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Background: Immuno-compromised mice infected with Helicobacter typhlonius are
used to model microbially inducted inflammatory bowel disease (IBD). The specific
mechanism through which H. typhlonius induces and promotes IBD is not fully
understood. Access to the genome sequence is essential to examine emergent
properties of this organism, such as its pathogenicity. To this end, we present
the complete genome sequence of H. typhlonius MIT 97-6810, obtained through
single-molecule real-time sequencing.
Results: The genome was assembled into a single circularized contig measuring
1.92 Mbp with an average GC content of 38.8%. In total 2,117 protein-encoding genes
and 43 RNA genes were identified. Numerous pathogenic features were found, including
a putative pathogenicity island (PAIs) containing components of type IV secretion
system, virulence-associated proteins and cag PAI protein. We compared the genome
of H. typhlonius to those of the murine pathobiont H. hepaticus and human pathobiont
H. pylori. H. typhlonius resembles H. hepaticus most with 1,594 (75.3%) of its genes
being orthologous to genes in H. hepaticus. Determination of the global methylation
state revealed eight distinct recognition motifs for adenine and cytosine methylation.
H. typhlonius shares four of its recognition motifs with H. pylori.
Conclusion: The complete genome sequence of H. typhlonius MIT 97-6810 enabled
us to identify many pathogenic features suggesting that H. typhlonius can act as a
pathogen. Follow-up studies are necessary to evaluate the true nature of its pathogenic
capabilities. We found many methylated sites and a plethora of restriction-modification
systems. The genome, together with the methylome, will provide an essential resource
for future studies investigating gene regulation, host interaction and pathogenicity of
H. typhlonius. In turn, this work can contribute to unraveling the role of Helicobacter in
enteric disease.

Keywords: Helicobacter typhlonius, genome assembly, single-molecule real-time sequencing, Pacific
Biosciences, pathogenicity, methylation
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INTRODUCTION

The genus Helicobacter has rapidly expanded since it was
first proposed in Goodwin et al. (1989). Today, the genus
includes 35 Helicobacter species (Euzeby, 1997), with several
(putative) novel species having been discovered recently (Menard
et al., 2014). Members of this genus are Gram-negative and
are characterized by having highly motile, multiple sheathed
flagella and a helical, curved or straight unbranched morphology
(Goodwin et al., 1989). All known Helicobacter strains live
in human and animal hosts, where they primarily colonize
the gastrointestinal tract (Franklin et al., 2001). Infection with
Helicobacter sp. has been shown to be endemic in many animal
facilities worldwide (Fox et al., 1994; Zenner, 1999; Whary and
Fox, 2004; Chichlowski et al., 2008). Although as pathobionts
they are benign commensals in immune-competent animals, they
can act as opportunistic pathogens in immune-compromised
mice.

The Helicobacter genus is well known for its association with
enteric-, gastric-, and hepatic disease. The extensively studied
human pathobiont, Helicobacter pylori, has been proven capable
of causing a persistent inflammatory response in the stomach
resulting in a 10–20% lifetime risk of developing peptic ulcers
and a 1–2% risk of developing gastric cancer (Graham, 1989;
Marshall, 1993; Parsonnet, 1995; Fox et al., 1999). Pathology
caused by rodent Helicobacter sp. is often similar to those seen in
human enteric diseases, especially inflammatory bowel diseases
(IBDs) (Franklin et al., 2001). Consequently, rodent Helicobacter
sp. are frequently used to infect immune-compromised mice to
study these conditions in more detail.

One species used for IBD modeling is H. typhlonius. This
murine Helicobacter, characterized by its lack of urease activity,
is a prevalent intestinal colonizer of laboratory and feral mice
(Franklin et al., 2001; Parker et al., 2009; Lofgren et al., 2012;
Wasimuddin et al., 2012). Infection withH. typhlonius can induce
and promote the development of severe IBD and IBD-associated
neoplasia in immune-compromised Il10−/− mice (Chichlowski
et al., 2008). These characteristics make infection with this
species very useful to study IBD pathogenesis and treatment
(Franklin et al., 2001; Chichlowski et al., 2008). Recently, we have
shown thatH. typhlonius infection can alsomodulate non-colitis-
associated intestinal tumor formation as tested in conditional Apc
mutant mice (Dingemanse et al., 2015).

To further elucidate the role of Helicobacter in enteric-,
gastric-, and hepatic disease, it is increasingly important to
determine the genomic sequence of the strain under study.
Extensive sequencing efforts have resulted in the complete
genomic sequences for at least 9 Helicobacter species, including
many different strains (EMBL European Bioinformatics Institute
[EMBL-EBI], 2014), while 17 species have been partly sequenced
(National Center for Biotechnology Information [NCBI], 2014).
Access to the complete genome contributes to the identification
of potential virulence factors, permits the investigation of tissue
tropism and may help unveil the mechanisms of pathogenesis. In
this study, we reveal the complete sequence of the H. typhlonius
genome along with its global methylation state at single-
nucleotide resolution.

The H. typhlonius MIT 97-6810 genome was sequenced using
Pacific Biosciences single-molecule real-time (SMRT) sequencing
technology. The resulting long, highly accurate reads were
virtually free of context-specific biases (Eid et al., 2009), ensured
uniform genome coverage and were capable of resolving large
repeats and structural variations. Ensuing de novo assembly and
annotation of the genome, we performed base modification and
motif identification analysis. It has been shown that methylation
is involved in maintaining genome integrity, gene regulation,
host interaction, cellular defense and limiting transformation by
destroying foreign DNA (Jeltsch, 2003; Wion and Casadesus,
2006; Gonzalez et al., 2014; Krebes et al., 2014; Roberts et al.,
2015). Finally, we present our comparative genomic results
on closely related murine pathobiont H. hepaticus (Franklin
et al., 2001; Fox et al., 2011; Krebes et al., 2014) and human
pathobiont H. pylori. In addition, the global methylation state of
H. typhlonius is compared to those of H. pylori strains 26695 and
J99-R3 (Krebes et al., 2014).

RESULTS AND DISCUSSION

Genome Assembly and Annotation
We performed SMRT sequencing to determine the complete
genome sequence of H. typhloniusMIT 97-6810. In total 164,030
long (500- 29,940 bp), high-quality single-molecule sequencing
reads were obtained (∼338 × coverage) (Table 1). Due to the
nature of SMRT sequencing technology, long reads exhibit a
relatively high randomly distributed error rate (Eid et al., 2009).
Since most assemblers do not tolerate error rates greater than 5–
10%, we used the hierarchical genome assembly process (HGAP)
to correct sequencing errors. The resulting 4,157 corrected reads
(Table 1) were assembled into a single 1,920,832 bp long contig
with an average GC content of 38.8% (Table 2; Figure 1). To
assess the accuracy and validity of the assembly, all sequencing
reads were aligned to the assembled genome. The concordance
between reads and reference sequence was found to be over
99.99% and no indication of sequence disagreement or coverage
fluctuation could be found.

The genome was examined for repeats and structural
rearrangements. We found 13 long repeats and 42 short tandem
repeats (STRs). There is one distinct region (genomic coordinates

TABLE 1 | Read statistics of 3 SMRT sequencing runs pre- and
post-correction.

PacBio RSII (Raw) PacBio RSII (Corrected)1

Number of reads 164,030 4,157

Total nucleotides 649,035,578 37,634,528

Median read length 2,795 bp 9,053 bp

5th percentile 805 bp 686 bp

95th percentile 10,881 bp 16,281 bp

Maximum length 29,940 bp 20,234 bp

GC content 40.38% 38.86%

Coverage depth 337.89× 19.59×
1Error-corrected PacBio reads generated by HGAP with seed length of 6,000 bp.
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TABLE 2 | Single-molecule real-time (SMRT) de novo genome assembly
statistics.

SMRT de novo1

Number of reads 4,157

Sequencing depth 19.59×
Number of contigs 1

Bases in scaffolds 1,920,832 bp∗

GC content 38.8%

Accuracy 99.9890%

1SMRT de novo assembly was carried out on corrected PacBio reads using Celera
Assembler 8.1.
∗The total bases in the scaffolds were determined after circularization of the final
assembly.

∼885.2–907.9 Kb) that shows a complex repeat structure having
relatively high coverage. This particular structure can also be seen
in the assembly graph (Supplementary Figure S1). The repeat
structure (size 22,672 bp) is slightly larger than the insert size of
our sequence library (∼20 Kb), making it a challenging region
to assemble. Therefore, although the sequencing reads seem to
confirm the final genome sequence, we cannot exclude that the
assembler could not fully resolve this region.

Next, the genome of H. typhlonius was automatically
annotated using the RAST annotation service (Aziz et al.,
2008; Overbeek et al., 2014). In total 2,117 protein-encoding
genes (PEGs) and 43 RNA genes were identified, from which
890 PEGs (43%) were allocated to 278 annotated subsystems,
biological processes or structural complexes realized by a set of
functional roles (Overbeek et al., 2005) (Table 3). Subsequently,
we estimated the location of the origin of replication (oriC) using
Ori-Finder in conjunction with the DoriC database (Gao and
Zhang, 2008; Gao et al., 2013). The genome was circularized
accordingly with location of the predicted oriC at the start of the
genome sequence (Supplementary Figure S2). The dnaA gene was
found 11,655 bp upstream of the oriC region.

Recently, Sheh et al. (2014) deposited a draft-genome assembly
of H. typhlonius MIT 98-6810 (also known as MIT 97-6810)
in GenBank (ASM76576v1). They used the Illumina MiSeq
platform to generate short reads that were assembled into 127
contigs which were subsequently scaffolded into 25 scaffolds.
Compared to our assembly this assembly is fragmented and
contains many scaffolding errors (Supplementary Figure S3).
This fragmentation is likely caused by the nature of the Illumina
data itself. Based on our assembly of the genome we could
identify at least 13 repeated regions longer than 500 bp. Short
Illumina reads (up to 300 bp) are unable to span such large
repeats and structural variations, making it extremely difficult
for the assembler to fully resolve these regions. Furthermore,
DNA sequences having high or low GC content are notoriously
difficult to PCR and therefore to sequence using second
generation sequencing platforms. The PacBio RSII sequencer
is not hampered by such characteristics; reads are long and
there are virtually no context-specific biases. This enabled us to
assemble the entire genome into a single continuous contig. Our
assembly provides a comprehensive view of the genetic makeup
and architecture of H. typhlonius.

Pathogenicity
Pathogenicity islands (PAIs) are distinct genetic elements that
encode virulence-associated factors (Fox et al., 2011). They
can often be detected by having a GC content, codon usage
and k-mer frequencies, which are distinguishable from the
rest of the genome owing to their origin through horizontal
gene transfer (Che et al., 2014). The H. typhlonius genome
contains one region with markedly lower GC content (∼34.2%)
that is flanked by repeats at the 3′ end (∼1.53–1.60 Mb)
(Figure 1). The size of this genomic island is estimated to be
around 65.5 Kb and is located at 1,532,276–1,597,776 bp. This
region contains 75 PEGs that constitute mostly hypothetical
proteins (36 PEGs) but also includes many components
of type IV secretion system (T4SS). The ability to secrete
compounds including toxins is essential for virulence and
survival (Fronzes et al., 2009). T4SS families can be divided into
three classes based on functionality. First, T4SSs are involved in
conjugation, a mechanism that enables the transfer of genetic
material such as antibiotic resistance genes among bacteria
(Dreiseikelmann, 1994). Second, T4SSs mediate DNA uptake
from and release into their surroundings, further enabling
genetic exchange (Hamilton and Dillard, 2006). Finally, T4SSs
are directly involved in the transfer of protein effectors,
including toxins, into eukaryote cells during infection (Fronzes
et al., 2009; Terradot and Waksman, 2011). Each of these
T4SS classes have been identified in H. pylori (Terradot and
Waksman, 2011). T4SS typically consists of a collection of
twelve proteins: VirB1–11 and VirD4. The presence of VirB2,
VirB4-VirB6, VirB8-VirB11, and VirD4 in H. typhlonius was
confirmed via RAST annotation (Supplementary Table S1).
Additionally, using BLASTX, we observed strong evidence for
the presence of VirB3 and VirB7 in H. typhlonius, whereas VirB1
was absent. Furthermore, cytotoxin-associated gene (Cag) PAI
protein and 3 virulence-associated proteins were also present
in the genome of H. typhlonius (Figure 2, Supplementary
Table S1). The presence of a partial T4SS, a Cag protein
and several virulence factors suggests that this region is a
putative PAI.

Suerbaum et al. (2003) identified and characterized a
PAI (HHGI1) in H. hepaticus ATCC 51449. This PAI spans
71 Kb and has a GC content of 33.2%. HHGI1 contains
70 open reading frames (ORFs) including pathogenic and
virulent homologs, but they predominantly encode hypothetical
proteins (Suerbaum et al., 2003). We could not confirm
the presence of HHGl1 in H. typhlonius. Moreover, BLAST
results of all 70 ORFs against the H. typhlonius genome
retrieved very limited hits, except for one H. hepaticus
gene, HH0237, that was partly found in H. typhlonius.
HH0237 is a homolog of a structural component of known
bacterial type VI secretion systems (T6SS) (Fox et al.,
2011).

We searched for genes encoding subunits of cytolethal
distending toxins (CDTs), which are present in several Gram-
negative pathogens, including Helicobacters. CdtA and CdtC
subunits bind together to subsequently deliver an active subunit
of the CdtB toxin (Fox et al., 2011). Each of these three subunits
was found in the H. typhlonius genome (Supplementary Table
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FIGURE 1 | Heliobacter typhlonius genomic architecture. Circos plot outlines the genomic features of H. typhlonius. On the outside, sites with short tandem
repeats are indicated by black dots. The following ring (outside to inside) illustrates protein-encoding genes for the forward and reverse strand, colored by associated
subsystem. Delineated separately (inner spots) are multiple pathogenic features, including cytolethal distending toxins (black), components of the T4SS (blue),
virulence-associated protein 2 s (purple), a Cag pathogenicity island protein (red) and sequences that match pathogenic protein families in H. hepaticus (gray). The
overall GC content is shown in blue, where light blue regions indicate <5% and dark blue >5% deviation from the average GC content (bin size: 1 Kb). The coverage
profile of the SMRT sequencing reads is shown in gray (bin size: 1 Kb). On the inside, repetitive sequences and structural variations (>95% similarity at the
nucleotide level) are shown throughout the genome with repeats >6 Kb colored red.

S1). The active CdtB unit has been associated with a variety
of biological functions including DNase I-like function, cell-
cycle arrest, phosphatase activity, and apoptotic cell death (Ge
et al., 2008). Loss of CDT functionality in CDT-deficient isogenic
H. hepaticus mutants affects the capability to colonize the large
intestine, resulting in milder symptoms of typhlocolitis upon
infection in mice (Young et al., 2004; Ge et al., 2005; Pratt et al.,
2006).

We used multiple tools to predict and identify additional
putative virulence factors, antimicrobial resistance genes or
pathogenic features. VirulenceFinder and ResFinder (Zankari

TABLE 3 | Annotation statistics.

H. typhlonius

Number of PEGs 2,117

Average PEG length 836 bp

Coding density 92.2%

PEGs assigned to subsystem 890 (42.0%)

Hypothetical proteins 747 (35.3%)

Number of rRNAs 4

Number of tRNAs 39

et al., 2012; Joensen et al., 2014) did not detect any additional
virulence- or antimicrobial resistance genes. PHAST (PHAge
Search Tool) (Zhou et al., 2011) was used to detect and annotate
prophage sequences, but none were found. PathogenFinder
(Cosentino et al., 2013) reported 19 proteins that are linked to
pathogenic protein families in H. hepaticus, comprising mostly
hypothetical proteins (Supplementary Table S2).

Comparative Genome Analysis
Phylogenetic analysis by Franklin et al. (2001) has demonstrated
that H. typhlonius is closely related to H. hepaticus. This latter
Helicobacter is a genuine murine pathobiont, capable of causing
IBD, chronic hepatitis and liver cancer in numerous mouse
models (Suerbaum et al., 2003; Fox et al., 2011). In turn,
H. hepaticus is closely related to the human pathobiont and
type species H. pylori (Franklin et al., 2001). The genome
of H. typhlonius (1,92 Mbp) is somewhat larger than the
genome of H. hepaticus ATCC 51449 (1.80 Mbp, accession
NC_004917.1) and H. pylori 26695 (1.67 Mbp, accession
NC_000915). The GC content is very similar for H. typhlonius
(38.8% GC) and H. hepaticus (38.9% GC), while H. pylori (35.9%
GC) deviates from the two having a considerably lower GC
content.
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FIGURE 2 | Components of type IV secretion system in H. typhlonius. Shown is a part of a putative pathogenicity island on the H. typhlonius genome
(∼1.55–1.58 Mb). Components of the T4SS are colored blue. A virulence-associated protein and a Cag pathogenicity island protein are shown in purple and red,
respectively. Hypothetical proteins have been omitted from this illustration.

FIGURE 3 | Genetic conservation. Scatterplot showing all protein-encoding genes of H. typhlonius and their respective orthologs in H. hepaticus and H. pylori.
Similarity is expressed as the percentage of amino acid identity. Protein-coding genes are colored according to subsystem adopting the same color scheme as in
Figure 1. PEGs colored gray do not have any association to a subsystem.

Although less PEGs are predicted for H. hepaticus ATCC
51449 and H. pylori 26695 (1,879 and 1,620 PEGs respectively),
H. typhlonius sequence mostly resembles H. hepaticus as 1,594

(75.3%) of its genes were found as orthologous to genes in
H. hepaticus. This number is significantly lower for H. pylori
having only 1,170 (55.3%) orthologous genes. This is also evident
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from the amino acid identity of orthologs in H. hepaticus (76.4%
AAI) compared to that of H. pylori (50.6% AAI) (Figure 3). The
conservation of major subsystems in H. hepaticus and H. pylori
varies, with specific subsystems being conserved higher in one
over the other and vice versa (Supplementary Figure S4).

We also identified 468 PEGs that are unique to H. typhlonius.
The great majority of these PEGs (386) constitute hypothetical
proteins. There are nonetheless several annotated PEGs with
predicted functions including two virulence-associated proteins,
six glycosyl transferases, DNA recombination protein RmuC,
DNA sulfur modification protein DndD, several PEGs that are
part of restriction-modification (R-M) systems and two CRISPR-
associated (Cas) proteins: Cas1 and Cas2. (Supplementary Table
S3). Cas1 and Cas2 are part of a complete type II CRISPR-
Cas system including Cas9 and a downstream CRISPR array
containing 22 spacers that are located at 1,593,570–1,595,058 bp.

Furthermore, we compared the H. typhlonius genome
against all other Helicobacter genomes available in The SEED
genome database (Overbeek et al., 2005). A collection of
38 annotated PEGs with diverse functions was exclusively
found in H. typhlonius (Supplementary Table S4). This set of
PEGs determines the uniqueness of the H. typhlonius genome,
representing 2.1% of this genome.

Base Modifications and Associated
Motifs
We have identified components of R-M systems in the
H. typhlonius genome, some of which are present in H. hepaticus
ATCC 51449 and H. pylori strain Shi470 as well (Supplementary

Table S5). Many putative DNAmethyltransferases (MTases) were
found, indicating that it should be possible to detect different
types of methylation. Of the 18 DNA MTases, 9 orthologs were
also present in H. hepaticus ATCC 51449 (average 84.2%AAI)
and 11 orthologs were found in H. pylori Shi470 (average 46.6%
AAI) (Supplementary Table S6). This suggests that the three
organisms may have specific methylation patterns in common
and may thus share similar gene regulation, host interaction,
pathogenicity or cellular defense systems. Furthermore, we could
find 15 putative RNA MTases, all of which were also found in
H. hepaticus (average 68.6% AAI), while 13 were seen in H. pylori
Shi470 (average 47.5% AAI) (Supplementary Table S7).

Genome-wide analysis of polymerase kinetics during SMRT
sequencing enabled the detection of methylated adenine and
cytosine bases. The DNA did not receive Tet1 oxidation
treatment prior to SMRT sequencing since this requires further
fragmentation of the sequencing library, which in turn is not
suited for completing the genome of H. typhlonius. Without Tet1
treatment only N6-methyladenine (6mA) and 4-methylcytosine
(4mC) signals could be reliably detected (Clark et al., 2013).
Adenine bases showed a very distinct modification signal that
corresponded well with the overall coverage depth on each strand
(Supplementary Figures S5 and S6). We found 28,716 6mAs and
2,049 4mCs base modifications that were distributed across the
genome. In total 27,399 methylated adenines (95.4%) and 1,977
methylated cytosines (73.7%) were associated with 8 putative
MTase recognition motifs (Figure 4).

Krebes et al. (2014) performed SMRT sequencing to conduct
a comprehensive analysis on two H. pylori strains: 26695 and
J99-R3. They demonstrated both pylori genomes are highly

FIGURE 4 | Heliobacter typhlonius global methylation state. Circos plot showing in the outermost ring the protein-encoding genes colored by associated
subsystem. The following rings depict methylated adenines and cytosines that are associated with specific motifs. From outside to inside: 5′-Gm6ANTC-3′ (blue),
5′-GDCCNm6A-3′ (red), 5′-GRAm4CT-3′ (black), 5′-m6ACN5CTG-3′ and its partner-motif Cm6AGN5GT-3′ (blue), 5′-Gm6ATC-3′ (red), 5′-GTm6AC-3′ and its
partner-motif 5′-Cm6ATG-3′ (black), 5′-GTN2

m6AC-3′ (blue) and 5′-GTSm6AC-3′ (red).
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methylated, containing a large number of methyltransferases
and restriction–modification systems (Krebes et al., 2014). In
contrast, no methylation data is available for H. hepaticus,
and only two complete R-M systems have been described
(Suerbaum et al., 2003). Three out of 8 motifs could be
found in both H. typhlonius and H. pylori strains 26695
and J99-R3: 5′-Gm6ANTC-3′, 5′-Gm6ATC-3′ and 5′-GTm6AC-
3′ with its partner-motif (reverse-complement) Cm6ATG. One
motif was found in H. typhlonius and in pylori strain
J99-R3 only: 5′-GTSm6AC-3′. The three remaining motifs
were found exclusively in H. typhlonius: 5′-GDCCNm6A-
3′, 5′-m6ACN5CTG-3′ and its partner-motif Cm6AGN5GT
and GTNNm6AC. Nearly all of the target sequences were
completely methylated (>98%) and resided predominantly in
the coding regions of the genome (Table 4). Sequence context
analysis did not reveal any motifs associated with cytosine
methylation.

CONCLUSION

In this study, the complete genome sequence of H. typhlonius
MIT 97-6810 enabled us to identify many pathogenic features
(including a set of 19 possibly pathogenic proteins), the presence
of CDTs, a putative PAI (containing components of a T4SS
together with a cag protein) and multiple virulence factors. These
findings suggest that H. typhlonius has the potential to act as a
pathobiont.

Furthermore, we described the global methylation state
of the genome. We found many methylated sites and
discovered a diverse plethora of R-M systems. Methylation
patterns differ among closely related species, nonetheless
specific recognition motifs are conserved. Together with the
genome, the methylome will provide an essential resource
for forthcoming studies investigating gene regulation, host
interaction, pathogenicity and cellular defense. Follow-up
studies are necessary to investigate the pathophysiologic
effects of H. typhlonius and to evaluate the true nature
of its pathogenic capabilities. In turn, these findings can
contribute to unraveling the role of Helicobacter in enteric
disease.

MATERIALS AND METHODS

Genomic DNA Preparation
TheH. typhlonius strain MIT 97-6810 has been isolated from the
cecal and fecal content of Il10−/− knockout mice with IBD by
Fox et al. (1999). H. typhlonius was obtained from the Culture
Collection, University of Gothenburg, Sweden (CCUG 48335T)
and was grown micro-aerobically on Biomerieux chocolate agar
+ PolyViteX (PVX) plates (Mediaproducts, Groningen, The
Netherlands) for 2–3 days at 37◦C (Franklin et al., 2001).
Genomic DNA was extracted using the MOBIO Ultraclean
Fecal kit (Sanbio, Uden, The Netherlands) according to the
manufacturer’s instructions, combined with phenol–chloroform
extraction and RNase A treatment.

Sequencing
Genomic DNA was fragmented with G-tubes (Covaris), end-
repaired and SMRTbell DNA template libraries (insert size
of ∼20 Kb) were prepared according to the manufacturer’s
specification. SMRT sequencing (3 SMRT cells) was performed
on the Pacific Biosciences RSII sequencer according to standard
protocols (MagBead Standard Seq v2 loading, 1 × 180 min
movie) using the P4-C2 chemistry.

De Novo Genome Assembly
Continuous long reads were attained from three SMRT
sequencing runs. Reads longer than 500 bp with a quality value
over 0.75 were merged together into a single dataset. Next, the
hierarchical genome-assembly process (HGAP) pipeline (Chin
et al., 2013) was used to correct for random errors in the long
seed reads (seed length threshold 6 Kb) by aligning shorter reads
from the same library against them. The resulting corrected,
preassembled reads were used for de novo assembly using Celera
Assembler 8.1 (Myers et al., 2000). Celera Assembler employs an
overlap-layout-consensus (OLC) strategy that is well suited for
the use of long, corrected PacBio reads. Since SMRT sequencing
features very little variations of the quality throughout the reads
(Koren et al., 2012), no quality values were used during the
assembly. Default parameters were employed while using the
BOGART unitigger and setting themerSize to 14 (configuration

TABLE 4 | Base modifications and motifs: adenine and cytosine motif statistics.

Motif1 # Motifs in Genome # Motifs Detected % Motifs Detected % Intergenic Mean Coverage Presence in H. pylori

GANTC 20,546 20,492 99.7 % 9.3% 237.1 J99-R3, 26695

GDCCNA 2,110 2,073 98.2% 3.6% 236.1

GRACT 2,682 1,977 73.7% 5.6% 233.4

ACN5CTG–CAGN5GT ∗ 1,980 1,965 99.2% 3.6% 234.7

GATC 1,166 1,152 98.8% 5.7% 237.1 J99-R3, 26695

GTAC-CATG ∗ 1,068 1,025 96.0% 6.9% 241.1 J99-R3, 26695∗∗

GTNNAC 512 476 93.0% 3.8% 233.1

GTSAC 222 216 93.7% 7.9% 236.4 J99-R3

Motifs with a modification quality value >100 are considered.
1Methylated adenines are typed in bold.
∗Partner-motifs (motif + its reverse-complement).
∗∗Motif GTAC not reported for strain 26695, the reverse complement, CATG, is found (Krebes et al., 2014).
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settings are provided in Supplementary File S1). To validate the
quality of the assembly and determine the final genome sequence,
the Quiver consensus algorithm (Chin et al., 2013) was used.
Quiver takes advantage of all information from the raw pulse and
base-calls that are generated during the SMRT sequencing to infer
the most accurate consensus sequence (Chin et al., 2013). Finally,
the ends of the assembled sequence were trimmed to have the
genome circularized.

Annotations
The location of the origin of replication site (oriC) was predicted
using the Ori-Finder web service (Gao and Zhang, 2008). Ori-
Finder was configured to search for Helicobacter specific DnaA
boxes while allowing for two unmatched sites. In addition,
the DoriC database (Gao et al., 2013) holding prokaryote oriC
data was used to select the most likely candidate oriC amongst
the Ori-Finder results. Annotation of the assembled genome
was performed using RAST prokaryotic genome annotation
service (Aziz et al., 2008). Additional annotation was carried
out using several web services offered by the Center for
Genomic Epidemiology. ResFinder 2.1 (Zankari et al., 2012),
PathogenFinder 1.1 (Cosentino et al., 2013) and VirulenceFinder
1.2 (Joensen et al., 2014) were used for the prediction of acquired
antimicrobial resistance genes, potential pathogenic features and
virulence genes respectively. PHAST (PHAge Search Tool) (Zhou
et al., 2011) was used to detect and annotate prophage sequences
in the assembled genome. CRISPRs were identified using the
CRISPRFinder web tool (Grissa et al., 2007). Genomic repeats
and other structural variations were identified using NUCmer
(Kurtz et al., 2004) and filtered according to length threshold of
500 bp and 95% copy identity. Tandem repeats were identified
separately using Tandem Repeat Finder online service (Benson,
1999).

Comparative Genome Analysis
The final genome sequence of H. typhlonius was compared to
the genome sequences of two other Helicobacter species: murine
H. hepaticus ATCC 51449 (Suerbaum et al., 2003) and human
H. pylori 26695 (Krebes et al., 2014). RAST/The SEEDwas used to
infer the conservation of annotated genes and pathways. BLAST
(Altschul et al., 1990) searches using default parameters were
performed to identify regions of interest.

Base Modification Analysis
The DNA did not receive Tet1 oxidation treatment prior to
SMRT sequencing, meaning only N6-methyladenine (6mA)
and 4-methylcytosine (4mC) signals could be reliably detected
(Clark et al., 2013). All reads were aligned to the assembled

genome. Kinetic signals detected during SMRT sequencing were
processed for all genomic positions using a previously described
protocol (Flusberg et al., 2010; Clark et al., 2012). The Pacific
Biosciences SMRT Portal analysis platform 2.3.0 was used to
identify modified bases and associated motifs. The DNA base
modification analysis uses an in silico kinetic model and a
t-test based scoring system to detect modified bases. In order
to accurately identify methylated bases, a threshold of 100 for
log-transformed P-value was used. The threshold was optimized
according to the distribution of P-values for different bases,
minimizing the false positive rate. Additional data analysis was
performed in R (R Core Team, 2015).
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