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Ewing’s sarcoma (ES) is an extremely aggressive malignant bone tumor with a high
incidence among children and adolescents. The immune microenvironment plays an
important role in ES development. The aim of the current study was to investigate the
immune microenvironment in ES patients to identify immune-related gene signatures.
Single-sample gene set enrichment analysis (ssGSEA) was used to cluster the RNA
sequences of 117 ES patients, and their immune cell infiltration data were downloaded
and evaluated based on the Gene Expression Omnibus (GEO) database. High, medium,
and low immune cell infiltration clusters were identified. Based on the comparison
of clusters with high and low immune cell infiltration, normal skeletal muscle cells,
and ES, we identified 198 common differentially expressed genes. GO and KEGG
enrichment analyses indicated the underlying immune mechanism in ES. Cox and
LASSO regression analyses were conducted to select immune-related prognostic
genes. An external dataset from the International Cancer Genome Consortium (ICGC)
was used to validate our results. Ten immune-related, independent prognostic genes
(FMO2, GLCE, GPR64, IGFBP4, LOXHD1, PBK, SNAI2, SPP1, TAPT1-AS1, and ZIC2)
were selected for analysis. These 10 immune-related genes signature were determined
to exhibit independent prognostic significance for ES. The results of this study provide
an approach for predicting the prognosis and survival of ES patients, and the elucidated
genes may be a promising target for immunotherapy.
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INTRODUCTION

Ewing’s sarcoma (ES) is an extremely aggressive malignant bone tumor with a high incidence
among children and adolescents (Subbiah et al., 2009; Gupta et al., 2010). Primary bone tumors
account for 5% of all childhood and adolescent cancers. ES is the second most commonly reported
primary bone tumor (Balamuth and Womer, 2010). In previous studies (Jiménez-Morales et al.,
2009), immune-related genes and immune cells were found to be closely related to the occurrence
and development of autoimmune diseases. For example, the TNF-β-308a allele is a common genetic
risk factor for the development of childhood immune and/or inflammatory diseases (Jiménez-
Morales et al., 2009). Synovitis caused by rheumatoid arthritis is also closely associated with the
infiltration of various immune cells (Weyand and Goronzy, 2021).
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Currently, immuno-oncology has attracted considerable
attention owing to its role documented in various cancers.
Tumor tissue contains a substantial number of immune cells,
such as macrophages, T cells, and NK cells, which infiltrate the
tumor microenvironment. These cells secrete a variety of factors
that affect the microenvironment of the tumor, a phenomenon
known as immune infiltration, which regulates tumor behavior
and exhibits potential prognostic value (Singh et al., 2017).
Immunotherapy is a new treatment method that has achieved
appreciable results in breast cancer, hepatocellular carcinoma,
and other cancers (Guerra et al., 2017; Liu et al., 2018). Immune
cell infiltration also plays an important role in the occurrence and
development of ES. For example, EZH2 inhibitors can sensitize
ES cells to effective cytolysis through the action of GD2-specific
CAR gene-modified T cells. Therefore, a strategy involving the
adoptive transfer of GD2-redirected T cells to ES demonstrates
efficacy (Kailayangiri et al., 2019). Berghuis et al. (2011)
found that inflammatory chemokines (CXCR3, CCR5, CXCL9,
CXCL10, and CCL5) could recruit CD8+ T cells for immune
infiltration in ES. They recognized that the development of an
inflammatory microenvironment might increase the efficacy of
the natural immune response to ES (Berghuis et al., 2011).
However, there are few studies available on immunotherapy
targets, prognostic biomarkers, and immunotherapy programs
whose approaches have been applied to ES.

Therefore, a comprehensive analysis of the prognosis of
immune infiltration in ES patients is warranted to provide
insights into new targets and approaches for the treatment
of ES. The objective of the current study was to investigate
the immune microenvironment of ES patients and to identify
immune-related gene signatures by using ssGSEA (Subramanian
et al., 2005) to divide ES patients into high, medium, and
low immune cell infiltration groups. Then, we identified a 10
immune-related prognosis genes signature correlated with the
prognosis in differentially expressed genes (DEGs) in both ES
group and high immune cell infiltration cluster by Cox regression
and least absolute shrinkage and selection operator (LASSO)
regression. Finally, we used internal and external dataset to
evaluate the accuracy of the prognosis of immune-related
genes. Additionally, immune-related gene signatures improve the
prognostic predictive ability of ES patients and help to elucidate
the underlying mechanism involved in the disease.

MATERIALS AND METHODS

ES Data Download
A working flow chart is depicted in Figure 1. In this
study, we downloaded the ES dataset from the NCBI Gene
Expression Omnibus (GEO) database1. The accession numbers
were GSE17674 and GSE34620 (Savola et al., 2011; Postel-Vinay
et al., 2012), and the data platform numbers were both GPL570.
GSE17674 contained RNA-sequencing data and patient survival
information of 44 ES samples, and RNA-sequencing data of 18
normal human skeletal muscle samples. GSE34620 contained

1http://www.ncbi.nlm.nih.gov/geo

RNA-sequencing data of 117 ES samples. Additionally, we used
data on 57 ES samples from the ICGC2 for external validation of
prognostic genes (Alexandrov et al., 2020).

Data Clustering
The data on gene set of 28 immune-related cells were obtained
from the literature (Jia et al., 2018). We used the Gene Set
Variation Analysis (GSVA) R package (Hänzelmann et al., 2013)
to investigate the degrees of infiltration of different immune
cell types in the ES gene expression profile of GSE34620.
Data were subjected to an unsupervised hierarchical clustering
algorithm using the function “hclust.” The function named
“ColorDendrogram” of R package “sparcl” was used to draw
a clustering tree (cut off = 1.0), and aided the categorization
of ES samples into high, medium, and low immune cell
infiltration clusters.

Validation of the Effectuality of Immune
Clustering
Yoshihara et al. had presented a new algorithm that takes
advantage of the unique properties of the transcriptional
profiles of cancer samples to infer tumor cellularity as well
as the different infiltrating normal cells, called ESTIMATE
(Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data). The ESTIMATE algorithm was
utilized based on the gene expression signatures to infer the
fraction of stromal and immune cells in tumor samples by
calculating stromal and immune scores to predict the level
of infiltrating cells. stromal and immune scores to predict
the level of infiltrating stromal and immune cells and these
form the basis for the ESTIMATE score to infer tumor purity
in tumor tissue. This indicated tumor purity, which was
inversely proportional to immune scores, stromal scores and
estimate score (Yoshihara et al., 2013). First, the R package
“ESTIMATE” was used to elucidate the tumor purity, estimated
score, immune score, and stromal score. Then the R package
“ggpubr” (Whitehead et al., 2019) was used to generate a
violin plot of the data on tumor purity, evaluation score,
immune score, and the interstitial score of the high, middle,
and low immune cell infiltration clusters to verify effectuality
of the immune infiltration clusters and to illustrate a clustered
heatmap. Additionally, we verified the differences between the
three immune infiltration groups through the expression of the
members of HLA family members and PD-L1 (CD274), and we
performed p-value correction for multiple testing by using the
Holm–Bonferroni method.

GSEA Enrichment Analysis
The R package “clusterprofiler” (Yu et al., 2012) was used to
perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis of the high
and low immune cell infiltration clusters of the GEO database.
The R package “enrichplot” was used to generate annotated
bubble charts. p < 0.05 was considered statistically significant.

2https://icgc.org
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FIGURE 1 | Flow chart of data collection and analysis.

Distinction of Immune-Related Genes in
ES
Based on the above-mentioned clustering, the mRNA-seq
expression data of GSE34620 were divided into the following
three types: high, medium, and low immune cell infiltration. We
used the R package “limma” (Ritchie et al., 2015) to obtain data
on the DEGs of high and low immune cell infiltration in the
database. We used the Benjamini-Hochberg method to obtain
the false discovery rate (FDR) (Hochberg and Benjamini, 1990)
(| logFC| > 2 and adj.p-value < 0.05, where FC is the fold
change). Additionally, data on the DEGs (| logFC| > 2 and adj.p-
value < 0.05) between normal skeletal muscle and ES samples
in GSE17674 were analyzed. Finally, we plotted Venn diagrams

to visualize the data on immune-related differential genes in
GSE34620 and the differential genes in GSE17674.

Distinction and Confirmation of
Immune-Related Gene Prognostic
Signatures for ES
First, univariate Cox analysis of overall survival (OS) was
performed to screen immune-related genes with prognostic
values in GES17674. The LASSO algorithm was used for
variable selection and shrinkage using the R package “glmnet”
(Friedman et al., 2010). A 1,000-round cross-validation for tuning
the parameter selection was performed to minimize the risk
of overfitting. Then, multivariate Cox regression analysis was
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performed for the data on the genes obtained from LASSO
regression analysis, and a forest map was constructed using the
R package “survminer”. Finally, immune-related gene prognostic
signature of ES were constructed. The formula used was as
follows:

Risk score =
∑

coefficient (genei) × expression(genei)

Using “Survminer” R package, ES was divided into high-
risk and low-risk groups according to the median of the
risk score. The time-dependent receiver-operating characteristic
(ROC) and Kaplan-Meier (K-M) curves were used to assess
the clinical prognostic capacity of the risk score using the R
packages “timeROC” and “survival”. Additionally, we used the
verification set from the ICGC to externally verify the feasibility
of this risk level.

Construction and Verification of
Nomogram
Based on the risk level assessed by performing multivariate
Cox regression and by using the patient’s clinical information,

we used the R packages “rms” and “survival” to construct a
new prognostic nomogram. The concordance index (C-index)
value was used to evaluate the predictive performance of the
nomogram. The value of the C-index ranged from 0.5–1.0, with 1
indicating the best prediction of the model. A C-index value over
0.7, which implies a relatively accurate prediction, and calibration
curves are often used to assess the accuracy of the nomogram, and
the distance between pairs and the 45-degree line is a measure
of the absolute error of the nomogram prediction (Iasonos et al.,
2008). Therefore, the C-index value and calibration curves were
used to validate the model. Additionally, we externally verified
the constructed nomogram using the ICGC verification set.

RESULTS

Construction and Validation of ES
Clustering
Based on the gene set containing 28 immune cells, 117
ES samples from GSE34620 were enriched and scored using
ssGSEA. Hence, the samples were grouped into three clusters,
namely high, middle, and low levels of immune infiltration

FIGURE 2 | Construction and validation of ES clustering. (A) The enrichment levels of 28 immune-related cells in the high immune cell infiltration group (Immunity_H),
middle immune cell infiltration group (Immunity_M), and the low immune cell infiltration group (Immunity_L). The Tumor Purity, ESTIMATE Score, Immune Score and
Stromal Score of every patient gene were showed combine with the clustering information. (B) The violin plot showed the difference in ESTIMATE Score, Immune
Score, Stromal Score, and Tumor Purity between three clusters. The statistical method is wilcoxon test (C,D) The kruskal-wallis test showed the expression of most
HLAs and the wilcoxon test showed PD-L1 (CD274) was a significant difference in high- (red), middle- (blue), and low- (green) immune cell infiltration cluster. na
adj.p > 0.05, * adj.p < 0.05, ** adj.p < 0.01, *** adj.p < 0.001. ns, no statistically significant., p-value correction for multiple testing.
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FIGURE 3 | GSEA enrichment analysis. (A) The top 10 results of GO analysis in Immunity_H (red) and Immunity_L (green). (B) The results of KEGG analysis in
Immunity_H (red) and Immunity_L (green).

(Supplementary Figure 1 and Figure 2), of which there were
nine, thirty, and seventy-eight cases, respectively (Figure 2A).
The results showed that the stromal, immune, and estimated
scores of the high immune cell infiltration group were higher than
those of the other two clusters, while the tumor purity showed
the opposite trend (Figure 2B and Supplementary Table 1).
Additionally, we described the expression levels of most members
of the HLA family and PD-L1 (CD274) in the high, middle, and
low clusters using box plots (p < 0.05, Figures 2C,D).

GSEA Enrichment Analysis
The GO and KEGG pathway analyses of genes in the high and
low immune cell infiltration clusters in GSE34620 showed that
several immune-related molecular functions were enriched in
the cohort. These inclued negative regulation by the host of
viral processes, IgG binding, T cell activation via T cell-receptor
contact with antigen bound to MHC molecules on antigen
presenting cells, and negative regulation of myeloid leukocyte-
mediated immunity (Figure 3A). KEGG analysis results showed
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FIGURE 4 | Immune – related differential genes were defined. (A) The volcano plot showed different genes between high and low immune cell infiltration cluster
(adj.p-value < 0.05). (B) The volcano plot showed different genes between ES and normal skeletal muscle cells (adj.p-value < 0.05). (C) Using draw Venn diagram
to pick up the intersection, 198 differentially expressed genes were obtained.

that these genes were related to pathways, such as viral protein
interaction with cytokines and its receptors, intestinal immune
network for IgA production, graft-versus-host disease, and
Staphylococcus aureus infection (Figure 3B).

Identification of Immune-Related
Differentially Expressed Genes Between
the ES and Normal Groups
In GSE34620, we obtained 1107 DEGs between the high and low
immune infiltration groups (| logFC| > 2 and adj. p-value < 0.05,
Figure 4A). Additionally, we identified the DEGs between ES
and normal skeletal muscle in the GSE17674 cohort. A total of

1032 DEGs were obtained (| logFC| > 2 and adj.p-value < 0.05;
Figure 4B). Venn diagrams visualizes 198 immune-related
DEGs (Figure 4C).

Screening and Identification of 10
Immune-Related Prognostic Genes
We selected 44 ES patients with complete clinical data from
GSM17674 for further analysis. A univariate Cox regression
analysis revealed that 40 of the 198 DEGs related to immunity
were significantly associated with OS (p < 0.05, Figure 5A).
Then LASSO regression analysis aided in the identification of
the FMO2, GLCE, GPR64, IGFBP4, LOXHD1, PBK, SNAI2,
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FIGURE 5 | Construction of immune-related genes prognostic signature. (A) The p-value and HR of selected genes in univariable Cox regression analysis (p < 0.05).
(B) The LASSO regression identified 10 genes associated with prognosis. The partial likelihood deviance plot presented the minimum number corresponds to the
covariates used for LASSO Cox analysis. (C) A coefficient profile plot was generated against the log (lambda) sequence. Selection of the optimal parameter (lambda)
in the LASSO model for GEO cohort.

SPP1, TAPT1-AS1, and ZIC2 10 genes (Figures 5B,C). Finally,
according to the multivariate Cox regression, 10 prognostic
signatures of ES were constructed. We scored the risk according
to the risk coefficients of these 10 genes as well as their expression.
The formula is:

Riskscore

= FMO2× (−0.869033333)+ GLCE× (−0.445266086)

+GPR64× (−0.262532651)+ IGFBP4× (−0.506728078)

+LOXHD1× (−0.217842143)+ PBK× (0.005800429)

+SNAI2× (0.054535428)+ SPP1× (0.175590092)

+TAPT1− AS1× (−0.274747367)+ ZIC2× (0.704860559) .

According to the median of the risk scores, GSM17674
was divided into high-risk and low-risk groups. The K-M

curve showed that the survival rate of the low-risk group was
significantly higher. In the high-risk score group (p < 0.001,
Figure 6A), the risk score exhibited an effective progonstic value
for prognosis. Additionally, the time-dependent ROC curves
were used to evaluate the nine immune-related gene signals in
predicting the total 3–5-year survival of ES patients. The area
under the ROC value (AUC) value for 3 and 5 years was 0.99 and
0.947, respectively (Figure 6B), indicating that the 10 immune-
related genes showed appreciable ability to predict OS. Based on
the differential expression of the genes in the normal and ES
groups, a heatmap was illustrated in which only FMO2 expression
was upregulated (Figure 6C). Additionally, all gene signatures
were analyzed by multivariate Cox regression, among which
FMO2, GPR64, and ZIC2 were statistically significant (p < 0.05),
and the C-index of the model was 0.86 (Figure 6D). Moreover,
patients in the ICGC cohort were also divided into high-risk
or low-risk groups according to the median calculated using
the same formula as the GEO cohort. Survival analysis showed
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FIGURE 6 | Prognostic value of 10 immune-related gene signatures. (A) The survival curve show that low risk level has better prognosis in training set (GES17674).
(B) The ROC curve for 3-and 5-overall survival of ES patients in training set (GES17674). (C) Heatmap showed the expression level of 10 genes in the normal group
and ES group. (D) The results of multivariate Cox regression of 10 genes.

that patients in the low-risk group had a higher survival rate
(Figure 7A). The AUCs of 3- and 5-year OS were 0.737 and 0.689,
respectively (Figure 7B).

Construction and Verification of
Nomogram
We performed univariate and multivariate Cox regression
analyses to ascertain the independence of the risk score as
a prognostic factor for other features, such as sex, age, and
metastasis status (Figures 8A,B). Based on the risk level and the
patient’s clinical information, a new prognostic nomogram was
constructed (Figure 9A), in which the internal verification in the
GEO cohort C-index was 0.814 and the external verification in the
ICGC cohort was 0.66. Additionally, the internal and external 3-
and 5-year calibration curves reflected the good predictive ability
of the model (Figures 9B–E).

DISCUSSION

In previous studies conducted on other sarcomas, immune
infiltration has been reported to be closely related to the patient
prognosis (Chen et al., 2020; Xiao et al., 2020). Immunotherapy
can activate the patient’s own immune system to eliminate
tumor cells and has become the most anticipated tumor
treatment method. In this study, we evaluated patients with
different degrees of immune infiltration, and immune-related
prognostic genes were selected to provide new directions for
future ES treatment.

The majority of the immune-related prognostic genes are
related to the occurrence and development of different types
of cancer. In neck squamous cell carcinoma, miR-205-5p may
affect the occurrence and development of neck squamous cell
carcinoma by acting on the target gene FMO2 (Zhou et al., 2020).
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FIGURE 7 | 10 immune-related genes signature is validated by ICGC cohort. (A) The survival curve show that low risk level has better prognosis in verfication set
(ICGC). (B) The ROC curve for 3-and 5-overall survival of ES patients in verfication set (ICGC).

FIGURE 8 | Validation of independent prognostic factors. The univariate (A) and multivariate (B) Cox regression analysis of risk score, age, gender, and stage.

As a potential tumor suppressor gene, GLCE participates in
the occurrence and development of breast and lung cancer,
mainly through the inhibition of tumor angiogenesis and
invasion/metastasis pathways. However, the increased expression
of GLCE is associated with advanced pathophysiology of prostate
tumors, which indicates that the role of GLCE in different
cancers is diverse (Rosenberg et al., 2014). According to our
research, the upregulation of GLCE is related to the poor
prognosis of ES, which suggests that the mechanism of action
of this gene in ES is similar to that observed in prostate
tumors. Previous studies have shown that GPR64 promotes
the invasion and metastasis of Ewing’s sarcoma through PGF
and MMP1 (Richter et al., 2013). However, GPR64 exerts an
important tumor suppressor effect in endometrial cancer (Richter
et al., 2013), suggesting that this gene plays different roles in
various tumors. In liver and breast cancer, IGFBP4 inhibits
growth and invasion, and its overexpression is often associated
with a better prognosis (Lee et al., 2018; Wang et al., 2019).
PBK knockdown exerted no effect on the proliferation of gastric

cancer cells, although it inhibited cell migration and invasion.
However, overexpression of PBK is associated with a worse
prognosis (Kwon et al., 2016). The transcription factor Snai2
encoded by SNAI2 is an evolutionarily conserved C2H2 zinc
finger protein that co-ordinates biological processes critical
for tissue development and tumorigenesis (Zhou et al., 2019).
Studies have found that SOX13 can promote colorectal cancer
metastasis by activating SNAI2 and c-MET (Du et al., 2020).
SNAI2 reprograms stromal fibroblasts, and this contributes to
tumor proliferation and ovarian cancer progression (Yang et al.,
2017). SPP1 expression is closely related to immunity in lung
cancer, ediates the polarization of macrophages, and promotes
the immune escape of lung adenocarcinoma via upregulation
of PD-L1, leading to the metastasis of lung cancer cells (Zhang
et al., 2017). Additionally, SPP1 expression is correlated with
the proliferation of ES cells as it is an immune-related hub
gene (Ren et al., 2021). This is consistent with our findings,
suggesting that SPP1 may be a potential therapeutic target for
ES. ZIC2 can be utilized as a useful prognostic indicator in breast
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FIGURE 9 | Construction and verification of nomogram (A) Nomogram was constructed to predict the survival time. The risk level, age, gender, and metastasis
status were used as variables. 1. Names of the variables in the prediction model: for example, age, gender, stage, and risk level. Each variable corresponds to a line
segment marked with a scale, representing the range of values that can be taken for that variable, while the length of the line segment reflects the size of the
contribution of that factor to the outcome event. 2. Scores, including individual scores; “Points” in the figure, which represent the individual scores corresponding to
each variable at different values; and total scores. “Total Points”, which represents the total scores of the individual scores corresponding to all variables taken
together. 3. Predicted probability: the 3- and 5-year survival probability in the figure. The graphs show the calibration plots for internal validation of (B) actual 3-year
OS and (C) 5-year OS; and for extral verfication of (D) actual 3-year OS and (E) actual 5-year OS. The vertical coordinate represents the actual overall survival while
the horizontal coordinate represents the predicted overall survival, the red line is the fitted line, which indicates the actual value corresponding to the predicted value,
small ticks at the top of each plot representative ES patients, and the three vertical lines connected by the red lines represents the estimated fluctuation of each point.
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cancer and exerts a tumor suppressor effect by regulating STAT3
(Liu et al., 2020). Additionally, ZIC2 is used to inhibit breast
cancer cell proliferation, migration, and invasion as it is a target
gene of miR-1284 (Zhang et al., 2019). However, there are few
studies available on LOXHD1 and TAPT1-AS1; hence, these genes
should be the subject of further investigation to identify new
therapeutic targets for ES.

Gene signatures were constructed for the 10 immune-related
genes with prognostic value. Based on the risk score, patients in
the high-risk score group had a worse prognosis. Univariate and
multivariate Cox regression analyses were performed with the
clinical factors of age, sex, and tumor development stage. The risk
score could be considered an independent prognostic factor of ES
(p < 0.01), and the internal and external survival curves and AUC
values verified the good predictive ability observed therein.

Finally, a novel ES prognostic nomogram was constructed
according to the risk score level, age, gender, and tumor
development stage, and the calibration curve and C-index values
(validated internally and externally) showed the model’s good
predictive ability.

Although these findings provide valuable information for a
predictive prognosis in ES, there are certain limitations of the
present study. First, due to the rarity of ES, the GEO data in our
training set are relatively limited, although we have performed the
external verification of the ICGC dataset to compensate for this
shortcoming. Second, additional external data and experiments
are warranted to verify our results as only public datasets have
been used. Overall, we elucidated the immune-related prognostic
genes of ES. Our research provides new aspects for future research
on ES. The 10 genes identified in this study may serve as new
therapeutic targets for ES.

CONCLUSION

These 10 immune-related gene signatures demonstrated
independent prognostic significance for ES. The results of this
study provide an approach for predicting the prognosis and

survival of ES patients and these genes serve as a promising target
for immunotherapy.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/Supplementary
Material.

AUTHOR CONTRIBUTIONS

YZ: data processing and article writing. SW: provide data, data
processing, and article writing. YL: article writing. BX: provide
data. All authors contributed to the article and approved the
submitted version.

FUNDING

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

ACKNOWLEDGMENTS

We would like to thank “Editage” (www.editage.cn) for English
language editing, and we want to thank GEO, ICGC, and R
software for free use.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.669549/full#supplementary-material

REFERENCES
Alexandrov, L. B., Kim, J., Haradhvala, N. J., Huang, M. N., Tian Ng, A. W., Wu, Y.,

et al. (2020). The repertoire of mutational signatures in human cancer. Nature
578, 94–101. doi: 10.1038/s41586-020-1943-3

Balamuth, N. J., and Womer, R. B. (2010). Ewing’s sarcoma. Lancet Oncol. 11,
184–192. doi: 10.1016/s1470-2045(09)70286-4

Berghuis, D., Santos, S. J., Baelde, H. J., Taminiau, A. H., Egeler, R. M.,
Schilham, M. W., et al. (2011). Pro-inflammatory chemokine-chemokine
receptor interactions within the Ewing sarcoma microenvironment determine
CD8(+) T-lymphocyte infiltration and affect tumour progression. J. Pathol. 223,
347–357. doi: 10.1002/path.2819

Chen, H., Song, Y., Deng, C., Xu, Y., Xu, H., Zhu, X., et al. (2020). Comprehensive
analysis of immune infiltration and gene expression for predicting survival in
patients with sarcomas. Aging (Albany N. Y.) 13, 2168–2183. doi: 10.18632/
aging.202229

Du, F., Li, X., Feng, W., Qiao, C., Chen, J., Jiang, M., et al. (2020). SOX13 promotes
colorectal cancer metastasis by transactivating SNAI2 and c-MET. Oncogene 39,
3522–3540. doi: 10.1038/s41388-020-1233-4

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22.

Guerra, A. D., Yeung, O. W. H., Qi, X., Kao, W. J., and Man, K. (2017). The
anti-tumor effects of M1 macrophage-loaded poly (ethylene glycol) and gelatin-
based hydrogels on hepatocellular carcinoma. Theranostics 7, 3732–3744. doi:
10.7150/thno.20251

Gupta, A. A., Pappo, A., Saunders, N., Hopyan, S., Ferguson, P., Wunder, J.,
et al. (2010). Clinical outcome of children and adults with localized Ewing
sarcoma: impact of chemotherapy dose and timing of local therapy. Cancer 116,
3189–3194. doi: 10.1002/cncr.25144

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation
analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7. doi: 10.
1186/1471-2105-14-7

Hochberg, Y., and Benjamini, Y. (1990). More powerful procedures for multiple
significance testing. Stat. Med. 9, 811–818. doi: 10.1002/sim.4780090710

Iasonos, A., Schrag, D., Raj, G. V., and Panageas, K. S. (2008). How to build
and interpret a nomogram for cancer prognosis. J. Clin. Oncol. 26, 1364–1370.
doi: 10.1200/jco.2007.12.9791

Jia, Q., Wu, W., Wang, Y., Alexander, P. B., Sun, C., Gong, Z., et al. (2018). Local
mutational diversity drives intratumoral immune heterogeneity in non-small
cell lung cancer. Nat. Commun. 9:5361. doi: 10.1038/s41467-018-07767-w

Jiménez-Morales, S., Velázquez-Cruz, R., Ramírez-Bello, J., Bonilla-González, E.,
Romero-Hidalgo, S., Escamilla-Guerrero, G., et al. (2009). Tumor necrosis

Frontiers in Genetics | www.frontiersin.org 11 May 2021 | Volume 12 | Article 669549

http://www.editage.cn
https://www.frontiersin.org/articles/10.3389/fgene.2021.669549/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.669549/full#supplementary-material
https://doi.org/10.1038/s41586-020-1943-3
https://doi.org/10.1016/s1470-2045(09)70286-4
https://doi.org/10.1002/path.2819
https://doi.org/10.18632/aging.202229
https://doi.org/10.18632/aging.202229
https://doi.org/10.1038/s41388-020-1233-4
https://doi.org/10.7150/thno.20251
https://doi.org/10.7150/thno.20251
https://doi.org/10.1002/cncr.25144
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1002/sim.4780090710
https://doi.org/10.1200/jco.2007.12.9791
https://doi.org/10.1038/s41467-018-07767-w
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-669549 May 23, 2021 Time: 13:6 # 12

Zhou et al. Prognostic Genes for Ewing’s Sarcoma

factor-alpha is a common genetic risk factor for asthma, juvenile rheumatoid
arthritis, and systemic lupus erythematosus in a Mexican pediatric population.
Hum. Immunol. 70, 251–256. doi: 10.1016/j.humimm.2009.01.027

Kailayangiri, S., Altvater, B., Lesch, S., Balbach, S., Göttlich, C., Kühnemundt, J.,
et al. (2019). EZH2 inhibition in ewing sarcoma upregulates G(D2) expression
for targeting with gene-modified T Cells. Mol. Ther. 27, 933–946. doi: 10.1016/
j.ymthe.2019.02.014

Kwon, C. H., Park, H. J., Choi, Y. R., Kim, A., Kim, H. W., Choi, J. H.,
et al. (2016). PSMB8 and PBK as potential gastric cancer subtype-specific
biomarkers associated with prognosis. Oncotarget 7, 21454–21468. doi: 10.
18632/oncotarget.7411

Lee, Y. Y., Mok, M. T., Kang, W., Yang, W., Tang, W., Wu, F., et al. (2018).
Loss of tumor suppressor IGFBP4 drives epigenetic reprogramming in hepatic
carcinogenesis. Nucleic Acids Res. 46, 8832–8847. doi: 10.1093/nar/gky589

Liu, Y., Qiao, L., Zhang, S., Wan, G., Chen, B., Zhou, P., et al. (2018). Dual pH-
responsive multifunctional nanoparticles for targeted treatment of breast cancer
by combining immunotherapy and chemotherapy. Acta Biomater. 66, 310–324.
doi: 10.1016/j.actbio.2017.11.010

Liu, Z. H., Chen, M. L., Zhang, Q., Zhang, Y., An, X., Luo, Y. L., et al. (2020). ZIC2
is downregulated and represses tumor growth via the regulation of STAT3 in
breast cancer. Int. J. Cancer 147, 505–518. doi: 10.1002/ijc.32922

Postel-Vinay, S., Véron, A. S., Tirode, F., Pierron, G., Reynaud, S., Kovar, H.,
et al. (2012). Common variants near TARDBP and EGR2 are associated with
susceptibility to Ewing sarcoma. Nat. Genet. 44, 323–327. doi: 10.1038/ng.1085

Ren, E. H., Deng, Y. J., Yuan, W. H., Wu, Z. L., Zhang, G. Z., and Xie, Q. Q.
(2021). An immune-related gene signature for determining Ewing sarcoma
prognosis based on machine learning. J. Cancer Res. Clin. Oncol. 147, 153–165.
doi: 10.1007/s00432-020-03396-3

Richter, G. H., Fasan, A., Hauer, K., Grunewald, T. G., Berns, C., Rössler, S., et al.
(2013). G-Protein coupled receptor 64 promotes invasiveness and metastasis in
Ewing sarcomas through PGF and MMP1. J. Pathol. 230, 70–81. doi: 10.1002/
path.4170

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007

Rosenberg, E. E., Prudnikova, T. Y., Zabarovsky, E. R., Kashuba, V. I., and
Grigorieva, E. V. (2014). D-glucuronyl C5-epimerase cell type specifically
affects angiogenesis pathway in different prostate cancer cells. Tumour Biol. 35,
3237–3245. doi: 10.1007/s13277-013-1423-6

Savola, S., Klami, A., Myllykangas, S., Manara, C., Scotlandi, K., Picci, P., et al.
(2011). High expression of complement component 5 (C5) at tumor site
associates with superior survival in Ewing’s sarcoma family of tumour patients.
ISRN Oncol. 2011:168712. doi: 10.5402/2011/168712

Singh, R., Mishra, M. K., and Aggarwal, H. (2017). Inflammation. Immunity, and
Cancer. Mediators Inflamm. 2017:6027305. doi: 10.1155/2017/6027305

Subbiah, V., Anderson, P., Lazar, A. J., Burdett, E., Raymond, K., and
Ludwig, J. A. (2009). Ewing’s sarcoma: standard and experimental treatment
options. Curr. Treat. Options Oncol. 10, 126–140. doi: 10.1007/s11864-009-0
104-6

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A.
102, 15545–15550. doi: 10.1073/pnas.0506580102

Wang, J., Luo, X. X., Tang, Y. L., Xu, J. X., and Zeng, Z. G. (2019). The prognostic
values of insulin-like growth factor binding protein in breast cancer. Medicine
(Baltimore) 98:e15561. doi: 10.1097/md.0000000000015561

Weyand, C. M., and Goronzy, J. J. (2021). The immunology of rheumatoid arthritis.
Nat. Immunol. 22, 10–18. doi: 10.1038/s41590-020-00816-x

Whitehead, M. J., McCanney, G. A., Willison, H. J., and Barnett, S. C. (2019).
MyelinJ: an ImageJ macro for high throughput analysis of myelinating cultures.
Bioinformatics 35, 4528–4530. doi: 10.1093/bioinformatics/btz403

Xiao, B., Liu, L., Li, A., Xiang, C., Wang, P., Li, H., et al. (2020). Identification and
verification of immune-related gene prognostic signature based on ssGSEA for
Osteosarcoma. Front. Oncol. 10:607622. doi: 10.3389/fonc.2020.607622

Yang, Z., Yang, X., Xu, S., Jin, P., Li, X., Wei, X., et al. (2017). Reprogramming
of stromal fibroblasts by SNAI2 contributes to tumor desmoplasia and ovarian
cancer progression. Mol. Cancer 16:163. doi: 10.1186/s12943-017-0732-6

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune
cell admixture from expression data. Nat. Commun. 4:2612. doi: 10.1038/
ncomms3612

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. Omics 16, 284–287.
doi: 10.1089/omi.2011.0118

Zhang, P., Yang, F., Luo, Q., Yan, D., and Sun, S. (2019). miR-1284 inhibits the
growth and invasion of breast cancer cells by targeting ZIC2. Oncol. Res. 27,
253–260. doi: 10.3727/096504018x15242763477504

Zhang, Y., Du, W., Chen, Z., and Xiang, C. (2017). Upregulation of PD-L1 by
SPP1 mediates macrophage polarization and facilitates immune escape in lung
adenocarcinoma. Exp. Cell Res. 359, 449–457. doi: 10.1016/j.yexcr.2017.08.028

Zhou, W., Gross, K. M., and Kuperwasser, C. (2019). Molecular regulation of
Snai2 in development and disease. J. Cell Sci. 132:jcs235127. doi: 10.1242/jcs.23
5127

Zhou, Z., Liu, C., Liu, K., Lv, M., Li, B., Lan, Z., et al. (2020). Expression and possible
molecular mechanisms of microRNA-205-5p in patients with head and neck
squamous cell carcinoma. Technol. Cancer Res. Treat. 19:1533033820980110.
doi: 10.1177/1533033820980110

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Zhou, Xu, Wu and Liu. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 12 May 2021 | Volume 12 | Article 669549

https://doi.org/10.1016/j.humimm.2009.01.027
https://doi.org/10.1016/j.ymthe.2019.02.014
https://doi.org/10.1016/j.ymthe.2019.02.014
https://doi.org/10.18632/oncotarget.7411
https://doi.org/10.18632/oncotarget.7411
https://doi.org/10.1093/nar/gky589
https://doi.org/10.1016/j.actbio.2017.11.010
https://doi.org/10.1002/ijc.32922
https://doi.org/10.1038/ng.1085
https://doi.org/10.1007/s00432-020-03396-3
https://doi.org/10.1002/path.4170
https://doi.org/10.1002/path.4170
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1007/s13277-013-1423-6
https://doi.org/10.5402/2011/168712
https://doi.org/10.1155/2017/6027305
https://doi.org/10.1007/s11864-009-0104-6
https://doi.org/10.1007/s11864-009-0104-6
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1097/md.0000000000015561
https://doi.org/10.1038/s41590-020-00816-x
https://doi.org/10.1093/bioinformatics/btz403
https://doi.org/10.3389/fonc.2020.607622
https://doi.org/10.1186/s12943-017-0732-6
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.3727/096504018x15242763477504
https://doi.org/10.1016/j.yexcr.2017.08.028
https://doi.org/10.1242/jcs.235127
https://doi.org/10.1242/jcs.235127
https://doi.org/10.1177/1533033820980110
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Prognostic Immune-Related Genes of Patients With Ewing's Sarcoma
	Introduction
	Materials and Methods
	ES Data Download
	Data Clustering
	Validation of the Effectuality of Immune Clustering
	GSEA Enrichment Analysis
	Distinction of Immune-Related Genes in ES
	Distinction and Confirmation of Immune-Related Gene Prognostic Signatures for ES
	Construction and Verification of Nomogram

	Results
	Construction and Validation of ES Clustering
	GSEA Enrichment Analysis
	Identification of Immune-Related Differentially Expressed Genes Between the ES and Normal Groups
	Screening and Identification of 10 Immune-Related Prognostic Genes
	Construction and Verification of Nomogram

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


