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Abstract. 	The	present	study	aimed	to	evaluate	whether	novel	conditional	kisspeptin	neuron-specific	Kiss1 knockout (KO) 
mice utilizing the Cre-loxP system could recapitulate the infertility of global Kiss1 KO models, thereby providing further 
evidence for the fundamental role of hypothalamic kisspeptin neurons in regulating mammalian reproduction. We generated 
Kiss1-floxed	mice	and	hypothalamic	kisspeptin	neuron-specific	Cre-expressing transgenic mice and then crossed these two 
lines. The conditional Kiss1 KO mice showed pubertal failure along with a suppression of gonadotropin secretion and ovarian 
atrophy. These results indicate that newly-created hypothalamic Kiss1 KO mice obtained by the Cre-loxP system recapitulated 
the infertility of global Kiss1 KO models, suggesting that hypothalamic kisspeptin, but not peripheral kisspeptin, is critical for 
reproduction. Importantly, these Kiss1-floxed	mice	are	now	available	and	will	be	a	valuable	tool	for	detailed	analyses	of	roles	
of	each	population	of	kisspeptin	neurons	in	the	brain	and	peripheral	kisspeptin-producing	cells	by	the	spatiotemporal-specific	
manipulation of Cre expression.
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It has been well established that kisspeptin (encoded by KISS1/Kiss1)-
GPR54 (a kisspeptin receptor encoded by GPR54/Gpr54) signaling 

plays a critical role in the central mechanism controlling reproductive 
function in mammals including primates [1–3], and rodents [4–7]. 
Loss-of-function mutations in KISS1 or GPR54 in humans resulted 
in hypogonadotropic hypogonadism manifested by pubertal failure 
[1–3]. Similarly, global Kiss1 or Gpr54 knockout (KO) mice showed 
pubertal failure and gonadal atrophy [4–6]. In addition, Kiss1 KO 
rats showed a lack of both pulse and surge modes of gonadotropin 
secretion [7]. The most plausible interpretation is that kisspeptin-
GPR54 signaling in the hypothalamus is fundamental for controlling 
reproductive function via direct activation of gonadotropin-releasing 
hormone (GnRH) neurons. This is because a GnRH neuron-targeted 
deletion of Gpr54 recapitulated the infertility of Kiss1 or Gpr54 KO 
animal	models	[8,	9].	Further,	GnRH	neuron-specific	rescue	of	Gpr54 

expression recovered reproductive function in Gpr54 KO mice [8].
Circumstantial evidence suggests that the hypothalamic kisspeptin 

neurons, located in two nuclei, such as the anteroventral periventricular 
nucleus-periventricular nucleus (AVPV-PeN) continuum (also known 
as the rostral periventricular region of the third ventricle, or RP3V) 
and the hypothalamic arcuate nucleus (ARC), are functionally distinct: 
AVPV-PeN kisspeptin neurons are indicated to be responsible for 
GnRH/luteinizing hormone (LH) surge generation in rodents [10–15], 
whereas the ARC ones are suggested to be involved in GnRH/
LH pulse generation in rodents and ruminants [16–22]. Indeed, 
AVPV-PeN Kiss1 ablation by neonatal sex steroid exposure resulted 
in	a	deficiency	of	the	LH	surge	in	female	rats	[14,	15].	As	for	ARC	
kisspeptin neurons, rhythmic increases in the multiple unit activity 
recorded by the electrodes placed in close proximity to the ARC 
kisspeptin neurons corresponded to LH pulses in goats [16, 17]; 
the pulsatile kisspeptin secretion detected at the median eminence 
largely corresponded to GnRH pulses in monkeys [23]; chronic 
estrogen exposure in the neonatal period caused an irreversible 
suppression of ARC Kiss1 expression and LH pulses in male and 
female rats [24, 25]; optogenetic stimulation or inhibition of ARC 
kisspeptin neurons could stimulate or inhibit pulsatile LH secretion 
in Kiss1-Cre mice receiving adeno-associated virus (AAV) vectors 
carrying channelrhodopsin-2 or archaerhodopsin, respectively [26, 
27]; ARC kisspeptin neurons exhibited a rhythmic increase in in 
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vivo levels of intracellular Ca2+ that correspond to LH pulses in 
Kiss1-Cre mice receiving AAV vectors carrying GCaMP6, a Ca2+ 
biosensor [27]. In addition, previous studies showed that kisspeptin 
neurons are also located in the medial amygdala (MeA) of mice and 
rats and that kisspeptin administration into the MeA stimulated LH 
secretion, indicating that MeA kisspeptin neurons may integrate the 
limbic system and GnRH/LH secretion [28–31].

In addition to such an indispensable role of central kisspeptin in 
controlling pulsatile and surge-mode of GnRH/gonadotropin secretion, 
kisspeptin is now considered as a multi-functional molecule in the 
peripheral tissues [32–34]. Previous studies demonstrated that Kiss1 
and Gpr54 expression were evident in the ovary and uterine of 
rodents and suggested local roles of kisspeptin signaling in follicular 
development, ovulation/corpus luteum formation, and implantation 
[35–37]. KISS1/Kiss1 and GPR54/Gpr54 expression were also found 
in the pancreas and adipose tissue of humans and rodents, wherein 
peripheral kisspeptin was suggested to be involved in metabolic 
function: Previous in vitro studies showed that kisspeptin increased 
glucose-induced insulin secretion from the pancreas and decreased 
glucose uptake and lipid accumulation via decreasing lipogenesis 
and increasing lipolysis in the adipose tissue [32, 34]. The Cre-
loxP	system	for	generating	tissue-	or	cell	type-specific	Kiss1 KO is 
increasingly important to further elucidate local roles of kisspeptin 
in those peripheral organs as well as the central nervous system.

The present study aimed to evaluate whether our newly-created 
conditional kisspeptin neuron-specific Kiss1 KO mice obtained 
by the Cre-loxP system could recapitulate the infertility of global 
Kiss1 KO animal models, thereby providing further evidence for 
the fundamental role of central kisspeptin signaling in regulating 
reproduction in mammals. For this purpose, we here have generated 
Kiss1-floxed	mice	(Kiss1fl/fl mice), which could be useful for a better 
understanding	of	the	brain	region,	tissue-	or	cell	type-specific	roles	
of kisspeptin. We also generated hypothalamic kisspeptin neuron-
specific	Cre-expressing transgenic mice (Kiss1-Cre mice) based on 
our	previous	findings	on	the	brain	region-specific	Kiss1 enhancer [38, 
39]. Further, we generated conditional Kiss1 KO mice by crossing 
the aforementioned two mouse lines and analyzed the reproductive 
function of the conditional Kiss1 KO mice to investigate if the mice 
replicate the phenotype, such as pubertal failure, suppression of 
gonadotropin secretion in global Kiss1 KO mice.

Materials and Methods

Animals
Gene-modified	mice	and	wild-type	(ICR,	Charles	River	Laboratories	

Japan, Kanagawa, Japan; and BDF1, Japan SLC, Shizuoka, Japan) 
mice were housed under a controlled environment (14 h of light and 
10 h of darkness; lights on at 0500 h; temperature, 22 ± 3ºC). Animals 
were weaned at postnatal day 21 and allowed free access to standard 
laboratory mouse chow (CE-2; CLEA Japan, Tokyo, Japan) and water. 
Genotypes of animals were determined by polymerase chain reaction 
(PCR) analyses of genomic DNA extracted from the ear tissue. The 
primer sequences for genotyping are listed in Table 1. The present 
study was approved by the Committees on Animal Experiments of 
the Graduate School of Bioagricultural Sciences, Nagoya University 
and the National Institute for Physiological Sciences.

Generation of Kiss1fl/fl mice
The	targeting	vector	harbored	a	floxed	exon	3	of	the	Kiss1 gene 

coding	for	the	52-amino-acid	mouse	kisspeptin	and	a	floxed	neo-
mycin resistance cassette as shown in Fig. 1A. The targeting vector 
was electroporated into the TT2 (CBA × C57BL/6) line of mouse 
embryonic stem (ES) cells [40]. Successfully targeted ES cell clones 
were selected via a neomycin-supplemented medium. Genomic DNA 
was isolated to screen ES cell clones for homologous recombination 
of the Kiss1 locus. The presence of the loxP site in the Kiss1 locus 
was	confirmed	by	PCR	(Fig.	1B)	and	then	confirmed	by	Southern	blot	
analysis (Fig. 1C). The primer sequences for the probe preparation and 
PCR analyses for the ES selection are listed in Table 1. The targeted 
ES clones were injected into ICR 8-cell-stage embryos. The embryos 
containing the targeted ES clones were transplanted into the uterus 
of pseudopregnant foster mice. The resultant chimeric males were 
coupled with ICR females in order to test the germline transmission. 
Kiss1-floxed	heterozygous	mice	(Kiss1fl/+	mice)	without	a	floxed	
neomycin resistance cassette were produced by an injection of Cre 
recombinase-expressing plasmid (pCre-Pac; kindly provided by Dr 
Yagi, Osaka University) [41] into the fertilized oocytes obtained from 
the	germline	offspring.	The	resultant	Kiss1fl/+ males and females were 
mated in order to generate Kiss1-floxed	homozygous	mice	(Kiss1fl/fl 
mice). Kiss1fl/fl males and females were also fertile.

Generation of Kiss1-Cre mice
Kiss1-Cre mice, in which Cre recombinase is expected to be 

driven by the Kiss1	promoter	and	the	ARC-specific	Kiss1 enhancer 
identified	in	our	previous	study	[39],	were	generated	as	follows:	Cre	
recombinase gene was inserted into a pIRES-AcGFP vector (Takara 
Bio, Kusatsu, Japan) and the resultant Cre-IRES-AcGFP transgene was 
substituted for the site between the translational start point and 3' end 
of exon 2 of the Kiss1 gene (accession no. AB666166) in a bacterial 
artificial	chromosome	(BAC)	clone	RP24-299J2	(BACPAC	Resources,	
Oakland,	CA,	USA)	by	using	a	counterselection	BAC	modification	kit	
(Gene Bridges, Heidelberg, Germany). The 3'-downstream-truncated 

Table 1. Primer sequences for genotyping of animals and embryonic 
stem (ES) cell selection

Purpose Primers
Genotyping of animals

Kiss1-floxed Forward, 5'-cacaggatggaagcagagca-3'
Reverse, 5'-actgcccttcccctaaatgc-3'

Kiss1-Cre Forward, 5'-gcagaacctgaagatgttcgcgat-3'
Reverse, 5'- aggtatctctgaccagagtcatcc-3'

ES selection
5'-region Forward, 5'-gttgtttggggtggaatgagtc-3'

Reverse, 5'-gcgataccgtaaagcacgag-3'
3'-region Forward, 5'- caggacgtgacaaatggaag-3'

Reverse, 5'-accaaacattcctccagcag-3'
loxP site Forward, 5'-gagccttgttgtctgtgaagtg-3'

Reverse, 5'-ggagttccagttgtaggtggac-3'
Probe preparation Forward, 5'-agaggctattcggctatgactg-3'
for southern blotting Reverse, 5'-actcgtcaagaaggcgatagaa-3'
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DNA construct (Fig. 1D) was linearized according to our previous 
study [39]. The transgenic mice were generated by microinjection of 
the linearized construct to pronuclear-stage oocytes of BDF1 mice 
as previously described elsewhere [39].

Generation of conditional Kiss1 KO mice by crossing the 
Kiss1fl/fl mice and Kiss1-Cre mice

The Kiss1-Cre mice were crossed onto Kiss1fl/fl mice two times to 
generate	offspring,	in	which	Cre	recombinase	theoretically	deletes	
the	floxed	Kiss1 exon 3, encoding a functional region of kisspeptin, 

in both alleles.
The vaginal opening was checked daily in the resultant conditional 

Kiss1 KO mice and their littermate Cre-negative Kiss1fl/fl controls 
until 40 days of age. Animals were then subjected to the collection 
of the ovary, blood, and brain samples.

Ovary collection and estradiol treatment
The conditional Kiss1 KO mice and Cre-negative Kiss1fl/fl control 

mice were bilaterally ovariectomized (OVX) under aseptic conditions 
with	isoflurane	anesthesia	(1–3%	in	air).	Animals	then	immediately	

Fig. 1. Generation of Kiss1-floxed	mice	and	Kiss1-Cre mice. (A) Structure of the wild-type Kiss1 allele (top), targeting vector for the generation of 
Kiss1-floxed	mice	(middle),	and	Kiss1 targeted allele (bottom), resulting from replacement at dotted lines. The Kiss1 targeted allele was designed 
by insertion of three loxP sites (open triangles) and a neomycin resistance (NeoR) selection cassette. A diphtheria toxin A (DTA) expression 
cassette was used for negative selection in embryonic stem (ES) cells. Note that the NeoR selection cassette was removed by an injection of Cre 
recombinase-expressing	plasmid	into	the	fertilized	oocytes	obtained	from	the	germline	offspring.	(B)	Screening	of	ES	cell	clones	by	polymerase	
chain reaction (PCR) using three sets of primers (5'-region, 3'-region, and 1st loxP site). The locations of primers are shown by the arrowheads 
in panel A. The product sizes are also provided in the panel A. (C) Southern blot analysis of BglI-, EcoRV-, or SacI-digested DNA using the 
probe on the NeoR cassette detected 10.9-, 16.6-, and 14.1-kb fragments in the targeted allele. Predicted sizes of the DNA fragments are shown 
by dotted double arrows in panel A. (D) Structure of construct for Kiss1-Cre mice. The construct was designed by substitution of Cre, internal 
ribosome entry site (IRES), and Aequorea coerulescens	green	fluorescent	protein	(AcGFP)	cassette	(white	boxes)	for	exon	2	of	Kiss1 gene in 
which transcriptional start site is located.
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received subcutaneous Silastic implants (internal diameter: 1.57 mm; 
outer diameter: 3.18 mm; 3 mm in length; Dow Corning, Midland, 
MI,	USA)	that	were	filled	with	estradiol-17β	(E2; Sigma-Aldrich, 
St.	Louis,	MO,	USA)	dissolved	in	peanut	oil	at	10	μg/ml.	The	E2 
implant was chosen based on our previous studies [42–44] to visualize 
Kiss1 gene expression in both the AVPV and ARC: the size and 
dose were adjusted according to the animal body weight. Ovaries 
were weighed and stored at –80oC until analysis for Kiss1 and Cre 
mRNA expression.

Brain sampling and in situ hybridization for Kiss1 and Cre 
mRNA expression

One week after the OVX and E2 treatment, the animals were 
deeply anesthetized with pentobarbital (70 mg/kg, Kyoritsu Seiyaku, 
Tokyo, Japan), and then intracardially perfused with RNase-free 
0.05	M	phosphate-buffered	saline	(PBS;	pH	7.5)	followed	by	4%	
paraformaldehyde (Sigma-Aldrich) in 0.05 M phosphate buffer 
(PB;	pH	7.5).	The	brains	were	immediately	removed,	post-fixed	
with	the	same	fixative	for	overnight	at	4ºC,	and	then	kept	in	30%	
sucrose in 0.05 M PB until they sank at 4oC under the RNase-free 
conditions.	Frozen	frontal	sections	(50-μm	thickness)	of	the	brain	
containing the AVPV, ARC and medial amygdala (MeA), in which 
the previous study showed Kiss1 expression in mice [28, 29], were 
prepared using a cryostat (CM1800; Leica, Wetzlar, Germany) on 
the day or a day before the in situ hybridization and then stored in 
PBS at 4oC. Every two AVPV section and every four ARC and MeA 
section were used for in situ hybridization to visualize Kiss1 and 
Cre mRNA expression.

Digoxigenin (DIG)-labeled Kiss1 cRNA probe (position 38-372, 
GenBank accession no. NM_178260) and DIG-labeled Cre cRNA 
probe (position 485-1516, GenBank accession no. X03453) were 
synthesized by using a DIG-labeling kit (Boehringer Mannheim, 
Mannheim, Germany). Kiss1 and Cre expression was detected by 
free-floating	in situ hybridization as described previously with slight 
modification	[10].	Briefly,	the	sections	were	hybridized	overnight	
at 60oC	with	1	μg/ml	Kiss1 or Cre cRNA probes. The DIG-labeled 
probes were detected by an alkaline phosphatase-conjugated anti-DIG 
antibody (1:1000; Roche Diagnostics, Indianapolis, IN, USA) and a 
chromogen	(338	μg/ml	4-nitroblue	tetrazolium	chloride	and	175	μg/
ml 5-bromo-4-chloro-3-indolyl-phosphate, Roche Diagnostics). The 
sections were mounted on gelatin-coated slides and cover-slipped 
with	90%	glycerol	in	0.05	M	PB.	The	signals	of	Kiss1 or Cre mRNA 
expression were observed under a light microscope (BX53; Olympus, 
Tokyo, Japan) and the numbers of Kiss1- or Cre-positive cells were 
counted	throughout	the	AVPV	and	ARC.	The	specificity	of	signals	
was	confirmed	by	in situ hybridization using corresponding sense 
probes, and no signals were detected with the sense probes.

Blood sampling and radioimmunoassay for LH and follicle-
stimulating hormone (FSH)

Fifty-µl blood samples were collected from the descending aorta 
of both the conditional Kiss1 KO and Cre-negative Kiss1fl/fl control 
mice under the anesthetized condition just before the brain perfusion.
Plasma	LH	concentrations	in	25-μl	plasma	samples	were	determined	

with a mouse LH-RIA kit provided by the National Hormone and 
Peptide Program (Bethesda, MD, USA) as previously described 

[45]. LH concentrations were expressed in terms of NIDDK mouse 
LH-RP.	The	least	detectable	concentration	of	LH	in	25-μl	plasma	
samples	was	0.156	ng/ml.	The	intra-	and	inter-assay	coefficients	of	
variation	were	4.7	and	14.5%	at	1.6	ng/ml,	respectively.
Plasma	FSH	concentrations	in	25-μl	plasma	samples	were	deter-

mined with a mouse FSH RIA kit provided by the National Hormone 
and Peptide Program. FSH concentrations were expressed in terms of 
NIDDK mouse FSH-RP. The least detectable concentration of FSH 
in	25-μl	plasma	samples	was	1.25	ng/ml.	The	intra-	and	inter-assay	
coefficient	of	variation	was	0.32	and	13.8%	at	9.6	ng/ml,	respectively.

Ovarian Kiss1 and Cre expression
DNA-free	total	RNA	was	purified	from	the	ovary	by	using	ISOGEN	

(Nippon Gene, Tokyo, Japan) and the cDNA was synthesized with 
High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher 
Scientific,	Waltham,	MA,	USA).	The	quantitative	PCR	analysis	was	
performed by using an ABI 7500 real-time system (Thermo Fisher 
Scientific)	with	Thunderbird	SYBR	qPCR	Mix	(TOYOBO,	Osaka,	
Japan)	with	specific	primers	for	mouse	Kiss1 (5'-gctgctgcttctcctct-
gtgt-3' and 5'-gcataccgcgattccttttc-3'), Cre (5'-cagcaacatttgggccagcta-3' 
and 5'-ccgccgcataaccagtgaaac-3') and mouse Actb (5'-ggtgggaatgggt-
cagaagg-3' and 5'-gtacatggctggggtgttga-3'). The cycling protocol was 
as	follows:	pre-denature	for	1	min	at	95ºC,	40	cycles	amplification	
of	15	sec	at	95ºC	and	1	min	at	60ºC.	The	specificity	of	the	amplicons	
was	confirmed	by	a	dissociation	curve	analysis	(60	to	95°C)	after	
40-cycle	amplification.	A	distinct	single	peak	was	considered	that	
only	a	single	DNA	sequence	was	amplified.	The	expression	levels	
of Kiss1 and Cre were normalized to that of Actb.

Statistical analysis
Statistical	differences	in	ovarian	weights,	plasma	gonadotropin	

concentrations, the number of hypothalamic Kiss1-expressing cells, as 
well as ovarian Kiss1 and Cre expression levels between the conditional 
Kiss1 KO mice and Cre-negative Kiss1fl/fl controls were determined 
by Welch’s-t test (R version 3.6.0, http://www.R-project.org/).

Results

Pubertal failure and atrophy of ovaries in conditional Kiss1 
KO mice

The conditional Kiss1 KO female mice by crossing Kiss1-Cre mice 
and Kiss1fl/fl mice showed no vaginal opening as an external sign of 
pubertal onset by 40 days of age, whereas the Cre-negative Kiss1fl/fl 
controls showed vaginal opening at 28–34 postnatal days (Fig. 
2A).	The	ovarian	weight	was	significantly	lower	in	the	conditional	
Kiss1 KO mice than the Cre-negative Kiss1fl/fl control mice (P < 
0.05, Fig. 2B).

Reduction of plasma gonadotropin levels in the conditional 
Kiss1 KO mice

Plasma LH levels were undetectable in all conditional Kiss1 KO 
female	mice	and	the	levels	were	significantly	lower	in	the	conditional	
Kiss1 KO mice compared with those in the Cre-negative Kiss1fl/fl 
control mice (P < 0.05, Fig. 3A). Plasma FSH levels were undetectable 
in	three	out	of	five	conditional	Kiss1	KO	mice,	resulting	in	significant	
lower levels of FSH in the conditional Kiss1 KO mice compared 
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with those in the Cre-negative Kiss1fl/fl controls (P < 0.05, Fig. 3B).

Kiss1 expression in the brain of the conditional Kiss1 KO 
female mice and Cre expression in the brain of the Kiss1-Cre 
female mice

Figure 4 shows representative photomicrographs of Cre-expressing 
cells in the ARC (Fig. 4A) and AVPV (Fig. 4B) of Kiss1-Cre mice 
and Cre-negative controls. A number of Cre-expressing cells (432.9 ± 
50.5, n = 4) were found in the ARC of Kiss1-Cre mice, but not in the 
Cre-negative control mice (Fig. 4A). Very few Cre-expressing cells 
(58.1 ± 8.3 cells, n = 4) with weak signals were found in the AVPV 
of Kiss1-Cre mice, but not in Cre-negative control mice (Fig. 4B).

Figure 5 shows representative photomicrographs of Kiss1-
expressing cells in the ARC (Fig. 5A) and AVPV (Fig. 5C) of the 
OVX+E2 conditional Kiss1 KO mice and Cre-negative Kiss1fl/fl 
controls. No Kiss1-positive cells were found in the ARC of conditional 
Kiss1 KO female mice, whereas a number of Kiss1-positive cells were 
found in the ARC of Cre-negative Kiss1fl/fl controls (Fig. 5A). The 
number of ARC Kiss1-expressing	cells	were	significantly	lower	in	
the conditional Kiss1 KO mice compared with Cre-negative Kiss1fl/fl 
controls (P < 0.05, Fig. 5B). Unexpectedly, no Kiss1-expressing 
cells were found in the AVPV of conditional Kiss1 KO female mice, 
whereas a number of Kiss1-positive cells were found in the AVPV 
of Cre-negative Kiss1fl/fl controls (Fig. 5C). The number of AVPV 

Fig. 2. The conditional Kiss1 knockout (KO) mice failed to show puberty onset and ovarian atrophy. (A) Timing of vaginal opening as an external sign of 
pubertal onset is expressed as a percentage of the total number of animals for each genotype. Numbers in the parentheses indicate the number of 
animals used. (B) Representative photograph of ovary and ovarian weights in the conditional Kiss1 KO mice and Cre-negative Kiss1fl/fl controls. 
Values are indicated as mean ± SEM. Numbers in each column indicate the number of animals used. * P < 0.05 between the conditional Kiss1 KO 
mice and Cre-negative Kiss1fl/fl controls (Welch’s-t test). Scale bar, 5 mm.

Fig. 3. The conditional Kiss1 knockout (KO) mice showed suppression of gonadotropin secretion. Plasma luteinizing hormone (LH, A) and follicle-
stimulating hormone (FSH, B) levels of the conditional Kiss1 KO mice and Cre-negative Kiss1fl/fl controls. Values are indicated as mean ± SEM. 
Note that plasma LH levels were undetectable in all conditional Kiss1 KO mice and expressed as the least detectable concentration of LH (0.156 
ng/ml). Numbers in or on each column indicate the number of animals used. * P < 0.05 between the conditional Kiss1 KO mice and Cre-negative 
Kiss1fl/fl controls (Welch’s-t test).
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Kiss1-positive	cells	were	also	significantly	lower	in	the	conditional	
Kiss1 KO mice than the Cre-negative Kiss1fl/fl controls (P < 0.05, 
Fig. 5D).

No Kiss1-expressing cells were found in the MeA of both the 
conditional Kiss1 KO and Cre-negative Kiss1fl/fl OVX + E2 mice 
(Fig. 6A). In addition, no Cre-expressing cells were found in the 
MeA of Kiss1-Cre mice as well as Cre-negative controls (Fig. 6B).

Fig. 4. Determination of Cre expression in the hypothalamus of Kiss1-
Cre mice. (A) Cre-expressing cells in the arcuate nucleus (ARC) 
of a representative Kiss1-Cre mouse (right panel). No Cre-
expressing cells were found in the ARC of Cre-negative controls 
(left panel). 3V, third cerebroventricle. (B) Few Cre-expressing 
cells with weak signals in the anteroventral periventricular 
nucleus (AVPV) of a representative Kiss1-Cre mouse (right 
panel). No Cre-expressing cells were found in the AVPV of Cre-
negative controls (left panel). Scale bars, 100 µm.

Fig. 5. The conditional Kiss1 knockout (KO) mice showed completely suppression of Kiss1 expression in the hypothalamus. (A) Kiss1-expressing cells 
in the arcuate nucleus (ARC) of representative conditional Kiss1 KO mouse and Cre-negative Kiss1fl/fl control. 3V, third cerebroventricle. (B) The 
number of Kiss1-expressing cells throughout the ARC. Note that no Kiss1-expressing cells were found in the ARC of conditional Kiss1 KO mice.  
(C) Kiss1-expressing cells in the anteroventral periventricular nucleus (AVPV) of representative conditional Kiss1 KO mouse and Cre-negative Kiss1fl/fl 
control. (D) The number of Kiss1-expressing cells throughout the AVPV. Note that no Kiss1-expressing cells were found in the AVPV of conditional Kiss1 
KO mice. Values are indicated as mean ± SEM. Numbers in or on each column indicate the number of animals used. * P < 0.05 between the conditional 
Kiss1 KO mice and Cre-negative Kiss1fl/fl controls (Welch’s-t test). Scale bars, 100 µm.
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Kiss1 and Cre expression in the ovary of the conditional Kiss1 
KO female mice

Kiss1 mRNA was slightly detected in the ovary of both conditional 
Kiss1	KO	mice	(0.0031	±	0.0012%	of	Actb) and Cre-negative Kiss1fl/fl 
control	mice	(0.0060	±	0.0016%	of	Actb), and the levels were com-
parable between the conditional Kiss1 KO mice and Cre-negative 
Kiss1fl/fl control mice. Note that Kiss1 expression was highly detected 
in	the	wild-type	mouse	hypothalamus	(1.02%	of	Actb, n = 2). Cre 
mRNA was slightly detected in the ovary of conditional Kiss1 KO 
mice	(0.050	±	0.022%	of	Actb), whereas it was undetectable in 
Cre-negative Kiss1fl/fl control mice.

Discussion

The present study demonstrates that the newly-created conditional 
kisspeptin	neuron-specific	Kiss1 KO mice generated by the Cre-loxP 
system replicated a hypogonadal phenotype of global Kiss1 KO 
mice [5, 6], because the animals generated by crossing Kiss1fl/fl 
mice and Kiss1-Cre mice showed no puberty onset along with an 
undetectable level of plasma gonadotropin and ovarian atrophy. It 
should be noted that high Cre expression was found in the ARC, but 
little in the AVPV, MeA, and ovary of the current Kiss1-Cre mice. 
Indeed, ovarian Kiss1 expression levels were comparable between 
the conditional Kiss1 KO mice and Cre-negative Kiss1fl/fl control 
mice. Collectively, the present results provide further evidence that 
hypothalamic kisspeptin neurons are fundamental to puberty onset 

and subsequent reproductive function in mammals and suggest that 
the Kiss1 expression outside of the hypothalamus may have a less 
important role for reproductive function in female mice.

The current result that Kiss1-Cre mice, which were generated by 
a microinjection of 3'-truncated Kiss1 locus replaced with Cre gene, 
mainly expressed Cre mRNA in the ARC at adulthood, was consistent 
with	our	previous	finding	showing	that	5'-upstream	sequence	of	
Kiss1	locus	serves	as	an	ARC-specific	Kiss1 enhancer in mice [39]. 
As expected, the conditional Kiss1 KO mice successfully lacked 
Kiss1 mRNA expression in the ARC. A previous study showed that 
Kiss1	is	first	expressed	in	the	ARC	during	prenatal	development:	
specifically,	from	embryonic	day	12.5	in	rats	[46].	Taken	together	
with	this	previous	finding,	the	Kiss1 KO by Cre-loxP recombination 
is likely to occur in the ARC during the prenatal period in the current 
conditional Kiss1 KO female mice.

Interestingly, AVPV Kiss1 expression was also deprived in the 
current conditional Kiss1 KO female mice, even though only a few 
Cre-expressing cells were detected in the AVPV of the Kiss1-Cre 
mice. It is likely that such little Cre mRNA expression was enough 
to knock out Kiss1 in AVPV kisspeptin neurons. On the other hand, 
it is tempting to speculate that the AVPV Kiss1 mRNA expression 
would be somehow introduced depending on the ARC kisspeptin 
neurons. There are three possibilities to explain this result as follows: 
1) AVPV kisspeptin neurons could be derived from ARC kisspeptin 
neurons. If this is the case, we envision that Kiss1 expression had 
been already suppressed before the migration of Kiss1-expressing 
cells from the ARC to AVPV because of the Kiss1 knocked out in 
the ARC by the Cre-loxP recombination; 2) Cre recombinase could 
be expressed in both the ARC and AVPV kisspeptin neurons during 
the fetal developmental period, although Cre mRNA expression was 
exclusively found only in the ARC at adulthood; 3) Kiss1 expression 
in the ARC kisspeptin neurons may be required for Kiss1 expression 
in the AVPV kisspeptin neurons at the adulthood, since a previous 
anterograde tracing study indicated the projection of ARC kisspeptin 
neurons toward AVPV kisspeptin neurons [47]. Further studies are 
needed to address this issue.
In	summary,	the	current	conditional	kisspeptin	neuron-specific	

Kiss1 KO mice newly utilizing the Cre-loxP system recapitulated 
the infertility of global Kiss1 KO animal models. The current Kiss1-
floxed	mice	can	be	used	as	a	valuable	model	for	more	elaborate	
analyses of the roles of distinct populations of kisspeptin neurons 
and kisspeptin-producing cells in the brain as well as the peripheral 
organs by the spatiotemporal manipulation of Cre expression.
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