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Abstract: The analysis of cellular signaling cascades based on information thermodynamics has
recently developed considerably. A signaling cascade may be considered a binary code system
consisting of two types of signaling molecules that carry biological information, phosphorylated
active, and non-phosphorylated inactive forms. This study aims to evaluate the signal transduction
step in cascades from the viewpoint of changes in mixing entropy. An increase in active forms may
induce biological signal transduction through a mixing entropy change, which induces a chemical
potential current in the signaling cascade. We applied the fluctuation theorem to calculate the
chemical potential current and found that the average entropy production current is independent of
the step in the whole cascade. As a result, the entropy current carrying signal transduction is defined
by the entropy current mobility.
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1. Introduction

The cell is an open and non-equilibrium system, and signal transduction is one of the
non-equilibrium processes characterized by a chemical potential current. In recent decades,
the theoretical analysis of signal transduction has been broadly applied in various research fields,
in parallel with significant development of information theory [1–5]. Informational thermodynamics
for analyzing dynamic biochemical networks and systems biology have also been developed to assess
the cell response to external stimuli [1–6]. In addition, in in vivo analysis, a significant amount of
data on signal transduction has accumulated, and the quantitative analysis of a network of signaling
cascades can be performed using new technology [7–16]. In this study, a quantitative evaluation theory
of a signaling cascade is described from the source coding theory of a binary code system applied
for biological signal transduction. The ubiquitous signaling pathway conveys signals from the cell
membrane to the nucleus shown as a form of a model scheme.

Let us consider a cell system as an open homogeneous reactor in contact with chemiostats of
reactants and products, which drive the system out of equilibrium. The system is assumed to be
isothermal and isovolumic.

In this model, the signaling molecule at step j, denoted as Xj, induces the modification of Xj+1

into Xj+1*. In individual steps, the dephosphorylation of Xj+1* into Xj+1 occurs by phosphatase Phj
by the release ability of inorganic phosphate Pi from Xj+1*, and the pre-stimulation steady state is
subsequently recovered. A signaling step in the above cascades may be described as follows:

Xj
∗ + Xj+1 + ATP→ Xj

∗ + Xj+1
∗ + ADP : k j

Xj+1
∗ + Phj → Xj+1 + Pi : k−j (1 ≤ j ≤ n)

(1)
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kj and k−j are the kinetic coefficients. ATP, ADP, and Pi represent adenosine triphosphate, adenosine
diphosphate, and inorganic phosphate, respectively. Consider all the possible distinct signal
transduction events that correspond to all the possible combinations of the signal molecule Xj, whose
transduction length is τj. For instance, an event is described as follows:

X1 X3 X2 X3 X1 X2 X3 X5 X3 X4 X3 (2)

The cell signaling events, represented here by the symbols Xj with numbers Nj(1 ≤ j ≤ n),
will correspond to all the possible combinations of Xj. Therefore, N1 = 2, N2 = 2, N3 = 5, N4 = 1,
N5 = 1 and n = 5 in the signal event (2). In actuality, signaling cascades have been studied
extensively using models of Mitogen-activated Protein Kinase (MAPK) pathways, in which the
epidermal growth factor receptor, c − Raf, MAP kinase-extracellular signal-regulated kinase [17],
and kinase-extracellular signal-regulated kinase (ERK) are phosphorylated following treatment with
growth factors. The Ras-c-Raf-ERK cascade (RRE) is a ubiquitous signaling pathway that conveys
mitogenic and differentiation signals from the cell membrane to the nucleus.

L + R↔ R∗, R∗ + Ras↔ R∗ + Ras∗(X1),
Ras∗ + c− Raf↔ c− Raf∗(X2) + Ras∗,
c− Raf∗ + MEK↔ c− Raf∗ + MEK∗,
MEK∗ + ERK↔ MEK + ERK∗(X3)

(3)

In the above equation, R and L represent the receptor in the cell membrane and the ligand that is
substance stimulating receptor, respectively. External stimulation on the cell induces a concentration
fluctuation in the phosphorylation of the signaling molecules. More specifically, a fluctuation in
the signaling molecules’ concentration tentatively increases, followed by a decrease over a long
duration, τj, of several hours [7–24] (Figure 1). Here, we defined the occurrence probability, pj and pj

∗,
which represents the selection probability of j-th step using Xj or Xj*, respectively:

pj = Xj/X (4)

pj
∗ = Xj

∗/X (5)

with
n

∑
j=1

pj + pj
∗ = 1 (6)

Here, X represents the total concentration of signaling molecules.

X =
n

∑
j=1

Xj + Xj
∗ (7)

Because the sum of the concentrations of active j molecules, Xj*, and non-active j molecules, Xj,
participating in signaling cascades is regarded as constant, the protein production process is relatively
slower than the signal transduction step:

pj + pj
∗ = pj

0 (8)

The entire duration, τ, which signifies the sum of cascades, is determined using the total
concentration of signaling molecules, X, and the probabilities, pj and pj

∗.
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Here, τj signifies the signal step duration of the j-step of the cascade. Subsequently, the total
number of signal events, ψ, is introduced for the whole cascade, as follows:

ψ =
X!

n
∏
j=1

Xj!
n
∏
j=1

Xj
∗!

(9)

The logarithm of ψ, which is Shannon’s entropy S, is given using Stirling’s approximation,
as follows:

S = log ψ ' −kBX

(
n

∑
j=1

pj log pj+
n

∑
j=1

pj
∗ log pj

∗
)

(10)

In Equation (10), kB represents the Boltzmann constant.
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Figure 1. Schematic of a reaction cascade in cell signal transduction. The receptor mediates the cellular
response to the presence of the ligand in the extracellular medium. A is a messenger, ATP, of signal
transduction. Individual signaling molecules Xj(1 ≤ j ≤ n) relay the modification of individual
steps, and the last species Xn is translocated to the nucleus, where it controls gene expression by
the transcription of mRNA. Ph denotes a phosphatase.

2. Mixing Entropy in Signal Transduction

Here, we noticed that the right side of Equation (10) is identical to mixing entropy in the system
in which Xj

∗ and Xj are mixed. Here, our aim was to estimate the entropy change at individual
steps in the cascade. Because the signaling molecules Xj are macromolecules, they are localized and
the individual steps are compartmentalized in the in the cytoplasm. In the steady state, the signal
transduction system stands at steady state. Here, let us consider that the ligand molecule stimulates
the given system, and this stimulation produces a fluctuation in the transduction system. Considering
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the entropy current from the j-th to (j + 1)-th step by the mixing entropy consisting of active molecule
Xj* and Xj difference between the steps, the mixing entropy change of the j-th step, dSmix

j , with a
minimal concentration difference in Xj*, dpj

∗, and in Xj, dpj = −dpj
∗, is described:

dSmix
j , −kBX

[(
pj + dpj

)
log
(

pj + dpj
)
+
(

pj
∗ + dpj

∗) log
(

pj
∗ + dpj

∗)] (11)

In Equation (11), dpj
∗ and dpj denote the fluctuations in the transduction system. On the other

hand, because the increase and the decrease are not observed in the (j + 1)-th step in the initial phase of
the signal transduction from the j-th to (j + 1)-th step:

dSmix
j+1 , −kBX

[
pj log pj + pj

∗ log pj
∗] (12)

Here, T represents the temperature of the given system. Then, we have the entropy signal current
Cj arising from chemical potential difference on the left side of Equations (11) and (12) using differential
coefficient of missing entropy for pj

∗, which is the probability of selection of an active molecule that
transmits the signal transduction:

Cj = T
∂dSmix

j

∂pj
∗ ∆pj

∗ ≈ kBTX log
pj

pj
∗∆pj

∗ = kBT log
pj

pj
∗∆Xj

∗ (13)

Therefore, the entropy signal current density cj from the entropy change is given:

cj =
Cj

∆Xj
= kBT log

pj

pj
∗ (14)

In general, such a nonequilibrium steady system is given by the occurrence probability p during
signal step duration τj for the current cj from the left reservoir at temperature βL

−1 and chemical
potential µL to the right reservoir at βL

−1 and µR satisfies the steady fluctuation theorem [25]:

lim
τj→∞

1
τj

log

{
p
(

j + 1|j; qj
∗)

p
(

j|j + 1;−qj
∗)
}

=
βLµL − βRµR

τj
qj
∗ (15)

Here, qj represents the flow of the signal current.
This fluctuation theorem leads to various nonequilibrium relations among cumulates of the

current. Because in the biological systems, βL
−1 = βR

−1 = β−1 and using β−1 = kBT, we have using
signal current density:

lim
τj→∞

1
τj

log
p( j + 1|j)
p( j|j + 1)

=
cj

kBTτj
∆Xj

∗ (16)

On the left side of (16), p( j + 1|j), the transitional probability of step j + 1 given step j, is defined
in the forward direction of the signal is also defined. From Equations (15) and (16) we have an
important result:

lim
τj→∞

1
τj

log
p( j + 1|j)
p( j|j + 1)

=
1
τj

log
pj

pj
∗ (17)

Equation (17) shows the relation between the transitional probability and the occurrence
probability. In most cases of biological signal transduction, the signal duration is sufficiently long,
and therefore Equation (17) can be further described simply as follows:

log
p( j + 1|j)
p( j|j + 1)

= log
pj

pj
∗ (18)
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In our previous reports [26,27], when the number of the events or messages per a given duration
is maximized, the occurrence probability can be described using an arbitrary parameter ζ independent
of the step number j:

− log pj = ζτj (19)

Further, as shown in Appendix A, Equation (18) can be rewritten as follows:

1
τj

log
p( j + 1|j)
p( j|j + 1)

= −ζ (20)

As a result, we have an important result from Equations (16) and (20):

ζ = −
cj∆Xj

∗

kBTτj
= −

Cj

kBTτj
= − J

kBT
(21)

with

J ,
Cj

τj
= kBTζ (22)

Here, J represents the average entropy production current along the cascade, and the suffix j
representing the step number is omitted because the average current is independent of the step number.
The above equation represents that ζ has the dimension of the average entropy production rate.

3. Entropy Current and Signal Transduction

Subsequently, we aimed to formulate the signal current from the perspectives of the entropy
current. The entropy current depends on the spatial gradient of entropy and is given using the signal
current intensity from (13) and (22) using a intracellular spatial coordinate parameter r:

− T∇rSj ≈ −kBT log
pj

pj
∗∇rXj

∗ = −cj∇rXj
∗ = −∇rCj (23)

Further, using the diffusion coefficient of an active signaling molecule, the average entropy current
per signal duration is given using the diffusion coefficient of the signal, Dj and from (22):

∇r J = −
Dj∇rXj

∗

τj
= −

cj∇rXj
∗

τj
(24)

Here, the diffusion coefficient is obtained from (23):

Dj , cj (25)

From the Stokes–Einstein equation, the diffusion coefficients can be described using the signal
mobility, ωj:

Dj , kBTωj (26)

Therefore, we have:
cj = kBTωj (27)

4. Conclusions

In the current study, we hypothesized that the signaling cascade is a binary code system in which
an increase in the concentration of the active signal molecule at each step (although accompanied
by a decrease in the inactive form of the signal molecule) transmits a signal transduction between
steps. This simple binary-code hypothesis enabled us to have several important equities about the
quantification of signal transformation. This hypothesis includes a theoretical basis that can introduce
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a duration parameter to analyze the development of signal transduction over time. We postulate
that quantitative estimation of signal transduction is possible based on the amount of ATP consumed.
In an actual experiment, preventing other biochemical reactions, apart from signal transduction,
is challenging, but we have a plan for establishing a model for measurement. Therefore, if data with
adequate comprehensive signal events is accumulated, quantification of the signal events might be
possible by measurement of ATP concentration changes.

According to this idea and the fluctuation theorem [28–30], we obtained an important result:
the diffusion coefficient of the signal event is equal to the entropy current. In this way, the signal
transduction in the cell system is definitely formulated in the entropy production and the current.
Significantly, the average entropy production rate current is independent of the step number;
this implies that the whole cascade of the signal transduction is integrated well under stable entropy
production. Based on this finding, the quantification of the signal events is possible by measuring
the chemical potential change during individual signal event in the cell system. For example,
the consumption of ATP, which mediates signal transduction, is anticipated to provide data regarding
the entropy production during the events. In conclusion, the current signaling cascade model provides
a basis for informational thermodynamics, and the relationship between the chemical potential and
information or entropy was established.
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Appendix A

To obtain Equation (20) from Equations (8), (18) and (19), we can calculate as follows:

1
τj

log
pj
pj
∗ = 1

τj
log

exp(−ζτj)
p0

j−exp(−ζτj)
= 1

τj
log

exp(−ζτj)
p0

j

[
1−exp(−ζτj)/p0

j

]
= −ζ − 1

τj
log p0

j −
1
τj

log
[
1− exp

(
−ζτj

)
/p0

j

]
= −ζ − 1

τj
log p0

j +
1
τj

exp
(
−ζτj

)
/p0

j

≈ −ζ
(
τj → ∞

)
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