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Decoding disease-causing 
mechanisms of missense mutations 
from supramolecular structures
Atsushi Hijikata   1, Toshiyuki Tsuji1,2, Masafumi Shionyu1 & Tsuyoshi Shirai1

The inheritance modes of pathogenic missense mutations are known to be highly associated with 
protein structures; recessive mutations are mainly observed in the buried region of protein structures, 
whereas dominant mutations are significantly enriched in the interfaces of molecular interactions. 
However, the differences in phenotypic impacts among various dominant mutations observed in 
individuals are not fully understood. In the present study, the functional effects of pathogenic missense 
mutations on three-dimensional macromolecular complex structures were explored in terms of 
dominant mutation types, namely, haploinsufficiency, dominant-negative, or toxic gain-of-function. 
The major types of dominant mutation were significantly associated with the different types of 
molecular interactions, such as protein-DNA, homo-oligomerization, or intramolecular domain-domain 
interactions, affected by mutations. The dominant-negative mutations were biased toward molecular 
interfaces for cognate protein or DNA. The haploinsufficiency mutations were enriched on the DNA 
interfaces. The gain-of-function mutations were localized to domain-domain interfaces. Our results 
demonstrate a novel use of macromolecular complex structures for predicting the disease-causing 
mechanisms through inheritance modes.

Recent advances in high-throughput sequencing technologies enable us to comprehensively identify candidate 
mutations associated with particular diseases in humans1. However, the mechanisms of how the mutations cause 
the disease are still elusive in many cases. Recent efforts of large cohort projects of whole exome or genome 
sequencings have revealed that several mutations suggested to be pathogenic were free-riding rare variants and 
not involved in disease causality2, 3. This indicates that we need further evidence, probably based on molecular 
mechanisms, to convincingly judge the pathogenicity of the genetic variants observed in individuals.

Even though a number of studies have been done to predict the functional or structural impacts of missense 
mutations4–6, the predictions of phenotypic impacts through inheritance modes of the missense mutations are 
not straightforward. Recessive and dominant are the two major inheritance modes of phenotypes caused by 
mutations. Most of the recessive mutations result in loss-of-function conditions. On the other hand, the cases of 
dominant mutations are more complicated than recessive ones, and the mutations are categorized by their molec-
ular mechanisms: haploinsufficiency (HI), dominant-negative (DN), or gain-of-function (GF, including toxic 
gain-of-function and constitutive activation)7. Identifying candidate mutations for dominant diseases is usually 
much more difficult than identifying recessive ones because the number of deleterious mutations in the heterozy-
gous state (an estimated 50–100 variants in each genome) is usually much higher than that in the homozygous 
state in each individual8.

Most proteins perform their functions by forming particular three-dimensional structures and interacting with 
other molecules, and pathogenic mutations affect functions by compromising these structures and interactions, 
as demonstrated by many previous studies9–16. In general, pathogenic mutations are frequently observed in sites 
buried in the interior of a protein molecule or ones involved in macromolecular interactions with a drastic change 
of amino acid physicochemical properties as compared with harmless non-synonymous substitutions9–13, 16.  
These mutations often destabilize protein structures and/or affect the binding energy to interacting molecules14, 15. 
Thus, protein structures should be very informative in delineating the effects of pathogenic mutations in different 
inheritance modes and understanding the underlying mechanisms of particular diseases.

1Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga, 
526-0829, Japan. 2MITA International School, Yoga, Setagaya, Tokyo, Japan. Correspondence and requests for 
materials should be addressed to T.S. (email: t_shirai@nagahama-i-bio.ac.jp)

Received: 4 May 2017

Accepted: 14 July 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0003-4297-8368
mailto:t_shirai@nagahama-i-bio.ac.jp


www.nature.com/scientificreports/

2Scientific ReporTS | 7: 8541  | DOI:10.1038/s41598-017-08902-1

The preceding studies have revealed, as an overview, that recessive mutations are mainly biased toward the 
buried region of protein structures, whereas dominant mutations are significantly enriched in the interfaces of 
molecular interactions17, 18. For example, Zhong et al. analyzed 35,154 pathogenic mutations of 1,777 gene-disease 
pairs and found that in-frame mutations (including not only missense but also small insertions/deletions) asso-
ciated with autosomal-dominant (AD) diseases likely affect exposed residues on the molecular surface17. Guo  
et al. showed that recessive mutations affecting the interface of two interacting proteins tend to cause the same dis-
ease whereas dominant mutations do not by investigating 38,497 pathogenic mutations from 1,794 gene-disease 
pairs18.

However, it still remains unclear how the different types of disease-causing mechanisms of dominant muta-
tions (HI, DN, or GF) are associated with the molecular interactions of the mutated residues. This is largely due 
to a lack of integrated information about the disease mechanisms of each mutation. In this study, we analyzed 
updated and well-annotated effects of pathogenic mutations on the models of supramolecules with emphasis on 
the dominant phenotypes, in order to further elucidate the relationship between macromolecular structures and 
pathogenic mutations.

Results and Discussion
We first collected the information of missense mutations from the Online Mendelian Inheritance of Man 
(OMIM) database19 and published literature and associated them with phenotypes. A total of 2,512 gene-disease 
pairs (1,951 unique genes and 2,366 unique diseases) with autosomal recessive (AR) or autosomal dominant (AD) 
inheritance modes were tabulated (Table 1 and Supplementary Table 1). Further, for 404 out of the 1,140 AD dis-
eases, the types of disease-causing mechanism, namely HI, DN, or GF, of the missense mutations were manually 
assigned (Supplementary Table 2). Finally, a total of 22,004 pathogenic missense mutation sites were mapped on 
the protein 3D structures for which known molecular interactions are annotated20, 21. Of those residues, 14,164 
were assigned to the ordered (structure-determined) regions. The non-synonymous substitutions observed in 
healthy individuals, denoted as single nucleotide variants (SNV) obtained from the ExAC database2 without any 
cutoff value for allele frequency, were also mapped on the structures, and the locational distributions were com-
pared with the pathogenic missense mutations.

The results demonstrated that the AR and AD mutations assigned to the ordered regions were significantly 
higher in number than SNV, nearly half (47.8%) of which were assigned to the intrinsically disordered regions 
(Fig. 1). When the cutoff value of 1% minor allele frequency (threshold for SNP) was employed for the SNV, i.e. 
a total of 12,215 SNVs with lower frequency were excluded, the proportion of residues located in the disordered 
regions was slightly increased to 49.3%, whereas those located in the molecular interface was slightly decreased 
(13.6% to 12.7%). This implies that the non-synonymous substitutions, which were not associated with diseases, 
tended to avoid regions important for structure formation or molecular interactions, as also reported in previous 
studies12, 16–22.

The locational distributions of AR and AD mutations on 3D structures were predominantly different. For AR 
mutations, 43.0% were located in the buried region, whereas the same value for AD mutations was only 21.5%. 
The AD mutations were rather enriched in the residues located in molecular interfaces of the protein-protein or 
protein-DNA complexes.

Then we compared the structural features of the HI, DN, and GF dominant phenotypes (Fig. 1d-f). The DN 
and GF but not HI mutations were relatively enriched in the molecular interfaces. More HI mutations were 
located in the buried regions than expected as compared to those of DN and GF mutations (Supplementary 
Fig. 1), indicating that the structural localization of HI mutations was similar to that of AR mutations. The AR 
mutations are thought to cause loss-of-function of the gene products through destabilizing the protein structure, 
and the result suggested that the underlying molecular mechanism would be similar in the HI phenotypes.

The interfaces were classified into those for proteins (PPI) and DNAs (PDI), in order to explore the effects 
of mutations on molecular interactions in depth (Fig. 2a,b). The AD mutations were biased toward PPI regions 
[the odds ratio (OR) against random distribution was 1.32, with a 95% confidential interval (CI) of 1.25 to 1.40]. 
For AR mutations, this trend was the opposite (OR 0.96, 95% CI of 0.90 to 1.02). When the AD mutations were 
further dissected, the localization of the DN and GF mutations to PPI was rather emphasized (OR 1.45, 95% CI 
of 1.28 to 1.67 for DN, and OR 1.27, 95% CI of 1.04 to 1.54 for GF), whereas no significant bias was observed for 
HI (OR 1.13, 95% CI of 0.96 to 1.33). The mutation sites of HI, and DN also, were significantly enriched in PDI 

Category Genes* Phenotypes Mutations Mapped in 3D % mapped

All pathogenic mutations 1951 2,366 22004 14164 64.4

Recessive 1233 1372 12340 8271 67.0

Dominant 845 1140 9664 5893 61.0

    Haploinsufficiency 115 122 2040 1078 52.8

    Dominant-negative 132 143 1724 1129 65.5

    Gain-of-function 118 136 985 604 61.8

    Others 578 738 4923 3082 62.6

Benign SNV 1782 — 15728 5723 36.4

Table 1.  Statistics of pathogenic and benign mutations. *Some of the genes appear in two or more categories.
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(OR 2.46, 95% CI of 2.09 to 2.88 for HI, and OR 2.30, 95% CI of 1.88 to 2.78 for DN) compared to GF (OR 1.17, 
95% CI of 0.17 to 2.35).

It is well known that defects in transcription factors often cause diseases by a haploinsufficiency mechanism23. 
Consistently, a large proportion of genes associated with HI (36 genes, 31.3% of total) and DN (26 genes, 19.5%) 

Figure 1.  Locational distribution of mutation sites on protein structures. (a–f) Pie charts represent the 
distributions of missense mutations on the different structural regions, namely, molecular interface, buried, 
exposed, or disordered regions, for AD (a), AR (b), SNV (c), HI (d), DN (e), and GF (f).

Figure 2.  Odds ratio of mutations on interfaces for each inheritance mode. (a–d) The odds ratio distributions 
of probabilities that mutations in a category occurred in a given interface of proteins (a) or DNA (b). (c) The 
ratios of mutations being used for homo over hetero subunit interactions. (d) The ratios of mutations used for 
domain interactions.
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phenotypes encoded transcription factors in comparison to those with GF phenotypes (6 genes, 5.1%). One 
possible explanation of why the mutations at DNA-binding sites of transcription factors cause haploinsufficiency 
is that defects in the DNA-binding ability reflect their own expression levels. Most of such transcription factors 
would bind to the promoter of their own genes and activate expression.

For example, missense mutations of GATA2, encoding a transcription factor protein GATA2, cause familial 
syndromes with immunodeficiency in a haploinsufficient fashion. GATA2 binds to its own promoter and activates 
transcription, and the missense mutations at the DNA binding sites impair the promoter binding ability, resulting 
in decreased transcription of GATA224. Another example would explain dominant-negative mechanisms: muta-
tions in PITX2, encoding a homeodomain protein PITX2, are responsible for Axenfeld-Rieger syndrome (MIM# 
180500). PITX2 is known to act as a homodimer. Saadi et al. demonstrated that the PITX2 mutant protein with 
the missense mutation Lys88Glu at the DNA binding site formed rather stable heterodimers with the wild-type 
PITX2 and greatly reduced the binding to the promoter, thus causing disease in a DN manner25.

In order to clarify whether the homo or hetero subunit interactions contribute to the difference in 
disease-causing mechanisms, the PPI interfaces were further divided into those of homo and hetero subunits 
(Fig. 2c). The AD mutations were slightly biased toward the homo interfaces (the OR of mutations observed in 
homo interfaces to those in hetero interfaces against the random distribution was 1.15, 95% CI of 1.04 to 1.26). 
The DN mutations tended to be on homo interfaces (OR 2.58, 95% CI of 2.05 to 3.28), whereas no significant bias 
between homo and hetero subunit interfaces was observed for HI and GF mutations.

The Gene Ontology enrichment analysis showed that a GO term of “protein homooligomerization” was signif-
icantly enriched in the genes associated with DN phenotypes (12 genes, p = 9.6 × 10−8) as compared to those with 
HI (no genes) or GF (3 genes, p > 0.05) phenotypes, suggesting that proteins which act as homooligomers are 
highly associated with DN phenotypes. Although the total numbers of residues for the homo subunit interfaces 
(6,865 residues) were not significantly different from those for the hetero subunit interfaces (6,174 residues) in the 
proteins with DN phenotypes, the mutations were significantly enriched (p = 8.7 × 10−7 by binomial test) in the 
homo (283 residues) compared to the hetero (110 residues) subunit interfaces in the same proteins. The mutations 
in the homo subunit interfaces might disrupt appropriate oligomer formation or contribute to formation of an 
inactive oligomer in the dominant-negative manner, as previously suggested26.

We further investigated the structural features of the missense mutations in terms of domain–domain inter-
actions in a single protein molecule. Domain configurations are also important in regulating protein functions, 
and some of the residues not involved in inter-molecular interactions are used for inter-domain interactions. The 
ECOD database was referred to in determining domain boundaries, and some of the mutant sites, which were 
assigned to buried or non-interface regions, were reassigned to the domain interface. Interestingly, the GF muta-
tions were enriched in the domain–domain interfaces (the OR against random interaction was 2.0, 95% CI of 1.6 
to 2.5) compared to those with HI and DN mutations (Fig. 2d). This value of AD mutations (OR 1.5, 95% CI of 
1.4 to 1.7) was comparable to those with AR mutations (OR 1.6, 95% CI of 1.5 to 1.7). The result suggested that 
one major cause of a gain-of-function phenotype would be a mutation that compromises the regulatory function 
accomplished through the inter-domain interaction within a single protein molecule.

For example, the GF mutations of PTPN11 encoding SH2 domain-containing protein-tyrosine phosphatase 2 
(SHP2), which are responsible for Noonan syndrome (NS, MIM #163950), were mainly located in the interface 
between N-SH2 and PTP domains (Fig. 3). These mutations altered the residues involved in the autoinhibitory 
interaction, thus made the molecule easily assume the open conformation, and consequently increased the consti-
tutive catalytic activity of the phosphatase27. On the other hand, the reported DN mutations of SHP2 were located 
only in the PTP domain and were closed to the substrate binding or catalytic sites of SHP2. These mutations 
were demonstrated to decrease the phosphatase activity, resulting in Noonan syndrome with multiple lentigines 
(NS-ML, MIM #151100, formerly called LEOPARD syndrome) due to the DN effect28.

Another example, perhaps the most appropriate to present the results of this study, is the case of STAT1, which 
encodes a transcription factor STAT1 that regulates the development of various types of immune cells. Defects 
of STAT1 cause several diseases, e.g. the autosomal recessive STAT1 deficiency (AR-STAT1 deficiency, MIM 
#613796), the autosomal dominant STAT1 deficiency (AD-STAT1 deficiency, MIM #614162), and the autosomal 
dominant chronic mucocutaneous candidiasis (CMC, MIM #614892).

The known disease-causing mutations were mapped on the crystal structure of human STAT1 complexes 
(Fig. 4b,c). The missense mutation Leu600Pro, which is known to cause the AR-STAT1 deficiency, was located 
in the buried region of the SH2 domain (Fig. 4b,d). The mutation, hence, was suggested to destabilize the SH2 
domain leading to reduction of the protein expression level by degradation. The mutations associated with the 
AD-STAT1 deficiency, which is known to occur in DN mode29, 30, were located in the homo-dimer interface of 
SH2 domain or DNA-binding domain (DBD) (Fig. 4b). The DN mutations impaired STAT1 phosphorylation 
and DNA-binding activity29. Contrary to the AD-STAT1 deficiency, CMC is caused by GF mode31, 32. The CMC 
mutations showed increased phosphorylation of Tyr701 of STAT1 due to impaired nuclear dephosphorylation. 
The mutated residues were mainly located in the coiled-coil domain (CCD), which was thought to work in the 
dephosphorylation of STAT1 by forming an anti-parallel dimer (Fig. 4c). Most of the GF (CMC) mutations were 
located in this interface (Fig. 4d), and they would disrupt the formation of the anti-parallel dimer. A couple of 
GF (CMC) mutations were, however, not observed in this interface, but were located in the domain interface. For 
example, one of the GF (CMC) mutations, Arg274Gln, was found in the interface between the CCD and DBD. 
Recently, it was demonstrated that the Arg274 was involved in the regulation of STAT1 activity through the inter-
action with the DBD33.

Conclusion
In summary, we demonstrated a clear correlation between the inheritance modes of missense mutations and 
protein 3D structures. A major structural location of AR mutations is the buried region of a protein, and the 
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mutations cause destabilization of the protein structure. In AD mutations, the structural locations varied depend-
ing on the mechanisms of dominant inheritance modes; DN mutations are biased toward molecular interfaces 
and affect interactions with the cognate (homo) protein or DNA (Figs 3c and 4d,e). HI mutations are enriched 
on the interface with DNA and buried regions. GF mutations, as a unique tendency, affect domain-domain inter-
actions, which often resulted in constitutive activation of proteins. Our findings would be useful in precisely 
predicting the pathogenic mutations responsible for dominant diseases based on the molecular basis, especially 
those of gain-of-function cases, which are currently regarded as challenging34 for evaluating the pathogenicity of 
mutations in clinical diagnosis.

Methods
Constructing disease datasets.  The data on the relationship between genes and their associated diseases 
in humans were retrieved from OMIM (http://omim.org/) using OMIM API and saved as XML format. The 
human genes associated with at least one phenotype with an autosomal recessive (AR) or dominant (AD) inher-
itance mode were selected. The association information between OMIM Gene and NCBI Gene was extracted 
from a mim2gene.txt file obtained from the OMIM database. The genes with no link to a RefSeq entry were 
excluded.

For each dominant disease, the molecular mechanisms of causality by mutations, namely haploinsufficiency 
(HI), dominant-negative (DN), or gain-of-function (GF) were manually extracted from the OMIM XML file. If a 
notation “haploinsufficiency” was included in the description of the disease in the XML file, the disease was con-
sidered as HI. When “dominant-negative” or “dominant negative” was noted, the disease was considered as DN. 
For GF, “gain-of-function”, “toxic gain of function”, “activating mutation,” or “constitutively active” was employed 
for the discrimination key.

Obtaining missense mutation data.  The disease-associated missense mutations in humans were 
obtained from ClinVar35 (as of Aug. 7, 2016) and HGMD36 professional® (as of August 2016). Because the data-
bases also contained non-pathogenic variant entries, the entries were further selected by referring to a signifi-
cance code, “Pathogenic” or “Likely pathogenic” for ClinVar, or the variant tag “DM” for HGMD. The mutation 
data not associated with an OMIM phenotype number were discarded.

Assignment of 3D structural positions of mutations.  The amino acid sequences of RefSeq37. Entries 
for the disease-causing genes were subjected to a search for the homologous amino acid sequences of the PDB21 
entries (as of August 2016) using the BLAST + program38 with a cutoff E-value of 10−4. When the sequence 

Figure 3.  Locational distribution of mutation sites on PTPN11 protein. (a) The schematic primary structure of 
PTPN11 with structural domains and pathogenic missense mutations. The mutations associated with different 
inheritance modes are colored differently (DN and GF mutations are shown in green and red, respectively). (b) 
Mapping of the mutations on the crystal structure of human PTPN11 (PDB code: 2shp). The mutant residues 
are represented by sphere models. (c) The schematic models of the PTPN11 domain interaction with pathogenic 
mutations.

http://omim.org/
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identity between the target and the protein with 3D structure was > 30%, the amino acid residue sites of the target 
protein were assigned according to the sequence alignment between the two sequences.

Amino acid residues in the interfaces of molecular interactions were extracted according to the biological 
assembly structures of PDB. Structural domain data were obtained from the ECOD database39. If at least one atom 
of the amino acid residue was within 4.5 Å of the residues in other chains (either protein or DNA) or domains, 
the residues were assigned to the molecular interface or domain interface. Intrinsically disordered regions of the 
amino acid sequences were predicted by DISOPRED ver. 3.140.

Statistical analysis of missense mutations.  The fraction of mutations for a given disease category i 
located in a type of interface j (pij) was calculated by dividing the sum of the mutation sites for the category 
observed on the type of interfaces by the total number of mutations located in the same type of interface. We 
calculated the expected fraction for a type of interface j (qij) by dividing the sum of the residues located in the 
type of interface by the sequence length of all proteins. The odds ratios (ORs) were calculated on the bases of the 
observed and expected fractions as

= − −p p q qOR /(1 )/ /(1 )ij ij ij ij

In order to estimate the 95% confidence intervals of each OR, 1,000 bootstrap replicates were generated for 
mutations in each disease category.

Gene ontology enrichment analysis.  The gene ontology (GO) terms annotated with the human 
disease-causing genes were extracted from the NCBI Gene database. For gene sets in each category, the hyperge-
ometric test originally described by Draghici et al.41 was applied with a correction for multiple testing using the 
false discovery rate (FDR). The GO terms with a FDR < 0.05 were selected as functionally enriched terms.
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