-angiogenic fac-

tor leptin in regulating reactive oxygen species (ROS) to promote cell

migration and angiogenesis in RA. We showed that leptin triggered RA

fibroblast-like synoviocyte (FLS) migration by increased ROS expression.

Additionally, leptin enhanced human umbilical vein endothelial cell

(HUVEC) tube formation in a ROS/hypoxia-inducible factor-1a-dependent
manner, accompanied by increased production of vascular endothelial

growth factor and interleukin (IL)-6. We also revealed that antagonists of

tumor necrosis factor, IL-6 and IL-1b down-regulated ROS production of

RA FLS induced by leptin, which subsequently attenuated RA FLS migra-

tion and HUVEC tube formation. These findings demonstrated that leptin

might play an important role in RA FLS migration and HUVEC

angiogenesis.

Rheumatoid arthritis (RA) is a progressive autoim-

mune disease associated with synovial hyperplasia,

pannus formation and synovial inflammation of multi-

ple joints, which leads to disruption of joint cartilage,

bone loss and the disease spreading into normal joints.

Number of cell populations including T cells, B cells,

macrophages and fibroblast-like synoviocytes (FLSs)

are activated in the pathogenesis of RA. However,

FLSs are the primary effector cells of synovial hyper-

plasia and the main origin of inflammatory mediators

resulting in the initiation and development as well as

the joint destruction of RA [1].

Since synovial hyperplasia and pannus formation

are involved in the unique clinical characteristics of

RA, some correlative biological behaviors of FLSs

thought to bear on the course of RA. Firstly, the

abnormal migration of RA FLSs were found to be

responsible for joint inflammation and destruction in

RA [1]. Eisinger et al. [2] have already addressed the

migratory potential of FLSs that favors their shifting
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to a distant unaffected joint and then eventually to the

majority of joints. Secondly, RA FLSs in particular

represent a major effector in the invasive pannus.

Angiogenesis is a key aspect in pannus formation, and

was modulated by vascular endothelial growth factor

(VEGF) as well as its receptor, which favored blood

vessel formation and immersion of leukocytes into syn-

ovial tissues of unaffected joint [3]. It has also been

documented that the expression of hypoxia-inducible

factor (HIF)-1a, a cardinal transcription factor of

VEGF [4], was elevated in RA FLSs with the stimula-

tion of interleukin (IL)-1 or tumor necrosis factor

(TNF)-a [5], indicating the unique role of FLSs in gen-

erating and maintaining the pannus in RA. So it has

become widely held that regulation of the migratory

and angiogenic actions of FLSs might be a promising

treatment strategy for RA.

There are many factors promoting the migration of

FLSs, such as histamine [6], protein arginine methyl-

transferase 5 [7], growth differentiation factor 9 [8],

Toll-like receptor 2 [9] and placental growth factor

[10]. Leptin, initially identified as a pro-angiogenic fac-

tor [11], participate in numerous biological processes.

The functional leptin receptor is expressed in many

cells, including vascular smooth muscle cells, endothe-

lial cells and T lymphocytes. Thus, leptin is known to

have multiple effects in promoting vascular remodel-

ing, atherosclerosis and, more recently, angiogenesis

[12]. It was also documented that leptin elevated VEGF

expression and promoted angiogenesis in human chon-

drosarcoma cells [13]. Gonzalez-Perez et al. [14] pro-

vided evidence on leptin signaling in the modulation of

VEGF promoting tumor angiogenesis, and focused on

the idea that leptin could trigger angiogenesis, growth

and survival of breast cancer cells. Meanwhile emerging

evidence indicated that leptin could up-regulate the

secretion of inflammatory cytokines including TNF-a,
IL-6 and IL-12 in RA patients [15–17]. Our previous

work (M. Wang, J. Wei, H. Li, X. Ouyang, X. Sun, Y.

Tang, B. Wang, X. Li, unpublished data) illustrated that

concentrations of leptin, positively related to the disease

activity, were elevated in the serum of RA patients. In

this study, we concentrated on whether leptin plays a

role on the migration of RA FLSs and angiogenesis in

RA patients.

Materials and methods

Patients and tissue specimens

Rheumatoid arthritis FLSs were isolated by enzymatic

digestion of synovial tissues obtained from eight RA

patients (F/M 6/2, median age 54 (range: 38–61) years,

median duration 7.5 (range: 3–16) years) undergoing total

joint replacement surgery. The rheumatoid factors were

positive in seven patients. Erythrocyte segmentation rate

and anti-cyclic citrullinated peptide antibody checked pre-

operatively had median values of 54 (range: 25–84) mm�h�1

and 55 (range: 35–136) U�mL�1, respectively. All RA

patients in this study fulfilled the American College of

Rheumatology 2009 criteria for RA.

The tissues were minced after washing with PBS and

digested with type I collagenase (Sigma-Aldrich, St Louis,

MO, USA) in Dulbecco’s modified Eagle’s medium

(DMEM) for 2 h at 37 °C in 5% CO2. The study was

agreed by the ethics committee of the Second Hospital of

Dalian Medical University.

Cell culture and treatment

Rheumatoid arthritis FLSs were cultured in DMEM sup-

plemented with 10% FBS (Thermo Fisher Scientific, Wal-

tham, MA, USA), and cell lines were used from three to

five passages in this experiment. Human umbilical vein

endothelial cell (HUVECs) were cultured in M199 medium

(Gibco). All cells were cultured in medium supplemented

with penicillin (50 U�mL�1) and streptomycin (50 lg�mL�1)

and maintained in an incubator with 5% CO2 at 37 °C.

In some experiments, RA FLSs were stimulated with lep-

tin after being preincubated with 2-methoxyestradiol (a

HIF-1a inhibitor; Selleck, Houston, TX, USA), N-acetyl-L-

cysteine (NAC; Sigma-Aldrich) and diphenyleneiodonium

chloride (DPI; Sigma-Aldrich). After 24 h incubation, cul-

ture supernatants were measured by ELISA. In other

experiments, RA FLSs were pretreated with block antibod-

ies of tumor necrosis factor receptor (TNFR) 2, IL-6 recep-

tor (IL-6R) and IL-1b receptor (IL-1bR) (R&D Systems,

Minneapolis, MN, USA) before being incubated with lep-

tin. Detection of RA FLS migration, reactive oxygen spe-

cies (ROS) level and HUVEC tube formation was

performed as described below.

Quantitative RT-PCR

Total RNA was extracted from cells from six RA patients

using RNAiso Plus (Takara Bio, Dalian, China) according

to the manufacturer’s instructions. The primers (Takara

Bio) used to amplify genes were as follows: for HIF-1a:
50-CTCAAAGTCGGACAGCCTCA-30 (forward), 50-
CCCTGCAGTAGGTTTCTGCT-30 (reverse); glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH): 50-TGACCA-

CAGTCCATGCCATCAC-30 (forward), 50-CGCCTGC

TTCACCACCTTCTT-30 (reverse). Gene expression was

quantified relative to the expression of the housekeeping gene

GAPDH and normalized to control by standard 2�ΔΔCT cal-

culation.
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ELISA assay

Supernatants from eight patients’ RA FLSs were used for

ELISA. ELISA kits used for detecting the concentration of

cytokines in the supernatants according to the manufactur-

ers’ instructions were as follows: VEGF, IL-1b and TNF-a
ELISA kits from SenBeiJia Bio (Nanjing, China) and IL-6

ELISA kit from BioLegend (San Diego, CA, USA).

Quantification of ROS levels

20,70-Dichlorofluorescein diacetate (DCFHDA; Sigma-

Aldrich), a membrane-permeant probe, was used to detect

intracellular ROS level. Six RA patients’ cells were used for

ROS detection. After the addition of leptin for 1 h, RA

FLSs were incubated with DCFHDA in serum-free med-

ium at 37 °C for 30 min. After washing twice with PBS,

mean fluorescence intensity was determined and analyzed

with a flow cytometer (Accuri C6; BD Biosciences, San

Jose, CA, USA) at an excitation wavelength of 488 nm and

an emission wavelength of 538 nm. Cells were observed

under a microscope at 9100 magnification.

Scratch assay

RA FLSs from six patients were used for a scratch assay.

RA FLSs were drawn into a six-well plate after 24 h at a

confluence of 80%. Next, scratches were made in each well

using a 200 lL pipette tip and replaced with serum-free

DMEM. The widths of wound at 0 and 24 h were deter-

mined from images obtained with an inverted microscope

(Olympus 1X71, Tokyo, Japan) and evaluated by measur-

ing the distance of the wound region in the absence of

cells.

Transwell migration assay

Rheumatoid arthritis FLSs from six patients were used for

a Transwell migration assay. Cell migration was performed

by using Transwell chambers (8 lm pores; Corning, New

York, USA) in 24-well plates. RA FLSs were added into

the upper chambers and the lower chambers were filled

with DMEM containing 10% FBS as the chemoattractant.

After 24 h incubation, unmigrated cells in the upper cham-

ber were removed, and the migrated cells on the lower side

of the membranes were immersed into methanol for 10 min

and stained with 0.1% crystal violet. Images were taken

using an inverted microscope. Migrated cells were counted

from five random fields (9100 magnification).

HUVEC tube formation assay

Supernatants from six RA patients treated with vehicle or

leptin for 24 h were collected and stored at �20 °C before

using. Next, growth factor reduced Matrigel (BD

Biosciences) was added into 48-well plates (100 lL each)

for gelatinizing at 37 °C for 30 min. Serum-starved

HUVECs were removed and resuspended in a 1 : 1 mixture

of RA FLS culture supernatants and 1% FBS DMEM (to-

tal 200 lL) and then plated on the top of the Matrigel at

37 °C. Tube formation was observed every hour after cell

seeding. Representative photos were taken at 8 h with an

inverted microscope (9100 magnification) and the number

of lengthened tubes were quantified using IMAGEJ software

(NIH, Bethesda, MD, USA).

Flow cytometry analysis

Six RA patients’ cells were used for HIF-1a protein mea-

surement. After RA FLSs were treated with leptin for 4 h,

the cells were fixed and permeabilized, then stained using

phycoerythrin-conjugated anti-HIF-1a (R&D Systems).

Mean fluorescence intensity was analyzed with a flow

cytometer (Accuri C6; BD Biosciences).

Statistics

SPSS V.17.0 (SPSS Inc., Chicago, IL, USA) was used for

statistical analysis. Statistical analysis was carried out using

Wilcoxon’s signed-rank test or one-way ANOVA. A P-

value of < 0.05 was considered statistically significant.

Results

Leptin triggered RA FLS migration and promoted

HUVEC tube formation

Rheumatoid arthritis FLSs have tumor-like character-

istics including migration and angiogenesis, which may

be caused by chronic exposure to a variety of stimuli.

Leptin has been reported to increase cell migration

and angiogenesis in some types of cancer cells and

myelomonocytic cells [18,19]. In this study, we wanted

to know whether leptin can promote RA FLS migra-

tion and HUVEC tube formation.

First, we explored the influence of leptin on RA

FLS migration. Scratch assays and Transwell migra-

tion assays were performed after leptin had stimulated

RA FLSs for 24 h. As shown in the scratch assay, lep-

tin-treated RA FLSs were more likely to migrate into

the created cell-free area than untreated FLSs. Subse-

quently, FLS migration was determined by a Transwell

migration assay. RA FLSs treated with leptin exhib-

ited strong upregulation of migration compared with

the control group (*P ≤ 0.05; Fig. 1A).

Angiogenesis has been considered to be a critical step

in the initiation and progression of chronic arthritis

[20]. RA FLSs, as important inflammatory cells, can

release proangiogenic growth factors including VEGF
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and IL-6, which facilitate neovascularization. Here we

observed tube formation of HUVECs that were treated

with conditioned medium (CM) derived from leptin-sti-

mulated RA FLSs or untreated RA FLSs. As we

expected, leptin-treated CM induced much more tube

formation than vehicle-treated CM (*P ≤ 0.05;

Fig. 1B). We also found that leptin-stimulated RA

FLSs had markedly increased levels of VEGF and IL-6

in culture supernatants (**P ≤ 0.01; Fig. 1C).

ROS production was involved in leptin-induced

RA FLS migration and HUVEC tube formation

Studies have shown that IL-1b induces endothelial cell

angiogenesis by upregulating fibroblast growth factor

2 accompanied with increased ROS production [21],

which suggests that ROS might be related to the

angiogenesis process. First, to evaluate the effects of

leptin on ROS generation by RA FLSs, cells were

incubated with or without leptin for 24 h, and the

intracellular ROS level was determined with the

DCFHDA fluorescent probe. The result showed a

remarkable increase in DCFHDA fluorescence in lep-

tin-treated RA FLSs using fluorescence-activated cell

sorting (FACS) and immunofluorescence analysis

(*P ≤ 0.05; Fig. 2A). Next, to determine whether ROS

took part in leptin-induced FLS migration and

HUVEC tube formation, NAC (a ROS scavenger) and

DPI (a ROS inhibitor) were used to block the effect of

ROS. Pretreatment of RA FLS with NAC and DPI

significantly attenuated leptin-triggered RA FLS

migration (**P ≤ 0.01; Fig. 2B). Furthermore, the

tube formation stimulated by leptin-treated CM was

significantly inhibited by pretreatment with NAC and

DPI (**P ≤ 0.01; Fig. 2C) and the levels of VEGF

and IL-6 were also decreased (*P ≤ 0.05, **P ≤ 0.01;

Fig. 2D,E). The results suggest that ROS production

of leptin-treated RA FLSs was involved in RA FLS

migration and HUVEC tube formation.

ROS-mediated leptin-induced HUVEC tube

formation via the activation of the HIF-1a
pathway

To further explore the mechanisms of leptin-induced

HUVEC tube formation, we also examined the activa-

tion of HIF-1a, a related transcription factor that reg-

ulates VEGF expression by binding to hypoxia-

response element. First, we explored the effect of leptin

on HIF-1a expression of RA FLSs. The results from

Fig. 1. Leptin induced RA FLS migration and HUVEC tube formation. (A) RA FLSs isolated from RA patients were stimulated with or

without leptin (100 ng�mL�1) for 24 h. Cell migration was measured by using the scratch assay and Transwell chambers. Representative

photographs of control and leptin-treated cells at 0 and 24 h are shown (n = 6). (B) RA FLSs were treated with or without leptin

(100 ng�mL�1) for 24 h. CM was then collected and applied to HUVEC cultures after addition of these cells to the Matrigel. The number of

HUVEC tubes formed was determined by microscopy (n = 6). (C) RA FLSs were stimulated with or without leptin (100 ng�mL�1) for 24 h.

The level of VEGF and IL-6 in the supernatant was determined by ELISA (n = 8). All experiments were repeated three times. Data represent

the mean � SEM (Wilcoxon’s signed-rank test; *P < 0.05, **P < 0.01).
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qPCR and FACS indicated that HIF-1a mRNA

expression and protein level were significantly

increased in leptin-treated RA FLSs (**P ≤ 0.01;

Fig. 3A). Next, further analysis showed that leptin-

mediated HIF-1a expression could be markedly abro-

gated by NAC and DPI (**P ≤ 0.01; Fig. 3A), which

indicated that leptin promoted HIF-1a expression on

RA FLS via ROS production. Moreover, ELISA

demonstrated that leptin-induced VEGF and IL-6

levels could be reduced by HIF-1a inhibitor treatment

(2-methoxygestradiol; ***P ≤ 0.001; Fig 3B). These

results indicated that leptin-induced HIF-1a expression

might serve as the downstream effector of ROS, which

promoted VEGF and IL-6 production in RA FLSs.

Effect of antagonists of TNFR2, IL-6R and IL-1bR
on ROS generation, RA FLS migration and

HUVEC tube formation

The blockades of TNF, IL-6 and IL-1 are widely used

in clinical RA treatment and are beneficial in amelio-

rating disease and controlling symptoms. Can

antagonists of these cytokines influence RA FLS

migration and HUVEC tube formation by down-regu-

lating leptin-induced ROS production? We preincu-

bated anti-TNFR2, anti-IL-6R and anti-IL-1bR with

leptin-stimulated RA FLSs separately. A decline in

ROS generation (**P ≤ 0.01; Fig. 4A,B), RA FLS

migration (***P ≤ 0.001; Fig. 5A) and HUVEC tube

formation (*P ≤ 0.05; Fig. 5B) was discovered in

treatments with antagonists of TNFR2, IL-6R and

IL-1bR.

Discussion

In the present study, we showed that leptin triggered

RA FLS migration by increased ROS expression.

Additionally, leptin enhanced HUVEC tube formation

in a ROS/HIF-1a-dependent manner, accompanied by

elevated VEGF and IL-6 production. We also revealed

that antagonists of TNFR, IL-6R and IL-1bR down-

regulated ROS production of RA FLSs induced by

leptin, which subsequently attenuated RA FLS migra-

tion and HUVEC tube formation.

Fig. 2. ROS generation was involved in leptin-stimulated RA FLS migration and HUVEC tube formation. (A) RA FLSs were labelled with

DCFHDA (5 lM) after being incubated with leptin (100 ng�mL�1) for 1 h. The fluorescent intensity of ROS was measured by flow cytometry

and immunofluorescence (n = 6). (B,C) RA FLSs were pretreated with NAC (5 mM) or DPI (5 lM) for 1 h, and then stimulated with leptin

(100 ng�mL�1) for 24 h. Cell migration was examined with Transwell chambers. Matrigel assay was performed to test HUVEC tube

formation (n = 6). (D,E) The levels of VEGF and IL-6 in the supernatant were measured by ELISA (n = 8). All experiments were repeated

three times. Data represent the mean � SEM (Wilcoxon’s signed-rank test; *P < 0.05, **P < 0.01).
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Rheumatoid arthritis is mainly characterized by syn-

ovial hyperplasia, activation of inflammatory cells and

synovium invasion [22]. RA FLSs, as key players in

joint destruction and migration, have been shown to

contribute to the formation of invasive pannus

through migrating to locally adjacent joints susceptible

Fig. 3. The ROS/HIF-1a pathway participated in leptin-induced HUVEC tube formation. (A) RA FLSs were pretreated with NAC and DPI for

1 h and then stimulated with leptin (100 ng�mL�1) for 4 h. HIF-1a mRNA expression of RA FLSs was determined by real-time PCR. GAPDH

was used as a control in real-time PCR. FACS was used to detect HIF-1a protein level (n = 6). (B) RA FLSs were preincubated with 10 lM

2-methoxyestradiol (a HIF-1a inhibitor) for 1 h and then stimulated with leptin (100 ng�mL�1) for 24 h. The levels of VEGF and IL-6 in the

supernatant were examined by ELISA (n = 8). All experiments were repeated three times. Data represent the mean � SEM (one-way

ANOVA; **P < 0.01, ***P < 0.001).

Fig. 4. ROS production was decreased by antagonists of TNF, IL-6 and IL-1b. RA FLSs were incubated with anti-TNFR2 (0.25 lg�mL�1),

anti-IL-6R (0.5 lg�mL�1) and anti-IL-1bR (0.5 lg�mL�1) for 2 h and then cultured with leptin (100 ng�mL�1) for 1 h. ROS production was

measured by flow cytometry (A) and immunofluorescence (B) (n = 6). All experiments were repeated three times. Data represent the

mean � SEM (one-way ANOVA; **P < 0.01).
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to matrix destruction and even to distant unaffected

joints through the bloodstream [23]. Several inflamma-

tory factors such as IL-21 have been reported to pro-

mote RA FLS migration and invasion by upregulating

matrix metalloproteinase in the phosphoinositide 3-

kinase–signal transducer and activator of transcrip-

tion-3 pathway [24]. Angiogenesis is the outgrowth

and proliferation of capillaries from pre-existing blood

vessels. In RA, the formation of new blood vessels

provides oxygen and nutrients to the hypertrophic

joint and supports the elevated transendothelial leuko-

cyte infiltration that promotes synovial inflammation

and bone destruction [20]. During active disease, RA

FLSs are triggered by inflammatory mediators to pro-

duce proangiogenic growth factors and cytokines such

as VEGF and IL-6. VEGF is a key regulator in the

starting phase of angiogenesis, while IL-6 plays a cen-

tral role in RA angiogenesis through both its direct

effect on endothelial cells and its indirect effect on dif-

ferent cell types in RA synovium to produce proangio-

genic factors [22]. Kayakabe et al. [25] proved that IL-

6 was capable of inducing VEGF production in a co-

culture system of RA FLSs and endothelial cells.

Leptin is one of the most important hormones

secreted by adipose tissue and it regulates appetite,

bone mass, basal metabolism, reproductive function

and insulin secretion by binding and activating the

long form of leptin receptor [26]. Recent studies

showed that leptin signaling increased cell prolifera-

tion in breast cancer, led to cells evading apoptosis

and induced angiogenesis [13,27,28]. The latest find-

ings emphasize the role of leptin in the autoimmune

and inflammatory rheumatic diseases, such as RA

[29,30]. Plasma leptin levels correlated with 28-joint

disease activity score and IL-17 in RA patients with

conventional pharmacological treatment, which sug-

gested that leptin could be a biomarker of long-term

disease [31]. Our previous study showed that leptin

could increase peripheral CD4+CXCR5+ICOS+ T

cell numbers in RA patients (data not shown). In this

study, we demonstrated that leptin promoted RA

FLS migration and leptin-treated RA FLS CM facili-

tated HUVEC capillary-like structure formation,

accompanied by the up-regulation of VEGF and IL-6

levels.

Hyperplasia of RA FLSs leads to over-proliferation

of synovial tissue, which results in increased oxygen

consumption in synovium and thereby forms a hypoxic

environment. Hypoxia is essential for the inflamma-

tion, angiogenesis and cartilage degradation of RA

and is associated with the generation of ROS. Accu-

mulating evidence has shown that excess production of

ROS is associated with cell migration, inflammation

and apoptosis. In the present study, we found leptin-

Fig. 5. RA FLS migration and HUVEC tube formation were attenuated by antagonists of TNF, IL-6 and IL-1b. RA FLSs were pretreated with

anti-TNFR2 (0.25 lg�mL�1), anti-IL-6R (0.5 lg�mL�1) and anti-IL-1bR (0.5 lg�mL�1) for 2 h before stimulated with leptin (100 ng�mL�1) for

24 h. (A) RA FLS migration was tested by Transwell chambers (n = 6). (B) A Matrigel assay was performed to measure HUVEC tube

formation by microscopy (n = 6). All experiments were repeated three times. Data represent the mean � SEM (one-way ANOVA;

*P < 0.05, ***P < 0.001).
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induced ROS expression markedly promoted RA FLS

migration. However, the master regulators of the

immune response to oxygen tension are HIFs, levels of

which are sensitive to oxygen tension changes [32,33].

HIF-1 is a heterodimeric transcription factor com-

posed of HIF-1a, which is oxygen-regulated, and HIF-

1b, which is expressed constitutively in nuclei. A study

has shown that the increase of cellular ROS generation

amplified HIF-1a stabilization and HIF-dependent

expression of genes such as that for VEGF [34]. Here,

we found that leptin-stimulated HIF-1a expression

was mediated by ROS accompanied with increased

VEGF and IL-6 levels. Taken together, these findings

indicated that HIF-1a was a downstream regulator of

leptin-induced ROS production, which regulated

angiogenesis via up-regulating VEGF and IL-6 expres-

sions.

Inflammatory cytokines such as TNF-a, IL-6 and

IL-1 are important mediators in driving inflammation

and joint destruction in RA. TNF and IL-1 stimulate

synoviocytes and chondrocytes to release matrix met-

alloproteinases and other proteinases, and up-regulate

the expression of proinflammatory genes, resulting in

elevated production of various proinflammatory medi-

ators [35,36]. IL-6 promotes survival of B cells and

their differentiation into autoantibody-secreting long-

lived plasma cells leading to RA joint destruction

[37]. TNF, IL-6 and IL-1b blocking agents in RA

patients resulted in a decline in disease severity and

relief of arthritis symptoms. In this study, we have

shown that antagonists of TNF, IL-6 and IL-1 could

down-regulate leptin-induced ROS production and

attenuate RA FLS migration and angiogenesis, which

might offer a promising mechanism for clinical treat-

ment of RA.

In summary, our findings clearly demonstrated that

leptin induced RA FLS migration and promoted

HUVEC tube formation through the activation of the

ROS/HIF-1a signaling pathway. This study suggested

that leptin inhibition could be a potential therapeutic

target for the prevention of joint invasion and angio-

genesis in RA. However, the mechanisms of how leptin

promoted RA FLS migration and angiogenesis need

further exploration.
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