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A B S T R A C T

Background: The spatial distributions of different types of cells could reveal a cancer cell’s growth pattern, its
relationships with the tumor microenvironment and the immune response of the body, all of which repre-
sent key “hallmarks of cancer”. However, the process by which pathologists manually recognize and localize
all the cells in pathology slides is extremely labor intensive and error prone.
Methods: In this study, we developed an automated cell type classification pipeline, ConvPath, which includes
nuclei segmentation, convolutional neural network-based tumor cell, stromal cell, and lymphocyte classifica-
tion, and extraction of tumor microenvironment-related features for lung cancer pathology images. To facili-
tate users in leveraging this pipeline for their research, all source scripts for ConvPath software are available
at https://qbrc.swmed.edu/projects/cnn/.
Findings: The overall classification accuracy was 92.9% and 90.1% in training and independent testing data-
sets, respectively. By identifying cells and classifying cell types, this pipeline can convert a pathology image
into a “spatial map” of tumor, stromal and lymphocyte cells. From this spatial map, we can extract features
that characterize the tumor micro-environment. Based on these features, we developed an image feature-
based prognostic model and validated the model in two independent cohorts. The predicted risk group
serves as an independent prognostic factor, after adjusting for clinical variables that include age, gender,
smoking status, and stage.
Interpretation: The analysis pipeline developed in this study could convert the pathology image into a “spatial
map” of tumor cells, stromal cells and lymphocytes. This could greatly facilitate and empower comprehen-
sive analysis of the spatial organization of cells, as well as their roles in tumor progression and metastasis.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Evidence before this study

Since 2011, computer algorithms have been developed to analyze
tissue pathology images for cancer diagnosis, grading and prognosis.
Recently, deep learning-based algorithms have made remarkable
achievements in pathology image analysis. Several deep learning
models for lung cancer pathology image analysis have been proposed
for lung cancer H&E-stained pathology images. Furthermore, several
deep learning methods have been developed to characterize the
tumor micro-environment, since the tumor micro-environment plays
an important role in tumor progression and response to treatment.

The major cell types in a malignant tissue of lung include tumor
cells, stromal cells, and lymphocytes. Stromal cells are connective

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2019.10.033&domain=pdf
https://qbrc.swmed.edu/projects/cnn/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Guanghua.Xiao@UTSouthwestern.edu
https://doi.org/10.1016/j.ebiom.2019.10.033
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ebiom.2019.10.033
https://doi.org/10.1016/j.ebiom.2019.10.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ebiom


104 S. Wang et al. / EBioMedicine 50 (2019) 103�110
tissue cells such as fibroblasts and pericytes, and their interaction
with tumor cells plays an important role in cancer progression and
metastasis inhibition. For example, the crosstalk between cancer cells
and stromal cells is needed for invasive growth and metastasis. Spa-
tial heterogeneity of TILs is associated with the tumor molecular pro-
file and patient prognosis. How to automatically classify different
types of cells is a major technical challenge in studying the tumor
microenvironment.

Added value of this study

In this study, we developed a pathological image analysis and cell
classification pipeline, which can perform nuclei segmentation, CNN-
based cell type prediction, and feature extraction. This pipeline suc-
cessfully visualizes the spatial distributions of tumor, stromal, and
lymphocyte cells in the ROI of lung ADC pathology images.

Implications of all the available evidence

Quantifying distribution and interaction with tumor or stromal
cells of lymphocytes can potentially provide a way to evaluate
immune response status and serve as a biomarker for immunother-
apy response. The analysis pipeline developed in this study could
convert the pathology image into a “spatial map” of tumor cells, stro-
mal cells and lymphocytes. This could greatly facilitate and empower
comprehensive analysis of cell spatial organization, as well as its role
in tumor progression and metastasis.

Hematoxylin and Eosin (H&E)-stained tissue whole-slide image
(WSI) scanning is becoming a routine clinical procedure that produ-
ces massive pathology images with histological details in high resolu-
tion. Tumor pathology images contain not only essential information
for tumor grade and subtype classification [1], but also information
on the tumor microenvironment and the spatial distributions of dif-
ferent types of cells. Tumor tissues are complex structures with can-
cer cells and surrounding non-malignant cells (such as stromal cells
and lymphocytes) that form the tumor micro-environment [2].
Understanding the interactions among these cells can provide critical
insights into tumor initiation, progression, metastasis and potential
therapeutic targets. For example, the crosstalk between cancer cells
and stromal cells is needed for invasive growth and metastasis [3,4].
However, the major technical challenge to studying cell spatial orga-
nization is how to classify different types of cells from tumor tissues.
It is impractical for a pathologist to manually recognize and localize
every individual cell in a pathology slide.

In recent years, convolutional neural networks (CNNs), one of the
deep learning strategies, have made great success in image recogni-
tion tasks [5-7]. In this study, we developed a CNNmodel to automat-
ically classify tumor cells, stromal cells, and lymphocytes for lung
adenocarcinoma (ADC) pathology images. Furthermore, we devel-
oped an automated image analysis pipeline, ConvPath, to facilitate
researchers in studying the spatial interactions of different types of
cells and their roles in tumor progression and metastasis. The Con-
vPath pipeline is composed of nuclei segmentation, cell type recogni-
tion, microenvironment characterization, and prognosis (Fig. 1). The
Fig. 1. Flow chart of ConvPath-aided pathological image analysis.
CHCAMS, National Cancer Center/Cancer Hospital of Chinese Academy of Medical Scienc
prognostic performance of the model was validated in two indepen-
dent lung ADC cohorts.

1. Methods

1.1. Datasets

H&E-stained histology images and clinical information for lung
ADC patients and corresponding clinical data were collected from
four independent cohorts: The Cancer Genome Atlas lung ADC proj-
ect LUAD data (referred as the TCGA dataset), the National Lung
Screening Trial project (the NLST dataset), the University of Texas
Special Program of Research Excellence (SPORE) in Lung Cancer proj-
ect (the SPORE dataset), and the National Cancer Center/Cancer Hos-
pital of Chinese Academy of Medical Sciences, China (the CHCAMS
dataset).

The TCGA data, including 1337 tumor images from 523 patients,
were obtained from the TCGA image portal (https://wiki.cancerima
gingarchive.net/display/Public/TCGA-LUAD). All TCGA images were
captured at X20 or X40 magnification and included both frozen and
Formalin-Fixed, Paraffin-Embedded (FFPE) slides. The NLST data,
including 345 tumor images from 201 patients, were acquired from
the National Lung Screening Trial, which was performed by the
National Cancer Institute. All NLST images were FFPE slides and cap-
tured at 40X magnification. The CHCAMS data, including 102 images
from 102 stage I ADC patients, were obtained from the National Can-
cer Center/Cancer Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College (CHCAMS), China. All CHCAMS
images were FFPE slides and captured at 20X magnification. The
SPORE data, including 130 images from 112 patients, were acquired
from the UT Lung SPORE tissue bank. All SPORE images were FFPE
slides and captured at 20X magnification. The characteristics of the
four datasets used in this study are summarized in Supplemental
Table 1.

1.2. Extraction of image patches centering at nuclei centroids

A pathologist, Dr. Lin Yang, reviewed the H&E-stained pathology
image slides and manually labeled Region of Interest (ROI) bound-
aries using the annotation tool of ImageScope (Leica Biosystem,
Fig. 2a). ROIs were defined by the main malignant area within the
pathology images. ConvPath randomly selected 10 sampling regions
from each selected ROI. The sampling regions were sized 5000£5000
or 3000£3000 pixels in 40X or 20X magnification images, respec-
tively. In each sampling region, ConvPath further extracted
80£80 pixel image patches (for 40X magnification images,
160£160 pixel image patches were extracted first and resized as
80£80 pixel) centering at nuclei centroids (Fig. 2b, Supplemental
Figure 1).

In order to extract the image patches, RGB color space was first
converted to H&E color space with the deconvolution matrix set as
[0.550 0.758 0.351; 0.398 0.634 0.600; 0.754 0.077 0.652] [8]. Mor-
phological operations consisting of opening and closing were
adopted to process the hematoxylin channel image [9]. Then,
es, China; CI, confidence interval; HR, hazard ratio; TCGA, The Cancer Genome Atlas.

https://wiki.cancerimagingarchive.net/display/Public/TCGA-LUAD
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LUAD


S. Wang et al. / EBioMedicine 50 (2019) 103�110 105
ConvPath detected nuclei boundaries using a level set segmentation
technique [10,11]. In this segmentation method, the initial contour
was randomly given, the value of sigma in Gaussian filter was 1, the
number of iterations was 30, and the velocity term was 60. Next,
nuclei centroids were detected as the moments of centroids of con-
nected targets in a binary image, where the foreground was the
regional maximum locations in a distance map of the segmented
image. Here, Euclidean distance was utilized for the distance trans-
form and regional maximums were searched within 8-connected
neighborhoods. Finally, image patches using the detected nuclei cent-
roids as centers were extracted from the original pathological RGB
image (Fig. 2b).
1.3. Deep learning algorithm in the convpath software

ConvPath incorporates a CNN [12-14] to recognize the major cell
types, including tumor cells, stromal cells and lymphocytes, in the
center of pathology image patches (Fig. 3a, Supplemental Table 2).
The input to the CNN was an 80£80 image patch normalized to the
range [�0.5, 0.5] with 3 channels corresponding to the red (R), green
(G), and blue (B) channels. The output layer for the CNN was a soft-
max layer with 3 categories: tumor cell, stromal cell, and lymphocyte.
For one image patch, a probability for each of the 3 categories was
predicted by the CNN; the category with the highest probability was
assigned as the predicted class for the image patch. The CNN was
trained using a batch size of 10, a momentum of 0.9, a weight decay
of 0.0001, an initial learning rate of 0.01, which shrinks by 0.99995 in
each step, and training steps of 20,000. The image patches were
rotated and flipped to augment sample size. A drop connect probabil-
ity of 0.5 was used in all convolutional layer parameters. The NLST
and TCGA datasets were combined and used as the training set for
the CNN (Fig. 3b&c, Supplemental Table 3), and the SPORE dataset
was used as the external validation set. The image patches in training
and validation sets were labeled by the pathologist as ground truth.
Fig. 2. Image preprocessing step of the ConvPath software. (a) Selection of regions of interest
cell-centered image patches from selected ROIs.
1.4. Tumor micro-environment feature extraction

Based on the prediction results of the CNN, ConvPath converted
the pathology image into a “spatial map” of tumor cells, stromal cells
and lymphocytes. From this spatial map, we can define the tumor cell
regions, stromal cell regions and lymphocyte regions within each
ROI, and characterize the distribution and interactions among these
regions. For example, a stromal cell region is a small area with tumor
tissue that consists of mostly stromal cells. Specifically, ConvPath
used kernel smoothers to define regions of tumor cells, stromal cells
and lymphocytes separately within the ROI (Fig. 4b). For instance, to
define the tumor cell region, ConvPath extracted coordinates of the
centers of all image patches and labeled them as 1 if they had been
recognized as tumor cells from the previous step, 0 if not. For each
point on the image, ConvPath then calculated the probability of being
a tumor cell region by weighting all its neighbors with standard nor-
mal density kernel K (z/h), where z was defined as the distance
between the point and center of each image patch, and h, the band-
width, was defined as 2 times the estimated cell diameter. A region
with probability larger than 0.5 was defined as a tumor cell region.
The same approach was used to define stromal cell region and lym-
phocyte cell region. Next, ConvPath calculated 2 features for each
region (Supplemental Table 4), which were the perimeter divided
by the square root of region area and size divided by image size for
the 3 kinds of cell regions separately.

1.5. Statistical analysis

R (version 3.2.4) [15] and R packages survival (version 2.38�3),
glmnet (version 2.0�5), and clinfun (version 1.0.13) were used for
statistical analysis. Survival time was defined as the period from diag-
nosis to death or last contact for the NLST and TCGA datasets, and
from diagnosis to recurrence or last contact in the CHCAMS dataset.
The prognostic model was trained on the NLST patients using a Cox
regression model with elastic penalty, to predict a risk score for each
(ROIs) in whole pathological imaging slides. (b) Image segmentation pipeline to extract



Fig. 3. Cell type recognition step of the ConvPath software. (a) Schema and structure of the convolutional neural network (CNN) to recognize the types of cells in the centers of
image patches. (b) Confusion matrix of internal testing results of CNN on the NLST and TCGA training image slides. Prediction accuracies are calculated based on 3996 image patches
for each cell type. (c) Confusion matrix of independent testing results of CNN on image patches of the SPORE dataset. Prediction accuracies are calculated based on 8245 lymphocyte,
2211 stroma, and 6836 tumor patches.
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sampling region. The final risk score of each patient was determined
by averaging risk scores across 10 sampling regions of this patient.
The performance of this prognostic model was evaluated on the
TCGA and CHCAMS datasets by dichotomizing the patients by the
median predicted risk score of each dataset. In the validation study,
the maximum follow-up time was set to six years, since patient sur-
vival after six years may not directly relate to cancer-specific events.
Kaplan-Meier (K-M) plots and log-rank tests were used to compare
survival outcomes. In addition, a multivariate Cox proportional haz-
ard model was used to test whether the prognostic risk scores were
statistically significant after adjusting for clinical variables, including
age, gender, tobacco history, and stage. A Jonckheere-Terpstra (J-T)
k-sample test [16] was used to test whether higher risk scores were
correlated with theoretically more severe ADC subtypes. The results
were considered significant if the two-sided test (except for the J-T
test, which is a one-sided test for trend) p value � 0.05.
1.6. Data availability

Pathology images and clinical data in the NLST and TCGA datasets
that support the findings of this study are available online in the
NLST (https://biometry.nci.nih.gov/cdas/nlst/) and The Cancer
Genome Atlas Lung Adenocarcinoma (TCGA-LUAD, https://wiki.can
cerimagingarchive.net/display/Public/TCGA-LUAD). Data in the
SPORE and CHCAMS datasets that support the findings of this study
are available from the UT Lung SPORE Tissue bank and the National
Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College (CHCAMS), China, separately, but
restrictions apply to the availability of these data.
2. Results

2.1. ConvPath classifies lung adenocarcinoma cell types with high
accuracy

11,988 tumor, stromal, and lymphocyte image patches centered at
cell nuclei centroids were extracted from 29 slides in the TCGA and
NLST datasets (Fig. 2, Supplemental Table 3) and used to train the
CNN model (Fig. 3a). Example image patches are shown in Supple-
mental Figure 1. The overall classification accuracies of the CNN
model on training images were 99.3% for lymphocytes, 87.9% for stro-
mal cells, and 91.6% for tumor cells, respectively (Fig. 3b). The

https://biometry.nci.nih.gov/cdas/nlst/
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LUAD
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Fig. 4. Feature extraction step of the ConvPath software. (a) A zoomed-in part of a sampling region (Supplemental Figure 3) in which cell nuclei centroids are labeled with pre-
dicted cell types. Green, stroma; cyan, lymphocyte; yellow, tumor. (b) Cell type region detection using a kernel smoothing algorithm for the sampling region shown in Supplemen-
tal Figure 3. Area and perimeters are evaluated for regions of tumor, stroma, and lymphocyte.

S. Wang et al. / EBioMedicine 50 (2019) 103�110 107
independent cross-study classification rates in the SPORE dataset
were 97.8% for lymphocytes, 86.5% for stromal cells, and 85.9% for
tumor cells (Fig. 3c).

2.2. Tumor micro-environment features from predicted sampling
regions correlate with overall survival

ConvPath was then used to generate cell type predictions for 10
random sampling regions within the ROI on each slide. Based on
nuclei centroid locations together with accurate cell type predictions
(Fig. 4a, Supplemental Figure 2), we investigated whether the spatial
distributions of tumor cells, stromal cells, and lymphocytes corre-
lated with the survival outcome of lung ADC patients. In each pre-
dicted sampling region, tumor, stromal, and lymphocyte cell regions
were detected using a kernel smoothing algorithm (Fig. 4b, Method
section). For regions of each cell type, simple parameters such as
perimeter and size were measured. To ensure comparability across
image slides captured at different magnitudes, the parameters were
normalized by area of sampling region. In univariate Cox analysis, 4
of the 6 extracted features significantly correlated with survival out-
come in the NLST dataset (Supplemental Table 4). Interestingly, both
perimeter and area of stroma region were good prognostic factors,
suggesting a protective effect of stromal cells in lung ADC patients
(Supplemental Figure 3&4).

2.3. Development and validation of an image feature-based prognostic
model

Utilizing the region features of each cell type extracted from the
pathology images in the NLST dataset, we developed a prognostic
model to predict patient survival outcome (coefficients of this model
are shown in Supplemental Table 4). The model was then indepen-
dently validated in the TCGA and CHCAMS datasets. The TCGA and
CHCAMS patients were dichotomized according to the median pre-
dicted risk scores in each dataset. In both datasets, the patients in the
predicted high-risk group had significantly worse survival outcomes
than those in the predicted low-risk group (Fig. 5a&b, log rank test,
p = 0.0047 for the TCGA dataset, p = 0.030 for the CHCAMS dataset).
To evaluate whether the image features extracted by ConvPath were
independent of clinical variables, multivariate Cox proportional haz-
ard models were used to adjust the predicted risk scores with avail-
able clinical variables, including gender, age, stage and smoking
status (Table 1). After adjustment, the still significant hazard ratios
between high- and low-risk groups (p = 0.0021 for the TCGA dataset,
p = 0.016 for the CHCAMS dataset) indicated that risk group as
defined by ConvPath-extracted image features was an independent
prognostic factor, in addition to other clinical variables.

2.4. Predicted risk scores correlate with severity of adc subtypes

The 2015 WHO classification of lung cancer further divides inva-
sive lung ADC into several subtypes, including acinar, lepidic, micro-
papillary, papillary, solid, and mucinous ADC [1]. The correlation of
the predicted risk scores with the predominant histology subtypes
identified by our pathologist for the CHCAMS dataset, according to
the 2015 WHO classification guidelines, was tested (Fig. 5c). Higher
risk scores correlated with more aggressive ADC subtypes, such as
solid predominant ADC and invasive mucinous ADC (p = 0.0039).
Noticeably, despite such correlation, image-derived risk score was
independent of the ADC subtypes in multivariate survival analysis
(Supplemental Table 5).

2.5. The convpath software and web server

To facilitate practical application of this pathological image analy-
sis pipeline by pathologists and bioinformaticians, the image seg-
mentation, deep learning, and feature extraction algorithms were
incorporated into the ConvPath software. The ConvPath software is
publicly accessible from the web server created for this study, which
is at https://qbrc.swmed.edu/projects/cnn/ (Supplemental Figure 6).

3. Discussion

Since 2011, computer algorithms have been developed to analyze
tissue pathology images for cancer diagnosis [17-21], grading [22-26]
and prognosis [27-32]. Recently, deep learning-based algorithms

https://qbrc.swmed.edu/projects/cnn/


Fig. 5. Application of the prognostic model to independent datasets. (a, b) Validation of the prognostic model in the TCGA overall survival data (a, log rank test, p = 0.0047) and the
CHCAMS recurrence data (b, log rank test, p = 0.030). (c) Boxplot for the distribution of predicted risk scores in the 5 histological subtypes of lung adenocarcinoma for the CHCAMS
dataset patients. Jonckheere-Terpstra k-sample test, p = 0.0039. The boxes and whiskers show the lower (Q1) and upper (Q3) quartiles and the median for each histological subtype.

Table 1
Multivariate analysis of the predicted risk scores in the CHCAMS
and TCGA datasets adjusted by clinical variables.

TCGA dataset (n = 346) HR 95% CI p value

High risk vs. low risk 2.19 1.33�3.60 0.0021
Age (per year) 1.03 1.01�1.06 0.014
Male vs. female 0.69 1.45�1.16 0.16
Smoker vs. non-smoker 0.88 0.53�1.47 0.62
Stage

Stage I ref �
Stage II 2.69 1.45�5.00 0.0017
Stage III 5.04 2.69�9.43 <0.001
Stage IV 6.06 2.49�14.73 <0.001

CHCAMS dataset (n = 88) HR 95% CI p value

High risk vs. low risk 2.21 1.16�4.21 0.016
Age (per year) 1.02 0.99�1.06 0.202
Male vs. female 1.85 0.69�4.91 0.22
Smoker vs. non-smoker 0.76 0.28�2.04 0.585

CHCAMS, National Cancer Center/Cancer Hospital of Chinese
Academy of Medical Sciences, China;.
CI, confidence interval;.
HR, hazard ratio;.
TCGA, The Cancer Genome Atlas.
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have made remarkable achievements in pathology image analysis
[33-36]. Several deep learning models for lung cancer pathology
image analysis have been proposed for lung cancer H&E-stained
pathology images. For example, a CNN model was developed to clas-
sify image patches of 300£300 pixel size as malignant or non-malig-
nant in lung cancer pathology images, and has achieved an overall
classification accuracy of 89.8% in an independent testing set [35].
This model could facilitate pathologists to quickly detect and locate
tumor region from tissue pathology images. In addition to detecting
tumor regions, Coudray et al. have developed a CNN model to distin-
guish different lung cancer subtypes [37].

To classify different cell types, several classic machine learning-
based models and CNN models have also been developed. QuPath
enabled semi-automatic detection of different types of objects (e.g.,
cell nuclei) through classic machine learning methods [38]. Sirinu-
kunwattana et al. utilized CNN to classify nuclei into epithelial,
inflammatory, fibroblast, and miscellaneous nuclei in colon cancer
histology images [39].

Furthermore, several deep learning methods have been developed
to characterize the tumor micro-environment, since the tumor
micro-environment plays an important role in tumor progression
and response to treatment. For example, a CNN model has been
developed to classify lymphocytes from necrosis or other tissues in
multiple cancer types [40]. In another study, Yi et al. developed a
Fully Convolutional Neural Network (FCN) [41] to segment micro
blood-vessels from lung ADC pathology images. An image segmenta-
tion CNN model was developed to classify each pixel in lung ADC
pathology images as nucleus centroid, nucleus boundary, or non-
nuclei [42]. Based on the results of this model, morphological, tex-
tural, and graphical features of cell nucleus were extracted and used
to develop a prediction model for tumor recurrence in lung ADC
patients.

The major cell types in a malignant tissue of lung include tumor
cells, stromal cells, and lymphocytes. Stromal cells are connective tis-
sue cells such as fibroblasts and pericytes, and their interaction with
tumor cells plays an important role in cancer progression [43-45] and
metastasis inhibition [46]. Tumor-infiltrating lymphocytes (TILs) are
white blood cells that have migrated into a tumor. They are a mix of
different types of cells, with T cells being the most abundant popula-
tion. Tumor-infiltrating lymphocytes have been associated with
patient prognosis in multiple tumor types [47-50]. The spatial distri-
butions of different types of cells could reveal a cancer cell’s growth
pattern, its relationships with the tumor microenvironment and the
immune response of the body, all of which represent key “hallmarks
of cancer”. For example, the crosstalk between cancer cells and stro-
mal cells is needed for invasive growth and metastasis [3,4]. Spatial
heterogeneity of TILs is associated with the tumor molecular profile
and patient prognosis [40,51]. However, as there are more than
10,000 cells in each sampling region (Supplemental Figure 2), it is
extremely labor-intensive and error-prone for a pathologist to manu-
ally recognize and localize every individual cell in a pathology slide.
How to automatically classify different types of cells is a major tech-
nical challenge in studying the tumor microenvironment.

In this study, we developed a pathological image analysis and cell
classification pipeline, which can perform nuclei segmentation, CNN-
based cell type prediction, and feature extraction (Fig. 1). This pipe-
line successfully visualizes the spatial distributions of tumor, stromal,
and lymphocyte cells in the ROI of lung ADC pathology images. It can
potentially serve as a prognostic method independent of other clini-
cal variables. The patient prognostic model based on extracted image
features was trained in the NLST dataset and independently validated
in the TCGA and CHCAMS datasets, which indicates the generalizabil-
ity of this analysis pipeline to other lung ADC patients.

The accurate classification of cell types in pathology images was
validated in an independent data cohort. While the qualities of H&E
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staining vary across different cohorts and there are inherent inter-
patient differences, ConvPath still has 90.1% overall accuracy in the
SPORE dataset (Fig. 3c). The ConvPath pipeline developed in ADC can
be directly applied to Squamous Cell Carcinoma, another subtype of
NSCLC; satisfactory results were shown in Supplemental Figure 7.
The robustness of ConvPath benefits from the level set-based seg-
mentation algorithm in the nuclei segmentation step. This segmenta-
tion algorithm is invariant to the location of the initial contour and
can handle high variability across different H&E pathology images.
Moreover, nuclei centroid extraction based on distance transform
can separate most of the connected nuclei that are not properly proc-
essed by the commonly used CellProfiler software [30,52]. The
robustness of prediction also benefits from the powerful structure of
CNN [53].

The relationships between the extracted tumor micro-environ-
ment-related image features and patient prognosis were evaluated in
this study (Supplemental Table 4). In univariate analysis, higher
stromal cell abundance correlated with better prognosis (Supple-
mental Figure 4), which is consistent with a recent report on lung
ADC patients [46]. However, disparate roles of stromal cells in tumor
progression have been reported, including stimulation of tumor pro-
liferation through growth signals and limitation of tumor cells meta-
static spreading [44,45,54]. Combinatory analysis of cell spatial
distribution detected in this study and the functionality of stromal
cells, which could not be evaluated through H&E staining, will help
elucidate whether these disparate roles arise from the different acti-
vation status of crosstalk between tumor and stroma. In contrast,
higher lymphocyte abundance, reflected by region size rather than
perimeter, correlated with worse prognosis (Supplemental Table 4,
Supplemental Figure 5). Although the presence of both tumor- and
stroma-infiltrating lymphocytes has been reported to correlate with
tumor cell apoptosis and better patient survival in non-small cell
lung cancer [47,50,55], the tumor-suppressive or tumor-promoting
properties of lymphocytes depend on spatial distribution of the lym-
phocytes in the tumor microenvironment [56]. On the other hand, in
this study, the “size of lymphocyte cell region/image size” (in Supple-
ment Table 4) refers to regions mainly consisting of lymphocyte cells,
which are aggregated lymphocytes. So the size of the lymphocyte cell
region may not directly correlate or even negatively correlate with
tumor- and stroma-infiltrating lymphocytes, which are individual
lymphocytes that are in the tumor and stromal cell-enriched regions.
As reported in other studies, the spatial organization of lymphocytes,
as well as their interactions with cancer cells, may play a more
important role in patient prognosis.

Quantifying distribution and interaction with tumor or stromal
cells of lymphocytes can potentially provide a way to evaluate
immune response status and serve as a biomarker for immunother-
apy response. The analysis pipeline developed in this study could
convert the pathology image into a “spatial map” of tumor cells, stro-
mal cells and lymphocytes. This could greatly facilitate and empower
comprehensive analysis of the spatial organization of cells [57-59], as
well as their roles in tumor progression and metastasis.

In this study, we developed a computational tool to automatically
segment and classify different types of cell nuclei. This tool could
potentially assist pathologists in clinical practice: First, it can assist
pathologists to quickly pinpoint the tumor cells. It is time consuming
and difficult for pathologists to locate very small tumor regions in tis-
sue images, so this could greatly reduce the time that pathologists
need to spend on each image. Second, this tool could help patholo-
gists and clinicians to predict the patient prognosis, and therefore to
tailor the treatment plan of individual patients using readily available
tissue images. Furthermore, this tool could be used to quantify cell-
cell interactions and distributions of different types of cells, especially
the spatial distribution of lymphocytes and their interaction with the
tumor region, which could potentially provide information for
patient response to immunotherapy.
The computation time of the Convpath could be reduced in sev-
eral ways: 1) By applying our model only to the tumor Region of
Interest (ROI), which could be either annotated by a pathologist or
detected by our tumor detection algorithm. Depending on the tissue
resected, this step will reduce the processing time by tenfold. 2) By
using parallel processing by creating multiple threads. In summary,
by leveraging other existing computational methods and hardware
infrastructures, the whole-slide processing time can be reduced to
less than 1 h.

There are several limitations of the ConvPath pathology image
analysis pipeline. First, the sampling region selection and subsequent
steps rely on ROI labeling, which is currently done by pathologists.
The fully automated tumor region detection model [35] could poten-
tially be used to locate the tumor region first and then apply the Con-
vPath pipeline only in the detected tumor region, so that we can
largely reduce the computation time for the ConvPath pipeline to run
across a whole slide image by ignoring the non-malignant regions.
Second, only three major cell types are considered in the ConvPath
CNN algorithm; thus, this CNN model is sensitive to out-of-focus cell
types such as macrophages and epithelial cells. Also, different sub-
types of lymphocytes, such as CD4+ and CD8+ T cells, are not distin-
guishable using our algorithm [47,60]. More comprehensive labeling
and immune-histochemical staining will help solve this problem.
Third, more comprehensive analysis of spatial distribution of cells is
not included in this research [61,62]. Analyzing the spatial patterns,
such as cell clustering and inter-cell interactions, will help us under-
stand the mechanism of tumor progression and immune response to
tumor cells.
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