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Introduction
Saccharomyces boulardii CNCM I-745

Numerous clinical studies, almost all performed with lyophi-
lized Saccharomyces boulardii CNCM I-745, also known as 
Saccharomyces cerevisiae HANSEN CBS 5926, demonstrate 
that the probiotic yeast is efficient and safe (S. boulardii CNCM 
I-745 is approved as medicinal drug, please refer the local 
Summary of Product Characteristics) for the treatment and 
prevention of diarrhoea of various causes.1–6 S. boulardii 
CNCM I-745 has also been used in a variety of different clini-
cal conditions, including human immunodeficiency virus7 and 
Helicobacter pylori infection.8,9 Due to its multiple mechanisms 
of action, positive effects in a variety of different disease set-
tings are plausible.

S. boulardii CNCM I-745 has an optimal growth tempera-
ture around 37°C and a relatively high acid tolerance,10,11 
resulting in a good survival after gastric passage. A spectrum of 
favourable effects, including prebiotic effects,12,13 toxin degra-
dation effects,14–17 pathogen binding effects,18–20 anti-secretory 
effects,21 physical barrier effects,22,23 effects on the microbi-
ota,24–26 and on the immune system27 reduces the risk to 
develop diarrhoea or counteract diarrhoea.

Prebiotic effects are accomplished by cell wall compo-
nents of S. boulardii CNCM I-745, consisting of glucans, 

mannoproteins, and chitin which serve short-chain fatty acid 
producing bacteria as suitable substrates for fermenta-
tion.12,13 Also, S. boulardii CNCM I-745 restores intestinal 
barrier integrity by regulation of E-cadherin recycling.20 In 
several animal and human studies, a protective and stabiliz-
ing effect on the intestinal microbiota has been demon-
strated, including the prevention of antibiotic-associated 
diarrhoea by decreasing the antibiotic-induced reduction in 
the intestinal microbiota, as well as by supporting a faster 
regeneration of the intestinal microbiota following antibiotic 
therapy.24,25

S. boulardii CNCM I-745 influences the infection-induced 
signalling cascades of its human host as well as the innate and 
adaptive immune system. In a healthy host, S. boulardii CNCM 
I-745 leads to a general unspecific immune system activa-
tion,28,29 which can be considered advantageous in preventing 
diarrhoea. During diarrhoea, it attenuates an over-reacting 
inflammatory immune response and diarrhoeic leakage of flu-
ids into the intestinal lumen.27

The combined effects by the yeast reduce colonization by 
pathogens and preservation of the integrity of the intestinal 
epithelial cell layer.
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This review focuses on the effects of S. boulardii CNCM 
I-745 on digestive enzymes – also known as trophic effects.30,31 
Mainly non-clinical studies, but also a few clinical studies, have 
evaluated the effects of S. boulardii CNCM I-745 on the brush 
border membrane (BBM) and its intestinal enzymatic activity 
– we have provided a summary and have attempted to explain 
the involved mechanisms. The sites of action of S. boulardii 
CNCM I-745 for its multiple effects are mainly the small intes-
tine (e.g. for trophic effects, immune effects) and the colon (e.g. 
for effects on the microbiota, prebiotic effects, and immune 
effects) – with a continuing oral supply of yeast as prerequisite.

Search method and studies included in this review

The research was conducted in the databases Medline (http://
www.ncbi.nlm.nih.gov/pubmed) and PMC (http://www.ncbi.
nlm.nih.gov/pmc/), searching for ‘(boulardii) AND (trophic 
OR enzymes)’ (61 entries in Medline and 453 entries in PMC 
as of November 2017). Further literature was found searching 
for terms relevant to the specific topic (e.g. combinations of 
brush border, polyamine, probiotic, and prebiotic) and follow-
ing-up literature citations.

The intestinal BBM

The BBM is the site of terminal carbohydrate digestion as well 
as nutrient and water absorption. Its microvilli-covered surface 
causes a substantial increase in surface area as opposed to flat 
epithelia. The BBM harbours digestive enzymes, as well as 
transporters that allow absorption of the digested nutrients.32,33

During diarrhoeal episodes (e.g. due to viral infections and/
or inflammation), intestinal epithelial cells are damaged or 
killed. If they become replaced with immature cells, these are 
initially deficient in brush border enzymes and transporters 
necessary for absorption of water and nutrients. As a conse-
quence, osmotic effects due to nutrient malabsorption, shifting 
even more water to the intestinal lumen, make the diarrhoeal 
episodes more severe.34–36 Thus, therapies to protect intestinal 
epithelial cells or at least to improve their enzymatic turnover 
will help to counteract or prevent diarrhoea.

Conversely, a decrease in enzymes involved in the digestion 
of nutrients – especially lactase – is frequently observed in 
acute and chronic enteropathies.37,38 The inherited sucrase-
isomaltase (SI) deficiency leads to sucrose malabsorption caus-
ing diarrhoea and abdominal cramps.39 Accordingly, it should 
generally be advantageous to increase the concentration of 
digestive enzymes within the BBM (measured as an increase in 
enzyme activity per gram of total protein) – as well as the rate 
of nutrient uptake, to counteract diarrhoea.

Effects of S. boulardii CNCM I-745–Secreted 
Enzymes
S. boulardii CNCM I-745 was found to secrete a number of 
different digestive enzymes. Although such enzyme activities 
most certainly are a strategy of the yeast to metabolize proteins 

and peptides for its own purposes, these activities could be con-
sidered advantageous within the human intestinal tract – espe-
cially under conditions like intestinal infection and/or 
inflammation, or for individuals lacking certain enzyme activi-
ties, or in an immature intestine.40

Effects of S. boulardii CNCM I-745 on saccharide 
digestion

S. boulardii CNCM I-745 is known to secrete a highly active 
sucrase (more than 8000 units/g protein).41 Accordingly,  
S. boulardii CNCM I-745 has been used in the treatment of 
children who had diarrhoea due to the congenital deficiency 
for SI.39 The application of S. boulardii CNCM I-745 resulted 
in 70% reduced breath hydrogen (derived from non-digested 
carbohydrates fermented in the colon), in parallel with a com-
plete loss or clear reduction in clinical symptoms.39 Likewise, a  
S. cerevisiae-derived preparation, sacrosidase, with 6000 IU of 
sucrase activity per microgram of protein, was beneficial in 
patients with congenital SI deficiency.42

More recently, S. boulardii CNCM I-745 was used in 21 
volunteers on miglustat therapy in a double-blind, placebo-
controlled, cross-over study. The glucose analogue miglustat, 
which is used to treat rare metabolic diseases (type 1 Gaucher 
disease and Niemann-Pick disease type C), is known to inhibit 
intestinal disaccharidases, mainly SI. The mean number of 
diarrhoea days was lower with miglustat + S. boulardii CNCM 
I-745 (0.8 [SD: 2.4] days) than with miglustat plus placebo 
(1.3 [SD: 2.4] days), as a statistical trend (no significance) in 
favour of the S. boulardii CNCM I-745 treatment.43

Also, other yeast-derived saccharidase activities have been 
found: treatment of growing rats with S. boulardii CNCM 
I-745 resulted in an increase in α,α-trehalase activities of 25% 
to 45% in filtered endoluminal fluid and intestinal mucosa 
samples compared with controls.44 However, S. boulardii 
CNCM I-745 does not seem to produce significant maltase, 
neutral lactase, or acid β-galactosidase activities on its own.41

Protein and peptide hydrolysis by S. boulardii 
CNCM I-745

S. boulardii CNCM I-745 secretes a 54-kDa protease, which is 
capable of inactivating toxins A and B of Peptoclostridium 
[Clostridium] difficile.14,15 However, its specificity appears to be 
much broader, which can be derived from the fact that various 
ileal brush border proteins were degraded when exposed to  
S. boulardii CNCM I-745-conditioned medium,16 and that the 
protein methaemoglobin can also serve as enzymatic substrate.15 
In a study on suckling rats, the oral treatment with S. boulardii 
CNCM I-745 significantly enhanced jejunal and ileal mucosal 
leucine-aminopeptidase activities. As cause for this enhanced 
activity in peptide digestion, the authors found that S. boulardii 
CNCM I-745 releases a leucine-aminopeptidase, a zinc-binding 
metalloprotease with 108 and 87-kDa subunits belonging to the 
M1 family of peptidases.40

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pmc/
http://www.ncbi.nlm.nih.gov/pmc/
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Both yeast protease activities have evolved towards the 
digestive benefit of the yeast. However, they can be considered 
advantageous in enhancing human digestion of proteins and 
peptides, which is, within the intestine, normally achieved by 
the intestinal N-aminopeptidase (aminopeptidase N; APN).

This enzyme was found to be induced in the BBM of small 
bowel-resected rats treated with S. boulardii CNCM I-74545 
(also see below) – thus, the yeast enhances protein and peptide 
hydrolysis by multiple mechanisms.

Alkaline phosphatase of S. boulardii CNCM I-745

S. boulardii CNCM I-745 secretes an alkaline phosphatase.17 
This enzyme is capable of inactivating Escherichia coli lipopoly-
saccharide by dephosphorylation. However, it can also dephos-
phorylate a number of other substrates. For S. boulardii CNCM 
I-745, this activity may be important to generate phosphate, as 
well as the moieties to which the phosphate had been bound. 
Within the intestinal tract, the capacity of S. boulardii CNCM 
I-745 not only makes phosphate available but also inactivates 
toxins and reduces inflammatory signals. This adds to the simi-
lar activity of the intestinal alkaline phosphatase (IAP).46

Effects of S. boulardii CNCM I-745 on BBM 
Enzymes and Nutrient Transporters
Effects of S. boulardii CNCM I-745 in healthy 
human or rats

When S. boulardii CNCM I-745 was administered orally to 
healthy rats or humans, no morphological alterations of the 
BBM could be found.41,45,46 Also, no increase in mucosal mass 
could be detected.29 However, a slight but significant increase 
in the mucosal DNA content of the jejunum and ileum in 
response to S. boulardii CNCM I-745 treatment was observed, 
possibly due to the exogenous supply of DNA provided by the 
yeast itself. In addition, S. boulardii CNCM I-745 leads to an 
increased intestinal secretion of the secretory component of 
immunoglobulins and secretory immunoglobulin A (IgA),29 an 
effect that may improve defence against pathogens.

Several studies provide evidence that the oral administration 
of S. boulardii CNCM I-745 exerts trophic effects on the 
mucosa of the small intestine. Already, in 1986, Buts et  al41 
reported a significant increase in the specific activities of sucrase 
(corresponding enzyme: SI), lactase (corresponding enzyme: 
lactase-phlorizin hydrolase, LPH), and maltase (corresponding 
enzyme: maltase-glucoamylase, MGA) in the BBM of biopsies 
from human volunteers who had ingested 1000 mg S. boulardii 
CNCM I-745 per day for 2 weeks. Similar results were obtained 
when treating rats with S. boulardii CNCM I-745, even if the 
yeast was heat killed before treatment.41

Ten years later, Jahn et al46 showed similar results by dem-
onstrating an increase in lactase, α-glucosidase (corresponding 
enzyme: MGA), and IAP activity in the BBM of duodenal 
biopsies of human volunteers receiving S. boulardii CNCM 
I-745, using an in situ enzyme activity assay within tissue 

sections. The enzyme activities were comparable both for basal 
and apical parts of the BBM villi.46 Intestinal alkaline phos-
phatase has a key function in dephosphorylation of pro-inflam-
matory bacterial moieties, including lipopolysaccharides, 
unmethylated cytosine-guanosine dinucleotides, and flagellin 
as well as extracellular nucleotides such as uridine diphos-
phate.47 Dephosphorylation of lipopolysaccharides from the 
cell wall of gram-negative bacteria prevents their migration 
across the intestinal epithelium.48,49 At the same time, the 
enzymatic products of IAP, e.g. phosphate, are actively taken 
up as useful nutrients.50 The loss of IAP expression or function 
is associated with increased intestinal inflammation, dysbiosis, 
and bacterial translocation. Patients with inflammatory bowel 
disease (IBD) or coeliac disease have reduced IAP messenger 
RNA (mRNA) expression in inflamed tissues.51,52

Effects of S. boulardii CNCM I-745 in models of 
short bowel syndrome

Patients with small bowel resection undergo a transitional 
phase with massive fluid and electrolyte loss with reduced 
nutrient absorption while at the same time a morphometric 
and functional compensatory adaptive response (villus hyper-
plasia) is taking place.53

In a rat model, 60% proximal small bowel resection resulted in 
mucosal hyperplasia with significant decreases in the specific and 
total activities of sucrase, lactase, and maltase. S. boulardii CNCM 
I-745 had no effect on mucosal hyperplasia but upgraded the spe-
cific disaccharidase activities to the level of control rats, which 
were only transected.54

Besides inducing digestive enzymes, S. boulardii CNCM 
I-745 also caused an increase in the sodium dependent d-glu-
cose uptake in the BBM of rats with a 60% proximally resected 
small intestine, measured in BBM vesicles as a function of time 
and glucose concentration in the incubation medium.54 In 
agreement with this, the BBM of resected rats treated with  
S. boulardii CNCM I-745 was found to have an enhanced 
expression of the sodium glucose cotransporter 1 (SGLT1) 
when compared with resected controls.54

Increased activities of sucrase, glucoamylase, and APN were 
observed in the BBM (mucosal samples) of small bowel-
resected rats (50% mid-jejunoileal resection) treated with  
S. boulardii CNCM I-745.45 However, in an 80% intestinal 
resection model with young adult rats, S. boulardii CNCM 
I-745 (2/3 of the dose used in most other studies) did not seem 
to be helpful in augmenting gut adaptation.55

Effects of S. boulardii CNCM I-745 in broiler 
chicken

A recent study examined the trophic effects of S. boulardii 
CNCM I-745 administration in broiler chicken in compari-
son with a chicken on a diet supplemented with the antibiotic 
virginiamycin. The yeast group had higher adenosine triphos-
phatase, γ-glutamyl transpeptidase, lipase, and trypsin 
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activities, however, no significant improvement in amylase 
activities.

Also, the S. boulardii CNCM I-745 group had increased vil-
lus height, width, and number of goblet cells, as well as increased 
numbers of IgA-positive cells and increased production levels 
of tumour necrosis factor α, interleukin 10, transforming 
growth factor β, and secretory IgA.56 Although the comparison 
group was treated with an antibiotic (instead of no treatment), 
a general digestive enzyme and digestive tract stimulating 
effect along with a boost of the immune system can be 
postulated.

Trophic Effects of S. boulardii CNCM I-745 – The 
Role of Polyamines
Polyamines in the intestinal tract

The biogenic polyamines spermine and spermidine are ubiqui-
tous in all living organisms and implicated in many biological 
processes, such as cellular growth, memory performance, and 
metabolism.57–59 Spermidine is enzymatically formed from 
putrescine and is a precursor to spermine formation.60 The 
intracellular polyamine content has a positive correlation with 
the growth potential of a cell.61 Thus, in cancer cells, upregula-
tion of polyamine biosynthesis may be the consequence rather 
than a cause of this pathology.62

Increased polyamine degradation may have a role in the 
development of diseases.63 A perturbed pattern or a 
decreased level of polyamines has been reported in neurode-
generative disorders64,65 and with ageing.66 Counteracting 
this effect, spermidine was neuroprotective, e.g. in a model 
of Huntington disease,67 age-induced memory impair-
ment,68 or Parkinson disease.69

Increased polyamine levels are essential for metabolically 
active cells in comparison with resting cells, and stimulation 
of polyamine synthesis is followed by increased rates of DNA, 
RNA, and protein synthesis.70,71 Within cells, most polyam-
ines can be found in a polyamine-RNA complex (in bovine 
lymphocytes, 57%), influencing the RNA structure.55 
However, there are also certain amounts of polyamines bound 
to DNA (13%), ATP-Mg2+ (12%), and phospholipids (3%), 
leaving only a small fraction of free polyamines (15%).72 
Polyamines lead to improved ribosome assembly and protein 
synthesis for many different growth-related mRNAs. Also, 
polyamine-mediated modulation of transcription (B to Z 
conversion of certain DNA sequences; influencing DNA 
condensation) has been reported.72

A direct influence on phosphorylation of kinases can be 
explained by the polyamine affinity to ATP-Mg2+.73 
Furthermore, polyamines can interact with ion channels (e.g. 
inwardly rectifying potassium channels) and control their 
activity, and influence cell cycle regulation and support of 
membrane function.74 In the post-resectional rat model, the 
adaptive mucosal hyperplasia of the small intestine can be 
abolished by inhibiting ornithine decarboxylase (ODC)  
activity.75 ODC is essential for polyamine synthesis. Thus, in 

such a model, enteral and intravenous putrescine or spermine  
restores adaptive growth,76 so do precursors such as ornithine 
α-ketoglutarate.77 If diamine oxidase (DAO), the enzyme 
responsible for the breakdown of polyamines, is inhibited, this 
also enhances the proliferative response due to the elevated 
polyamine levels.78

Lyophilized S. boulardii CNCM I-745 contains a measura-
ble content of the biogenic polyamines spermine, spermidine, 
and putrescine. The administration of S. boulardii CNCM 
I-745 to suckling and weanling rats significantly increased the 
spermine and spermidine levels within the jejunal mucosa.79

Interestingly, an increase in sucrase and maltase activity 
could not only be observed in rats in response to adminis-
tered S. boulardii CNCM I-74541 but also in suckling and 
weanling rats when supplying polyamines, e.g. spermidine 
instead of S. boulardii CNCM I-745. In a rat model with a 
60% proximal small bowel resection, an increase in mucosal 
polyamine concentrations induced by S. boulardii CNCM 
I-745 was observed.54

Thus, it is plausible that polyamines and S. boulardii CNCM 
I-745 can enhance the expression of intestinal enzymes, and 
that the polyamines supplied by S. boulardii CNCM I-745 are 
the signal which induces an increased expression of digestive 
enzymes and nutrient transporters, along with a variety of 
other cellular changes due to a general activation of cell prolif-
eration and differentiation.

In rats with proximal enterectomy, treatment with S. boulardii 
CNCM I-745 did not only result in increased mucosal polyam-
ine concentrations but was also additionally associated with a 
significant increase in DAO activity.54 This enzyme, which 
degrades histamine as well as polyamines, is released from the 
intestinal mucosa via vesicles and carried to the circulation by the 
lymphatics.80 Such negative feedback loop is plausible to control 
polyamine levels.

Polyamine regulation within the yeast

Oxidative stress in yeast causes induction of antioxidant pro-
teins (heat shock proteins, superoxide dismutase) and a G2 cell 
cycle arrest of variable duration (allowing more time for DNA 
repair). In a study, this duration could be increased by spermi-
dine and spermine export, as well as by adding spermine extra-
cellularly to a yeast mutant deficient in spermine export.81 At 
the same time, it is known that spermidine and spermine are 
able to scavenge free radicals.82 Thus, during oxidative stress, 
the presence of spermine and spermidine in the exterior sur-
rounding the yeast cell can be considered advantageous for cel-
lular protection while at the same time exhibiting signalling 
function.81 As a hypothesis, the acidic pH in the stomach as 
well as the intestinal environment will also cause stress for the 
yeast cells, which may enhance their spermidine secretion.

When intracellular polyamine was depleted in yeast, this 
resulted in a shortened chronological life span and evoked mark-
ers of oxidative stress and necrosis. Interestingly, it was found that 
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Figure 1.  Schematic overview of the effects of Saccharomyces boulardii CNCM I-745 on enzymes within the small intestine. Even though not all 

mechanistic details are understood, the following mechanism appears plausible from the published literature: the yeast provides increased levels of 

polyamines, which are taken up by a polyamine transport system (PTS) and/or function as signalling molecules (other signals are also possible). As a 

result, translation, transcription, and kinase activities are activated, thereby inducing an increased expression of digestive enzymes, uptake transporter 

SGLT1 (sodium glucose cotransporter 1), and IAP (intestinal alkaline phosphatase) (likely, other targets of induction remain to be discovered). Polyamines 

are also generally observed to induce growth. One observed negative feedback mechanism is the increase in the polyamine degradation enzyme DAO 

(diamine oxidase). In addition, the yeast provides enzymes of its own, which help digest the supplied food, for the profit of both yeast and host. The 

combined effects will lead to an improved nutrient absorption, as well as to a faster adaptation towards a normal situation, in case that the small intestine 

is perturbed by disease or other causes for nutrient malabsorption. As an extra effect, the S. boulardii  CNCM I-745-induced increase in alkaline 

phosphatase activities will inactivate toxins and reduce inflammatory signals. Abbreviations and brief explanations:

•• APN, aminopepedidase N (alanyl aminopeptidase, neutral brush border aminopeptidase, N-aminopeptidase) – digests peptides generated from 

hydrolysis of proteins by gastric and pancreatic proteases, upregulated in response to S. boulardii .40,45

•• DAO, diamine oxidase – degrades histamine as well as polyamines, is released from the intestinal mucosa via vesicles, and carried to the 

circulation by the lymphatics.80 As a negative feedback, DAO is upregulated in response to S. boulardii.54

•• IAP, intestinal alkaline phosphatase – dephosphorylates lipopolysaccharides derived from the cell wall of gram negative bacteria, preventing 

transmigration of bacteria across the epithelium; dephosphorylates other potentially pro-inflammatory ligands; upregulated in response to  

S. boulardii.46

•• GRB2-SHC-CrkII-Ras-GAP-Raf-ERK1,2 – proteins of the MAPK pathway, including adaptor proteins SHC, CrkII, and GRB2, linking a signal 

receptor to a guanine nucleotide exchange factor (SOS). A signal results in an activated ERK dimer, which regulates targets in the cytosol and also 

translocates to the nucleus, where it phosphorylates transcription factors, which in turn regulate gene expression, most likely including genes 

involved in upregulation of enzyme activity. The MAPK pathway gets activated in response to S. boulardii.84,85 

•• LPH, lactase-phlorizin hydrolase – digestive enzyme with 2 domains, one splitting, among others, lactose, cellobiose o-nitrophenyl- 

β-glucopyranoside, and o-nitrophenyl- β-galactopyranoside, and the other splitting, among others, phlorizin,  β-glycopyranosylceramides, and 

m-nitrophenyl- β-glucopyranoside.98 Upregulated in response to S. boulardii.38,41,46

•• MGA , maltase-glucoamylase – α-glucosidase containing 2 domains with differing substrate specificity on maltose/starch and glucose oligomers 

with  α(1→4) bonds; upregulated in response to S. boulardii.38,41,45,46

•• SI, sucrase-isomaltase – α-glucosidase containing 2 domains with overlapping substrate specificity, hydrolysing oligomers with (1→6)-α-d-

glucosidic linkages including sucrose; upregulated in response to S. boulardii.41,45

•• SGLT1, sodium glucose cotransporter – transports glucose into enterocytes while exporting sodium; upregulated in response to S. boulardii.54

•• PI3K, phosphatidylinositol-3 kinase.

•• PTS, polyamine transport system.99
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extracellular spermidine treatment extended the life span in yeast, 
worms, flies, and human immune cells. At the same time, spermi-
dine induced autophagy in yeast, worms, and flies. Autophagy is 
believed to be essential for healthy ageing and longevity. When 
the capability for autophagy was genetically abrogated, this 
resulted in a loss of spermidine-inducible life span extension.83

S. boulardii CNCM I-745–Induced Mitogenic and 
Metabolic Signal Transduction
Altogether, there are numerous pieces of evidence that the pres-
ence of S. boulardii CNCM I-745 in the intestinal tract leads to 
an increase in digestive enzymes within the villous membrane 
of enterocytes. Although the signalling pathways leading to an 
increased enzyme activity are not completely understood, mito-
gen-activated protein kinase (MAPK) signalling mechanisms 
are very likely involved (Figure 1). In experiments using immu-
noprecipitation and immunoblotting of preparations from rat 
intestinal tissues, it was concluded that S. boulardii CNCM 
I-745 acts via the pathway GRB2-SHC-CrkII-Ras-GAP-
Raf-ERK1,2.84,85 This MAPK pathway is known to control 
cellular proliferation, differentiation, and survival and may also 
be relevant for the upregulation of enzyme activity.

Investigations have shown that protein kinase CK2 activity 
is upregulated by intracellular polyamine levels.86 Elevated CK2 
levels can be found in proliferating cells. At least in Drosophila, 
protein kinase CK2 was able to monitor intracellular polyamine 
levels and translate this information to modulate MAPK sign-
aling.87 S. boulardii CNCM I-745 has also an effect on the 
phosphatidylinositol-3-kinase (PI3K) pathway: the phospho-
rylated form of p85, a critical regulatory unit of this pathway, 
was increased by 2.5-fold in rats treated by the probiotic.87

It should be considered that both the enzyme stimulatory 
and the anti-inflammatory activities may be regulated by over-
lapping signalling cascade proteins, explaining the immunologic 
effects of S. boulardii CNCM I-745. In S. boulardii CNCM 
I-745–treated rats, nuclear factor κB could not be detected, 
whereas a large signal was detected in controls, biochemically 
demonstrating the anti-inflammatory action of S. boulardii 
CNCM I-745. Also, S. boulardii CNCM I-745 decreased acti-
vation of p38 MAPK, a kinase responsive to pro-inflammatory 
cytokines and environmental stress.84,85,88 More studies in this 
area will improve the precise mechanistic understanding of 
digestive enzyme regulation by S. boulardii CNCM I-745.

Summary and Discussion
Trophic effects by enzyme stimulation and supply of 
yeast enzymes

Overall, it is apparent from the available data that S. boulardii 
CNCM I-745 is able to stimulate a number of intestinal diges-
tive enzymes and a transporter, in growing rats, rats with short-
ened intestine, as well as humans. There is additional evidence 
of trophic effects of the yeast in broiler chicken. At the same 
time, S. boulardii CNCM I-745 supplies additional enzymes 
that also improve digestion.

As a limitation, the evidence is collected mostly from stud-
ies on rats, with 6 to 12 rats per group. However, a significant 
stimulation of the enzymes SI, LPH, and MGA, as well as IAP, 
has also been demonstrated within 2 pharmacologic studies on 
human volunteers.

Table 1 summarizes the study results of non-clinical and 
clinical studies regarding the influence of the administration of 
S. boulardii CNCM I-745 on the BBM and digestive enzymes. 
Significant trophic effects by the yeast on the stimulation of 
enzyme specific activity (enzymes belonging to test subjects) 
ranged from around 20% to 260% depending on enzyme and 
test system. As shown in 2 studies, an S. boulardii CNCM 
I-745–dependent increase in polyamines ranged from 20% to 
160% depending on polyamine and test system. In addition, 
the yeast is able to supply certain enzymes, which result in up 
to 110% increased respective enzyme activities within subjects, 
again depending on enzymatic activity and test system. More 
and larger studies are needed to confirm the observed effects as 
well as their relevance in real-life settings.

Polyamines and trophic effects: towards a 
mechanistic understanding

S. boulardii CNCM I-745 – most likely by secreting polyam-
ines – is able to stimulate the expression of digestive enzymes 
(SI, MGA, LPH, APN, IAP) and nutrient transporters 
(SGLT1). The enzyme stimulation is likely to involve the 
GRB2-SHC-CrkII-Ras-GAP-Raf-ERK1,2 pathway and the 
PI3K pathway. These pathways may be activated by polyam-
ines which are capable of influencing kinase activities and/or by 
an additional external signal. Polyamines are also known to 
stimulate protein synthesis via RNA binding and stabilization, 
resulting in an increase in growth-related and differentiation-
related proteins, including digestive enzymes, which will be 
inserted into the BBM. Also, polyamines can interact with 
DNA, facilitating the generation of certain transcripts.

Thus, clinically, we postulate a general polyamine-triggered 
metabolic activation due to S. boulardii CNCM I-745 which 
will cause a faster regeneration of any damaged BBM areas.

Polyamine levels are regulated by increased polyamine deg-
radation via DAO if the polyamine levels are high.

The recent study by Sun et al. highlights beneficial trophic 
effects by the yeast - also in broiler chicken, including the acti-
vation of several digestive enzymes compared with the admin-
istration of an antibiotic.56

Clinical potential of S. boulardii CNCM I-745

S. boulardii CNCM I-745 secretes several digestive enzymes, 
including a highly active sucrase. The supply of additional yeast 
enzymes together with activation of intestinal enzymes and 
transporters by S. boulardii CNCM I-745 will increase diges-
tive enzyme activities, nutrient digestion, and absorption. This 
is of special advantage when the digestive system is affected, 
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e.g. by disease. Thus, patients with infectious or inflammatory 
diarrhoea will benefit from the increased enzyme activity and 
nutrient absorption induced by the probiotic yeast. Phosphatases 
additionally inactivate toxins and reduce inflammatory 
triggers.

The stimulation of the IAP by S. boulardii CNCM I-745, in 
combination with the yeast alkaline phosphatase, suggests 
treatment options in chronic inflammatory states such as IBD, 
coeliac disease, and obesity.

A large number of people have low or absent activities of 
certain digestive enzymes, either for genetic reasons, or due to 
enterocolopathies, or other chronic abdominal diseases. Lactose 
intolerance related to primary or more often secondary lactase 
deficiency (LPH deficiency) affects a wide number of people 
worldwide.94 However, there are also people deficient in α,α-
trehalase,44 SI,95 or other α-glucosidases.96,97

S. boulardii CNCM I-745 is unique in offering a large vari-
ety of different digestion improving effects, increasing the 
activity of the major digestive enzymes. Administration of  
S. boulardii CNCM I-745 will alleviate symptoms of maldiges-
tion induced by genetic or acquired enzyme deficiencies. Also, 
it can be concluded that patients with (e.g. virally induced) 
inflammatory diarrhoea will profit from the improved enzyme 
activity and nutrient absorption induced by the probiotic yeast, 
since this will counteract osmotic effects and thus lead to less 
watery stools. This reflects the current indication for lyophi-
lized S. boulardii CNCM I-745 preparations.
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