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Pulmonary fibrosis (PF) is a chronic and progressive process of tissue repair. Azithromycin
(AZM) may be beneficial for the treatment of PF because AZM has anti-inflammatory and
immune regulatory roles and inhibits remodeling, but the mechanism is not entirely clear. In
this study, we established a mouse PF model induced by bleomycin (BLM) and primary
mouse lung fibroblasts stimulated by transforming growth factor (TGF)-β1 to explore the
possible mechanisms of AZM in PF. Results showed that AZM reduces mortality and lung
inflammation and attenuates BLM-induced PF in mice. AZM effectively reduced the
expression of α-smooth muscle actin (SMA) and type I collagen. Meanwhile,
expression of lysyl oxidase (LOX) and lysyl oxidase-like protein (LOXL)-2 in the lung
tissue of mice after AZM treatment was significantly lower than in the BLM group. In
addition, this study found that AZM significantly inhibits the TGF-β1/Smad and JNK/c-Jun
signaling pathways in vivo, and expression of a-SMA, type I collagen, LOX and LOXL-2 in
the lung tissue of mice treated with AZMwas significantly lower than that in the BLM group.
In vitro, AZM also effectively inhibited type I collagen, LOX, LOXL-2 and JNK-c-Jun
signaling pathways in TGF-β1-stimulated primary mouse fibroblasts, and this effect was
similar to that of a JNK-specific inhibitor (SP600125). In conclusion, AZM effectively
attenuated BLM-induced PF in mice, which may play a role by partially inhibiting the
JNK/c-Jun and TGF-β1/Smad signaling pathways and reducing production of LOX and
LOXL2.
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1 INTRODUCTION

Pulmonary fibrosis (PF) can occur in a variety of clinical conditions and is a chronic and progressive
tissue repair response process that leads to irreversible scarring and remodeling of the lung (Noble
et al., 2012). Many factors, including respiratory virus infection, connective tissue disease (CTD),
environmental and occupational exposure, therapy (such as radiotherapy and immunotherapy),
diabetes, gastroesophageal reflux and so on, can cause and maintain fibrosis (Noble et al., 2012; Sgalla
et al., 2019). Usually, the type of PF with known etiology is called secondary PF. However, PF can also
occur in the absence of any known causes, known as idiopathic pulmonary fibrosis (IPF). Although
IPF is considered rare, the incidence rate of IPF is increasing over time, and the prognosis is very
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poor. In IPF, the median survival time from diagnosis was
2–4 years, which is similar to that of many malignant tumors
(Olson et al., 2007; Noble et al., 2012). However, in secondary PF,
the prognosis of PF may be different with distinct etiologies. For
example, viral pneumonia, including COVID-19 and severe acute
respiratory syndrome (SARS), could lead to PF, but most of these
patients gradually recover in the later stage (Naik and Moore,
2010; Mineo et al., 2012; George et al., 2020). In contrast, CTD
combined with PF may lead to a significant increase in mortality
(Cottin et al., 2018; Spagnolo et al., 2021).

The most important part of the pathophysiological
mechanism of PF is the accumulation and remodeling of
extracellular matrix (ECM) in the lung (Kulkarni et al., 2016;
Upagupta et al., 2018). In addition to the abnormal proliferation
of fibroblasts and their excessive secretion of ECM, PF is closely
related to changes in ECM components or traits caused by
posttranslational modifications, such as glycosylation,
transglutamination, and cross linking (Upagupta et al., 2018).
Previous studies have shown that lysyl oxidase (LOX) and its four
lysyl oxidase-like proteins (LOXL1-4) play a key role in cross
linking of the ECM (Philp et al., 2018; Chen et al., 2019; Vallet and
Ricard-Blum, 2019; Nguyen et al., 2021). The LOX protein family
consists of copper amine oxidases characterized by a highly
conserved catalytic domain, a lysine tyrosine quinone cofactor
and a conserved copper binding site. Its primary function is to
catalyze covalent cross-linking of ECM protein collagens and
elastin, which can lead to changes in the stiffness and mechanical
properties of the ECM (Vallet and Ricard-Blum, 2019). Tjin et al.
found that LOXL1 and LOXL2 expression was significantly
increased in the lung tissue of IPF, and inhibition of LOX
reduced PF (Tjin et al., 2017). Regulation of the LOX protein
family involves a series of signaling pathways, including
transforming growth factor β (TGF-β), platelet-derived growth
factor, epidermal growth factor receptor and inflammatory
pathways (Cheng et al., 2014; Laczko and Csiszar, 2020). In
recent years, the LOX protein family has been recognized as a
potential target for the treatment of PF (Chen et al., 2019).

Azithromycin (AZM) is a broad-spectrum antibacterial
macrolide drug that has attracted increasing attention due to
its immunomodulatory effect in addition to its antibacterial
activity. Macrolide antibiotics have been used as
immunomodulatory drugs in chronic obstructive
pulmonary disease (COPD), asthma, and bronchiectasis
(Yamaya et al., 2012; Tong et al., 2015; Kelly et al., 2018),
although their use is still controversial. Wuyts et al. found
that AZM attenuated bleomycin (BLM)-induced PF, but the
mechanisms whereby this occurred were unclear (Wuyts
et al., 2010). Recently, some observational clinical studies
have found that AZM reduces the mortality of acute
exacerbation and the hospitalization rate in IPF patients
(Kawamura et al., 2017; Macaluso et al., 2019). Tsubouchi
et al. found that AZM inhibited NADPH oxidase 4 by
promoting proteasome degradation, thereby inhibiting
myofibroblast differentiation and the development of lung
fibrosis (Tsubouchi et al., 2017). Additionally, a recent study
showed that AZM promotes the apoptosis of fibroblasts in
IPF to exert an antifibrotic effect (Krempaska et al., 2020). In

general, these studies suggest that AZM may play a beneficial
role in PF, but the specific regulatory mechanisms still need to
be further explored.

In addition to the classical TGF-β signaling pathway, the JNK/
c-Jun signaling pathway is a member of the mitogen-activated
protein kinase (MAPK) superfamily, which is involved in cell
proliferation and differentiation, cytoskeleton construction,
apoptosis, and inflammation and in the differentiation and
apoptosis of fibroblasts (Davis, 2000; Yeap et al., 2010). In our
study, we hypothesized that AZM inhibits LOX and LOXL-2
expression partly through the TGF-β1/Smad and JNK/c-Jun
signaling pathways, thereby attenuating the degree of PF. We
explored this hypothesis through BLM-induced mouse and TGF-
β1-stimulated mouse primary fibroblast models.

2 MATERIALS AND METHODS

2.1 Materials
BLM and the JNK inhibitor (SP600125) were obtained from
Selleck China Inc. (Shanghai, China). TGF-β1 was purchased
from PeproTech China Inc. (Suzhou, China). Azithromycin was
obtained from Sigma-Aldrich Inc. (Shanghai, China). The
primary antibodies we used are as follows: anti-vimentin
(Proteintech, 60330-1-Ig), anti-alpha-smooth muscle actin
(α-SMA) (Proteintech, 14395-1-AP), anti-Collagen 1
(Proteintech, 14695-1-AP), anti-LOX (Proteintech, 17958-1-
AP), anti-LOXL2 (Abcam, 96233), anti-TGF-β1 (Proteintech,
21898-1-AP), anti-Smad2 (Cell Signaling Technology, 5339),
anti-Smad3 (Cell Signaling Technology, 9523), anti-phospho
(P)-smad2 (Cell Signaling Technology, 3108), anti-P-smad3
(Cell Signaling Technology, 9520), anti-JNK (Proteintech,
66210-1-Ig), anti-c-Jun (Proteintech, 66313-1-Ig), anti-P-JNK
(Proteintech, 80024-1-RR), anti-P-cJun (Proteintech, 28891-1-
AP), anti-α-tubulin (Proteintech, 66031-1-Ig), and anti-GAPDH
(Proteintech, 60004-1-Ig). The dilution ratio of all antibodies was
1:1000.

2.2 Mouse Models and Treatment
Male C57BL/6 mice (21.3 ± 0.5 g), 7–8 weeks of age, were
supplied by Beijing HFK Bioscience Co. Ltd. (Beijing, China).
The mouse model of BLM-induced PF was based on previous

TABLE 1 | Primers for quantitative RT-PCR.

Primer name Sequence (59 to 39)

M-collagen I-F AAGAAGCACGTCTGGTTTGGAG
M-collagen I-R GGTCCATGTAGGCTACGCTGTT
M-α-SMA-F GTACCACCATGTACCCAGGC
M-α-SMA-R GAAGGTAGACAGCGAAGCCA
M-LOX-F ACTTCTTACCAAGCCGCCCT
M-LOX-R TGGCATCAAGCAGGTCATAGTG
M-LOXL2-F GGAGCTTTTCTTCTGGGCAACC
M-LOXL2-R TACTCAGGGTACTGGAGCTGG
M-GAPDH-F CCTCGTCCCGTAGACAAAATG
M-GAPDH-R TGAGGTCAATGAAGGGGTCGT

RT-PCR, real-time polymerase chain reaction; SMA, smooth muscle actin; LOX, lysyl
oxidase; LOXL2, lysyl oxidase-like protein-2.
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literature published by our team (Zhang et al., 2020). AZM
was dissolved in ethanol and diluted in normal saline. AZM
was administered intraperitoneally at a dose of 50 mg/kg/day
(the dose refers to the “toxicology” section of AZM drug
instructions, which is equivalent to a dose of 500 mg/day in
adults). The dose of AZM used in our study was consistent
with that used in a previous asthma study (Beigelman et al.,
2009). A total of 48 mice were divided into the following four
groups: control: mice were intratracheally atomized with
50 μl of normal saline on day 0 and intraperitoneally
injected with 100 μl of normal saline on day 7 for 3 weeks;

BLM: mice were intratracheally atomized with 50 μl of BLM
on day 0; BLM + AZM: mice were intratracheally atomized
with 50 μl of BLM on day 0 and intraperitoneally injected
with 100 μl of AZM on day 7 for 3 weeks; and AZM: mice were
intratracheally atomized with 50 μl of normal saline on day 0,
and intraperitoneal injection of 100 μl AZM was performed
on day 7, lasting for 3 weeks. On the 28th day, mice were
sacrificed by intraperitoneal injection of excessive sodium
pentobarbital. All animals received care in accordance with
the recommendations of the National Institutes of Health
Guide for Care and Use of Laboratory Animals, and this

FIGURE 1 | Azithromycin (AZM) attenuated bleomycin (BLM)-induced pulmonary fibrosis in mice. (A)Mice body weights were measured in Day 28. (B) Survival rate
of mice in different groups. (C) Ashcroft score for the four groups were based on HE staining. The other images were micro CT results, HE staining, Masson staining, and
collagen I staining in different groups (×200 magnification; scale bars � 100 μm). Data were presented as the means ± SD. **p < 0.01, ****p < 0.0001.

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7098193

Tong et al. Azithromycin Improves Pulmonary Fibrosis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


experimental protocol was approved by the Committee on the
Ethics of Animal Experiments of West China Hospital,
Sichuan University (No. 2019022A).

2.3 Micro-CT Scanning
Referring to the method provided in previous literature (van Deel
et al., 2016; Ruscitti et al., 2017), on the 28th day, all mice were
scanned by microcomputed tomography (micro-CT). After mice
were anesthetized with isoflurane, mouse lung imaging was
conducted by a Quantum GX Micro-CT scanner
(PerkinElmer, Inc., Waltham, MA) using the cardiorespiratory
gated technique (Ruscitti et al., 2017). Images were obtained with
an X-ray tube set to 90 kVp and 160 μA, projection radiographs
were taken during the whole 360° gantry rotation, and the total
scanning time was 4.5 min (Ruscitti et al., 2017).

2.4 Histological Analysis and
Immunohistochemistry
Lung tissues were fixed in 4% formalin buffer, embedded in
paraffin, and cut into 4 μm thick tissue sections. The sections
were stained with hematoxylin-eosin (HE) and Masson’s
trichrome staining. According to previous literature, the
Ashcroft scoring system was used to assess the level of
fibrosis (Ashcroft et al., 1988). Immunohistochemistry was
used to evaluate the expression level of type I collagen in
lung tissue. After the sections were dewaxed and rehydrated,

endogenous peroxidase activity was inactivated with 3% H2O2.
The sections were blocked in 5% bovine serum albumin and
incubated with the anti-collagen I primary antibody at a dilution
of 1:200. Then, the sections were incubated with the secondary
antibody at room temperature and developed with
diaminobenzidine for observation.

2.5 Cell Culture
According to the study published by Edelman et al., primary lung
fibroblasts were isolated by the crawl out method (Edelman and
Redente, 2018). Purified cells were identified by vimentin
immunofluorescence using previously reported methods
(Donaldson, 2015). Cells were seeded in Dulbecco’s modified
Eagle medium (DMEM) containing 10% fetal bovine serum
(Gibco, USA) and 1% penicillin-streptomycin (HyClone, USA)
and cultured in a 37°C incubator with a humidified 5% CO2

atmosphere. Cell experiments were divided into 6 groups: control,
TGF-β1, TGF-β1+AZM, TGF-β1+JNK inhibitor, AZM, and JNK
inhibitor. To establish a cell model, primary lung fibroblasts were
stimulated with 5 ng/ml TGF-β1 for 48 h as in the TGF-β1 group.
Six hours before stimulation with TGF-β1, 10 μg/ml AZM was
added to the culture medium as the intervention group (TGF-
β1+AZM group). In addition, to verify whether AZM partially
regulated the JNK/c-Jun signaling pathway involved in LOX and
LOXL-2 expression, we added a JNK1 inhibitor (20 μM) 6 h
before TGF-β1 stimulation (TGF-β1+JNK inhibitor group).
Primary cells were used after no more than the fifth generation.

FIGURE 2 | AZM reduced the expression of alpha-smooth muscle actin (α-SMA) and Collagen 1 (COL 1) in lung tissue of mice with pulmonary fibrosis. (A,B) The
protein expression of α-SMA and COL 1 wasmeasured in each group byWestern blot. (C,D) The gene expression of α-SMA and COL 1wasmeasured in each group by
RT-PCR. Data were presented as the means ± SD (n ≥ 3). *p < 0.05, **p < 0.01, ****p < 0.0001.
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2.6 Real-Time PCR Analysis
Total RNA was extracted from lung tissue using TRIzol reagent
(Invitrogen, USA) and reverse transcribed into complementary
DNA (cDNA) according to the instructions of the PrimeScript™
RT reagent kit (Takara, Japan). iTaq Universal SYBR Green
Supermix (Bio-Rad, United States) was used for real-time PCR
(RT-PCR) to determine mRNA levels of α-SMA, collagen I, LOX,
LOXL-2, and GAPDH. Table 1 shows the primer sequences,
relative gene expression levels were normalized to GAPDH and
calculated using the 2−ΔΔCt method.

2.7 Western Blot Analysis
Lung tissues or cells were fully lysed in RIPA buffer (Beyotime,
China) containing a fresh mixture of protease and phosphatase
inhibitors (MedChemExpress, United States).

The entire process was performed at 4°C. After centrifugation
at 12000 r/min for 20 min, the supernatant was added to 5×
protein sample loading buffers (Epizyme, China) and boiled for
10 min. A BCA protein kit (Thermo, USA) was used to determine
protein concentrations. Denatured proteins were separated by
10% SDS-PAGE (Epizyme, China) and then transferred onto
methanol-activated PVDF membranes (Millipore, USA) at a
constant current of 400 mA. After blocking with 5% skim milk
for 1 h, membranes were incubated with different primary
antibodies overnight at 4°C. After washing the PVDF
membrane several times, it was incubated with the appropriate
secondary antibody (1:2,000) for 1 h at room temperature.

Subsequently, ECL (GE Healthcare, United Kingdom) was
used to visualize protein expression, and ImageJ software was
used to analyze the band intensities.

2.8 Statistical Analysis
Statistical analysis was performed using GraphPad Prism Version
9.0 (GraphPad software, USA). All raw data are shown as the
mean ± standard deviation. One-way ANOVA tests were used for
analyzing differences, and Tukey’s multiple comparison test was
used to compare multiple groups. The Kaplan-Meier method was
used to draw the survival curve of each group. A p-value less than
0.05 was considered statistically significant.

3 RESULTS
3.1 Azithromycin Attenuates
Bleomycin-Induced Pulmonary Fibrosis in
Mice
After a single intratracheal atomization of bleomycin (BLM),
compared to the control group, the weight of mice in the BLM
group was significantly reduced on day 28, and the mortality rate
was 41.7% in the BLM group, which was significantly reversed
(16.7%) after treatment with AZM (Figures 1A,B). There was no
significant difference between the control group and the AZM
group (Figures 1A,B). Microcomputed tomography (micro-CT)
results showed that after a single dose of BLM intratracheal

FIGURE 3 | AZM reduced the expression of lysyl oxidase (LOX) and lysyl oxidase-like protein (LOXL2) in lung tissue of mice with pulmonary fibrosis. (A,B) The
protein relative expression of LOX and LOXL2 wasmeasured in each group byWestern blot. (C,D) The gene expression of LOX and LOXL2 wasmeasured in each group
by RT-PCR. Data were presented as the means ± SD (n ≥ 3). **p < 0.01, ***p < 0.001, ****p < 0.0001.
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atomization, the lung structure of mice was destroyed, and
imaging features of PF, such as grid shadow, strip shadow,
honeycomb lung, and interstitial thickening, appeared in both
lungs (Figure 1).

As shown in Figure 1, hematoxylin-eosin (HE) staining
showed that in the BLM group, the alveolar septum was
thickened, the alveolar structure was destroyed, and a large
number of red blood cells and inflammatory cells infiltrated
the alveolar and lung interstitium, while the alveolar structure
in the control and AZM groups was normal. Masson staining
revealed a large amount of collagen deposition in the lung tissue
of the BLM group compared to the control group. AZM
treatment significantly reduced inflammatory cell infiltration
and collagen deposition and improved alveolar structure.

The fibrosis score of the BLM group was significantly higher
than that of the control group, while the fibrosis score of the AZM
treatment group was significantly reduced, suggesting that AZM
effectively reduces BLM-induced pulmonary fibrosis (Figure 1C,
p < 0.001).

3.2 Azithromycin Inhibits Expression of LOX
and LOXL-2 in Mice With
Bleomycin-Induced Pulmonary Fibrosis
LOX and LOXL-2 were found to be closely related to PF and
interacted with the TGF-β and JNK signaling pathways (Sethi
et al., 2011; Chien et al., 2014;Wei et al., 2017;Wu et al., 2018). As
shown in Figure 2, western blot and Real-Time-polymerase chain

reaction (RT-PCR) showed that protein and gene expression
levels of α-smooth muscle actin (a-SMA) and type I collagen
in the BLM group were significantly higher than those in the
control group, and AZM effectively reduced expression levels of
a-SMA and type I collagen. In addition, expression of LOX and
LOXL-2 in the BLM group was significantly upregulated
compared to the control group. After AZM intervention,
expression of LOX and LOXL-2 in the BLM group was
significantly lower than in the BLM group, exhibiting no
difference from the control group (Figure 3).

3.3 Azithromycin Inhibits the Activities of
TGF-β/Smad and JNK/C-Jun Signaling
Pathways in Mouse Pulmonary Fibrosis
The TGF-β signaling pathway is the most important regulatory
pathway in pulmonary fibrosis. The activated TGF-β signaling
pathway directly upregulates gene expression of the ECM and
stimulates expression of many proinflammatory and fibrosis
cytokines, such as interleukin, tumor necrosis factor-α, or
platelet-derived growth factor, to further enhance and
maintain the fibrotic response (Kang, 2017). The results
showed that AZM significantly inhibited expression of TGF-β1
and phosphorylated Smad2 and Smad3 in the lung tissue of BLM-
treated mice, while total Smad2 and Smad3 protein levels did not
change (Figure 4). In addition, the JNK/c-Jun signaling pathway,
another important pathway in the regulation of fibrosis, has
attracted much attention in recent years (Grynberg et al.,

FIGURE 4 | AZM suppressed the TGF-β1/Smad and JNK/c-Jun signaling pathway in BLM-induced mice. (A)Western blotting bands of TGF-β1/Smad and JNK/
c-Jun pathway proteins in lung tissue of mice in different groups. (B,C) The protein relative expression of TGF-β1/Smad and JNK/c-Jun pathway proteins wasmeasured
in each group by Western blot. Data were presented as the means ± SD (n ≥ 3). **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, non-significant.
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2017). The results showed that expression levels of
phosphorylated JNK and phosphorylated c-Jun proteins in the
BLM group were significantly increased. Total JNK and c-Jun
protein levels did not change, but JNK and c-Jun mRNA levels
were significantly increased. AZM inhibited expression of
phosphorylated JNK and phosphorylated c-Jun in the lung
tissues of BLM-treated mice (Figure 4).

3.4 Azithromycin Attenuates LOX and
LOXL-2 Expression in Mouse Lung
Fibroblasts by Partially Inhibiting the JNK/
C-Jun Signaling Pathway
As shown in Figure 5, we extracted mouse primary lung
fibroblasts using previously reported research methods
(Edelman and Redente, 2018) and determined the purity of
these cells by fluorescence detection of vimentin. The results
showed that the purity of primary lung fibroblasts was greater
than 90%. According to previous literature, TGF-β1 (5 ng/ml)
was used to stimulate fibroblasts to establish a cell model. LOX,
LOXL-2, phosphorylated JNK and type I collagen were all
significantly increased in response to TGF-β stimulation, while
LOX, LOXL-2 and type I collagen levels were decreased and
expression of phosphorylated JNK protein decreased
simultaneously in response to AZM intervention. After
blocking the JNK signaling pathway with SP600125, it was
found that it had a similar effect to AZM intervention, and

expression of LOX, LOXL-2, type I collagen, total JNK and
phosphorylated JNK was significantly reduced (Figure 6).
Therefore, these results preliminarily suggest that AZM may
inhibit expression of LOX and LOXL-2 in fibroblasts, partly
through the JNK/c-Jun signaling pathway.

4 DISCUSSION

Macrolide antibiotics, as anti-inflammatory and
immunomodulatory agents, have become potential
candidates for the treatment of PF (Krempaska et al.,
2020). Our study revealed that AZM effectively reduced
expression levels of α-SMA and type I collagen in BLM-
induced PF in mice (Figure 1). In vitro, the study found
that AZM also effectively inhibited the expression of type I
collagen in mouse lung fibroblasts stimulated by TGF-β1
(Figure 6), which is consistent with results previously
reported by Wuyts et al. (Wuyts et al., 2010). In addition,
AZM could play a key role in reducing tissue remodeling
through a variety of mechanisms, such as inhibiting airway
epithelial cell apoptosis and epithelial-mesenchymal
transition (Liu et al., 2017; Pu et al., 2018). A series of
small sample retrospective studies suggested that macrolide
antibiotics may improve the prognosis of patients with
interstitial lung disease (ILD) (Kawamura et al., 2017;
Nagasawa et al., 2021). We conducted a meta-analysis

FIGURE 5 |Mice primary lung fibroblasts were isolated by crawl out method, and the immunofluorescence with anti-vimentin antibody was used to identify the cell
purity (× 200 magnetization).
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(data unpublished), and found that AZM effectively reduced
the mortality of patients with acute exacerbation of ILD, and
reduced the incidence of mechanical ventilation in patients.

The LOX protein family, a cross-linked enzyme of the ECM,
plays a key role in ECM remodeling and modification, regulating
the development of fibrosis (Aumiller et al., 2017; Bellaye et al.,
2018; Guo et al., 2020). Our study showed that the expressions of
LOX and LOXL-2 were significantly increased in BLM-induced
PF in mice (Figure 3). To our knowledge, this study was the first
time to show that AZM effectively inhibited expression of LOX
and LOXL2 in BLM-induced PF in mice. In vitro, our study
revealed that AZM also inhibited the expression of LOX and
LOXL2 in TGF-β1-stimulated mouse primary fibroblasts, and
this inhibitory effect is similar to the use of JNK specific inhibitors
(Figure 6). Aumiller et al. found that expression of LOX and
LOXL2 was significantly increased in IPF patients, mouse models
and cell models of pulmonary fibrosis (Aumiller et al., 2017).
Chien et al. found that higher serum LOXL2 levels was associated
with increased risk for IPF disease progression (Chien et al.,
2014). In animal study, LOX inhibitors
(β-Aminopropiononitrile) could reduce myocardial fibrosis
and alleviating myocardial hypertrophy (Martínez-Martínez

et al., 2016). Guo et al. (2020) found that triptolide prevents
nuclear translocation of NF-κB and DNA binding, effectively
reducing the expression of LOX and alleviating the degree of
radiation-induced PF in mice. Ikenaga et al. found that selective
targeting of LOXL2 inhibits the progression of liver fibrosis and
accelerates its reversion (Ikenaga et al., 2017). In a phase II clinical
trial (NCT01769196), simtuzumab, a monoclonal antibody
against LOXL2, did not improve progression-free survival in
IPF patients (Raghu et al., 2017). However, the failure of the
clinical trial may be attributed to lack of tissue penetration of the
drug in human IPF lung (Meyer, 2017). Since AZM is highly
enriched in lung tissues (Parnham et al., 2014), and it could
effectively reduce the expression of LOX and LOXL-2, it may have
great potential application value for the treatment of PF in the
future.

Additionally, our results demonstrated that AZM significantly
inhibited the TGF-β signaling pathway (Figure 4). In fibrotic
disease, the TGF-β signaling pathway is primarily involved in
regulating fibroblasts and EMT activation, promoting ECM
production, maintaining fibroblast activity, and inhibiting
metalloproteinases (Biernacka et al., 2011; Hu et al., 2018). In
addition, TGF-β is widely involved in inflammation and immune

FIGURE 6 | AZM and JNK1 inhibitor (SP600125) have similar effects, and reduced the expression of LOX and LOXL2 in mice primary lung fibroblasts induced by
5 μg/ml TGF-β1. (A,B) The protein expression of LOX, LOXL2, COL1, JNK andGAPDHwasmeasured in each group byWestern blot. (C,D) The gene expression of LOX
and LOXL2 was measured in each group by RT-PCR. Data were presented as the means ± SD (n ≥ 3). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, non-
significant.
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regulation, which is also a crucial process in fibrosis (Meng et al.,
2014; Hu et al., 2018). Ruan et al. found that AZM effectively
inhibited TGF-β1 signaling, weaken the activation and
differentiation of lung fibroblasts (Ruan et al., 2021). Previous
studies have shown that TGF-β1 can significantly upregulate LOX
mRNA and protein levels in fibroblasts and epithelial cells during
fibrosis (Remst et al., 2014). Other studies have suggested that
LOX regulates TGF-β through a feedback loop, which plays a role
in skeletal muscle development and IPF (Remst et al., 2014). In
addition, direct interaction between LOX and TGF reduced TGF-
stimulated Smad3 activation (Remst et al., 2014). Our study
suggested that the levels of LOX and LOXL-2 increased in
parallel with the level of TGF-β1 in BLM group, and AZM
could inhibit the expression of LOX and TGF-β1 (Figure 4).
Therefore, we speculate that AZM reduces expression of LOX by
inhibiting the TGF-β signaling pathway to attenuate the degree of
PF (Figure 7).

The JNK/c-Jun signaling pathway is a member of the
mitogen-activated protein kinase (MAPK) superfamily,
which plays an important role in cellular differentiation,
apoptosis, stress response, inflammation and the
occurrence and development of many human diseases
(Bode and Dong, 2007). In a clinical study
(NCT01203943), a JNK inhibitor (CC-930) effectively
attenuated airway remodeling, reduced the production of
pulmonary fibrosis markers, and improved lung function
(van der Velden et al., 2016). However, the interaction
between the JNK/c-Jun signaling pathway and the LOX
protein family is still not well explored in fibrotic diseases.
In the current study, we found that AZM effectively inhibited
the JNK/c-Jun signaling pathway and simultaneously

inhibited expression of LOX and LOXL2 (Figure 4). At the
same time, we found that JNK pathway-specific inhibitors
effectively inhibited expression of LOX and LOXL,
attenuating the degree of PF (Figure 6). Our results were
similar to the previous studies. A recent study suggested that
AZM inhibits the MAPK/JNK signaling pathway in a human
monocytic cell line (THP-1) induced by LPS (Kuo et al.,
2019). Hiwatashi et al. (2011) found that AZM inhibits the
proliferation of peripheral blood mononuclear cells by
suppressing the activity of JNK and ERK. Based on the
above findings, we speculated that AZM partially inhibits
the JNK/c-Jun signaling pathway, downregulates expression
of LOX and LOXL-2 levels, reduces the production of ECM,
and ultimately attenuates PF (Figure 7).

Although our study revealed that AZM could attenuate PF by
inhibiting the expression of LOX and LOXL-2, the regulatory
mechanisms need to be further verified (e.g. using LOX inhibitors
or knockdown mice). As we all know, a large number of cells,
cytokines, enzymes, and signal pathways are involved in the
regulation of ECM, but our study failed to explore other
important factors (e.g. matrix metalloproteinases, MMPs) in
the regulation of ECM. We will conduct in-depth and
comprehensive study on the regulation mechanisms of ECM
in the future, such as exploring the interaction between LOX
and MMPs. In addition, more rigorous clinical studies or real-
world studies need to be designed to accurately evaluate the value
of AZM in the treatment of patients with PF.

In summary, AZM effectively attenuated BLM-induced PF in
mice, which may occur by partially suppressing the JNK/c-Jun
and TGF-β1/Smad signaling pathways and reducing LOX and
LOXL2 production (Figure 7).

FIGURE 7 | The possible potential mechanism of AZM attenuated BLM induced pulmonary fibrosis in mice.
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