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Abstract

Recurrent and chronic Major Depressive Disorder (MDD) accounts for a substantial part of the 

disease burden because this course is most prevalent and typically requires long-term treatment. 

We associated blood DNA methylation profiles from 581 MDD patients at baseline with MDD 

status 6 years later. A resampling approach showed a highly significant association between 

methylation profiles in blood at baseline and future disease status (P=2.0×10−16). Top MWAS 

results were enriched specific pathways, overlapped with genes found in GWAS of MDD disease 

status, autoimmune disease and inflammation, and co-localized with eQTLS and (genic enhancers 

of) of transcription sites in brain and blood. Many of these findings remained significant after 

correction for multiple testing. The major themes emerging were cellular responses to stress and 

signaling mechanisms linked to immune cell migration and inflammation. This suggests that an 

immune signature of treatment-resistant depression is already present at baseline. We also created 

a methylation risk score (MRS) to predict MDD status 6 years later. The AUC of our MRS was 

0.724 and higher than risk scores created using a set of five putative MDD biomarkers, genome-

wide SNP data, and 27 clinical, demographic and lifestyle variables. Although further studies are 

needed to examine the generalizability to different patient populations, these results suggest that 

methylation profiles in blood may present a promising avenue to support clinical decision making 

by providing empirical information about the likelihood MDD is chronic or will recur in the 

future.

INTRODUCTION

MDD is a leading cause of disability worldwide1. Recurrent or chronic MDD accounts for a 

substantial part of this disease burden because this course is most prevalent and typically 
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requires long-term treatment2; 3. Our overarching goal is to identify DNA methylation 

signatures in peripheral blood samples associated with future MDD status. Although 

methylation signatures in blood are unlikely to impact MDD directly, blood provides a 

biological environment for brain and can indirectly point to disease processes. For example, 

environmental insults that affect disease trajectories (e.g., stress) can modify methylation 

patterns in blood4-6. Methylation marks are also potential biomarkers as they are very stable 

in collected samples. Furthermore, blood is a suitable tissue because, for a biomarker to be 

useful in clinical settings, it is important that the biosample is easy to collect with a 

relatively small risk to the patient. The methylation signatures will therefore also be used to 

start generating prediction algorithms that could eventually be used to improve treatment7.

Specifically, we associated blood DNA methylation data from 581 patients at baseline with 

their MDD status 6 years later. To avoid missing sites of possible importance we used a 

sequencing-based methylation assay that provides nearly complete coverage of all 28 million 

CpGs in the human genome8; 9.

MATERIALS AND METHODS

The supplemental material gives a detailed description of study participants, methylation 

assay, and data analyses. Here we provide a brief summary.

Participants

Whole blood samples were obtained from 581 MDD patients from the Netherlands Study of 

Depression and Anxiety (NESDA)10 at baseline. MDD DSM-IV diagnoses (6-month 

recency) were obtained using the lifetime version of the Composite International Diagnostic 

Interview. All participants were of Dutch descent. The outcome variable was the presence/

absence of a MDD diagnosis at the 6-year follow-up (MDDYear6). The 6-year follow up was 

chosen because it is the latest NESDA wave, which is important to assess long-term disease 

risk. Of the 581 patients diagnosed with MDD at baseline, 199 also received a MDD 

diagnosis at the 6-year follow-up. All participants provided written informed consent and the 

current study was approved by ethical committees in the Netherlands and USA.

Methylation Assay

To assay the methylome at baseline, we used an optimized protocol for methyl-CG binding 

domain sequencing (MBD-seq)11-14. The optimizations involved the choice of the the MBD 

protein15 and adaptations of the enrichment and sequencing protocol16; 17. MBD-seq is 

frequently confused with methylated DNA immunoprecipitation followed by sequencing 

(MeDIP-seq).18 While there are similarities in the workflow, MeDIP-seq suffers from lower 

performance and higher sequence bias than MBD-seq11; 12; 17; 19; 20. In the supplemental 

material, we provide a summary of comparisons our optimized MBD-seq protocol and “gold 

standard” whole genome bisulfite sequencing. Results show that optimized MBD-seq 

provides comparable information about the methylome as whole genome bisulfite assays8. 

Furthermore, MBD-seq has shown to detect previously reported robust associations21 as 

well as small effects that replicate using targeted bisulfite-sequencing22. Thus, it is a suitable 

assay for methylomewide association study (MWAS).
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We obtained an average of 59.4 million (SD=11.2 million) reads per sample. This resulted in 

an average nonCpG-to-CpG score ratio23 of 0.010 (SD=0.005). The low ratio shows that the 

average CpG signal is high and the nonCpG background noise level is exceptionally low, 

allowing for detection of differently methylated regions.

Methylome-wide association study

Data quality control and analyses were performed with the Bioconductor package 

RaMWAS24. MWAS was performed using multiple regression analyses with four sets of 

covariates. First, we regressed out assay-related variables (i.e., potential technical artifacts) 

including the quantity of methylation-enriched DNA captured, peak sensitivity, percentage 

reads aligned, and reagent batch9. Second, we regressed out a battery of 27 clinical, 

demographic and lifestyle characteristics (see Table 1) including sex, symptom severity at 

baseline, smoking, and antidepressant use. To avoid inclusion of uncorrelated covariates and 

unnecessary loss of degrees of freedom, these variables were regressed out by creating a risk 

score (see next section). Third, to avoid confounding due to cell type heterogeneity, we 

regressed out blood cell type proportions as estimated by the methylation data25 using 

MBD-seq specific “reference methylomes”. We have previously shown that this effectively 

controlled for confounding due to cell type heterogeneity26. Fourth, principle components 

were regressed out to capture any remaining unmeasured sources of variation.

Bioinformatics

Pathway analyses were performed using of the Reactome27 database. These analyses used 

circular permutations that properly control the Type I error in the presence of correlated sites 

(see28 and Figure S4). Furthermore, as the permutations are performed on a CpG level they 

account for gene size, as genes with more CpGs are more likely to be among the top results 

in the permutations. To correct for testing multiple pathways, we determined the threshold 

that resulted in one or more significant pathways in 5% of the 100,000 permutations (i.e., 

this controls the family-wise error rate at the 0.05 level). Furthermore, after removing the 

pathways that survived multiple testing, we used the permutations to examine whether genes 

from the other pathways collectively were still overrepresented in the top MWAS.

Circular permutation tests were also used to study whether MWAS findings were i) enriched 

for top findings from GWAS studies and ii) co-localized with potential regulatory sites in 

brain and blood tissue. If multiple thresholds were specified to define “top findings”, we 

corrected for this multiple testing by using the same thresholds in the permutations and 

selecting the most significant result to generate the empirical null distribution.

Methylation risk score

To predict MDDYear6 we used elastic nets that are suitable when there are many more 

variables than observations and effects are small and correlated29-31 (e.g., techniques such as 

lasso can select no more variables than there are samples and tend to only assign a non-zero 

coefficient to a single variable out of a set of correlated variables32). Elastic nets are akin to 

multiple regression but place a penalty on the size of the regression coefficients that is 

controlled by the alpha parameter. For the main analysis aimed at deriving the best possible 

prediction, we set alpha to zero, which results in all sites having non-zero regression 
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coefficients and being retained in the model. However, for our exploratory analyses aimed at 

examining whether we can approximate the predictive power of this full site MRS with a 

smaller number of sites, we also fit elastic nets with alpha at 0.5.

We used k-fold cross-validation to avoid overfitting33. Specifically, we randomly partitioned 

the sample into k=10 equal sized subsamples. Of the k subsamples, k − 1 were used as a 

“training” set to fit the elastic net and obtain regression coefficients. This model is then used 

in “test” set to obtain predictions for the samples that were set aside. The entire cycle of 

CpG selection through MWAS followed by training the elastic net is repeated for each of the 

k folds. Because both the selection of CpGs and estimation of the prediction model is not 

affected by the participants in the test set, this yields an unbiased estimate of the predictive 

power.

RESULTS

Table S1 shows that MDD cases and controls at the six-year follow-up were generally 

similar in terms of demographic profiles.

Methylome-wide association study

The Quantile-Quantile (QQ) plot (Figure 1A) for the MWAS shows that many P-values are 

above the upper 95% confidence interval. This implied many CpGs with small or modest 

effects. The Manhattan plot (Figure 1B) suggested that associated sites are distributed across 

the methylome.

Studying the top MWAS findings (Table S2), the most significant CpG was in MAPKAPK5 
(P < 5.76×10−8), a gene previously associated with anxiety34 that is highly co-morbid with 

MDD. The second top CpG mapped to LINC01192 (CT64) with prior evidence of shared 

association across MDD, bipolar disorder, and schizophrenia35. The fourth top finding was 

NOL4 (P < 8.51×10−8) that has been shown to predict antidepressant treatment response36. 

Other notable top results involves genes linked to neuronal development (MYO1037, 

RNF11138) and late-onset depression (SLC36A139). None of these individual top findings 

remained significant after corrections (false discovery rate or Bonferroni) for multiple 

testing.

Pathway analyses

The collective top findings (P < 5×10−5) involved 2,785 CpGs and 1,146 genes that were 

subjected to pathway analyses. Several pathways remained significant after correcting for 

multiple testing (Table S3). The mean odds ratio of the remaining pathways was 1.69 with P 

value 9.0×10−4. Thus, although they did not reach significance individually after correcting 

for multiple testing, collectively genes from these pathways were still significantly 

overrepresented among the top MWAS findings.

Pathways with P < 0.05 were clustered using the Louvain Method for community 

detection40 as implemented in igraph41 based on their overlapping member genes (Figure 2). 

Clusters that emerged included golgi-related processes, small RNA transcription, and cell-

cell communication. The Golgi apparatus (red cluster) is a cellular hub of protein processing 
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and is central in secretory and stimuli-sensing pathways42. Golgi fragmentation, that is 

commonly observed following cellular stress, e.g., oxidative stress or infection43, can induce 

the mitochondrial apoptotic pathway44. There is literature suggesting that neurons may be 

particularly sensitive to Golgi stress, especially under excitotoxic and inflammatory 

conditions44-46.

Multiple pathway clusters were related to small non-coding RNA expression (orange, green, 

light blue clusters). Small nuclear RNA (snRNA) and PIWI-interacting RNA (piRNA) are 

primarily transcribed by RNA polymerase II and are implicated in splicing and transposon 

silencing, respectively47-50. While some evidence implicates other non-coding RNAs in 

MDD51, the potential roles for snRNA and piRNA in disease are less well characterized. 

One report52 demonstrated snRNA-dependent RNA editing of serotonin receptor subtype 2C 

mRNA in depression following interferon-α treatment. Interestingly, interferon and cytokine 

signaling were also implicated by our pathway analyses (brown cluster).

While cell-cell communication (blue cluster) is an absolute requirement of all cells in an 

organism, the enriched members of these pathways were particularly interesting. Many 

genes belonging to the claudin family were among those enriched. Social stress has been 

shown to lead to depression-like behavior via downregulation of claudin-5 and subsequent 

disruption of the blood-brain barrier (BBB)53. Collagens are major components of the 

extracellular matrix (ECM) and are key for immune cell attachment and infiltration54. These 

ECM proteins are recognized by leukocyte integrin receptors55 which were also among the 

enriched pathway members (pink cluster). Together, these results suggest changes in 

immune cell and BBB interactions are present in MDD.

Methylation risk score

We determined the MRS should contain 75,000 CpGs (Figure 3A). This MRS does not yield 

the best AUC but corresponds to the point where the predictive power reaches a stable 

plateau (Figure 3A, e.g., using 75 thousand or 300 thousand CpGs results in the same AUC). 

Thus, a substantial number of CpGs are needed to avoid excluding predictive sites with 

small effects. The ROC curve for the MRS (red line Figure 3B) corresponded to an AUC of 

0.724 (P=2.0×10−16) suggesting a highly significant association between methylation 

profiles in blood and future disease status.

When we repeated the analyses using 50-fold cross validation, the AUC remained 0.724. 

Furthermore, as can be seen from Fig S5, the AUC is not driven by outliers as folds 

consistently indicate a similar AUC. Thus, results were robust to any way the random 

subsamples are drawn. Excluding lab technical covariates reduced the AUC to 0.688, 

justifying our choice to include them. To examine whether the predictive power of the 

75,000 site MRS could be approximated with a smaller number, we used a version of the 

elastic net that selected only the most important predictors. This resulted in 771 sites. 

However, the ROC curve of the reduced set MRS was well below the curve for the full set 

MRS (Figure S6). In addition, the use of only 771 sites decreased the AUC from 0.724 to 

0.681.
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We also attempted to predict MDD status at the intermediate waves, 2 and 4 years after 

baseline. Using 75,000 sites, the predictive power was more modest with AUC=0.571 for 

year 2 and 0.566 for year 4. To discriminate reliably between transient versus long-term 

MDD, it is critical that a distant time point is used. Thus, if only a short amount of time has 

passed between baseline and the time point where MDD is assessed, it will be impossible to 

distinguish cases with transient versus long-term MDD. This reduced ability to assess long-

term disease status at the intermediate waves may have negatively affected predictive power.

Smith et al.56 observed an upward bias with k-fold cross validation, particularly with small 

sample sizes. However, they studied a scenario with only a very small number of predictors 

(3/5) that were likely correlated with the outcome of interest. In contrast, we have thousands 

of predictors, a substantial proportion of which may not be associated with the outcome. To 

test the risk of overfitting, we created 25 data sets where case-control status was randomly 

permuted. The mean correlation with MDD status at year 6 was −0.004 with an AUC of 

0.513. Furthermore, whereas using all samples the AUC was 0.724, taking a random 

selection of 50% of the total number of samples resulted in an AUC of 0.647 and with 75% 

of all samples the AUC became 0.693. The finding that predictive power improves with 

larger sample sizes may be explained by the fact that it becomes easier to detect the CpGs 

with effects among all CpGs. Thus, there was no evidence the AUC was the result of 

overfitting and it may even have been higher if our sample size would have been bigger.

Comparing the MRS to other predictors

We used the same method to predict MDDYear6 from baseline data on (1) five other putative 

MDD biomarkers, (2) genome-wide SNP data, and (3) 27 Clinical, Demographic and 

Lifestyle characteristics (CDL). Table 1 lists all these variables and detailed descriptions are 

in the Supplemental Material. The biomarkers showed no significant correlations with 

MDDYear6. From the CDL domain, symptom severity, use of any antidepressant, co-morbid 

anxiety, neuroticism, openness and level of disability were significantly correlated with 

MDDYear6 (Table 1). To explore the SNP data, we performed a genome-wide association 

study, assuming an additive model for the SNP effects (see QQ-plot Figure S7).

The AUC of the CDLs and SNP risk score were 0.642 (P=3.3×10−9) and 0.549 

(P=5.8×10−2), respectively (Figure 3A). The biomarkers AUC of 0.437 implied that these 

variables had no predictive value (Figure 3B). We investigated whether the predictive power 

of the MRS could be increased by including either the CDL or SNP risk score (Figure 3C). 

Only the inclusion of the CDL predictors showed a marginal prediction improvement (AUC 

= 0.742 for CDL and MRS combined versus 0.724 for the MRS only and 0.642 for CDL 

only). This increase was significant according to the DeLong test57 (P=0.01).

We studied which predictors from the CDL group were most critical. For example, smoking 

did not account for much of the predictive power. This is consistent with the lack of a 

significant association with MDDYear6 (Table 1). We did find a CpG 20,000 bp apart from 

the CpG in the AHRR gene that is a very reliable indicator of smoking(15, 16) among the 

75,000 sites of the MRS. Anti-depressant use was associated with future disease status 

(Table 1, P=0.026) but effects were small and had no major effect on methylome (Figure 

S8). The best “clinical” predictor was baseline MDD symptom severity, which also showed 
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the strongest correlation with MDDYear6 (Table 1). Thus, the AUC was 0.635 for MDD 

symptom severity only and 0.642 for the entire CDL group.

Overlap with GWAS and co-localization analyses

Table 2 reports results after testing overlap with GWAS and co-localization analyses. The 

overall P-value in the final column corrects for performing two tests for each data set (one 

for top MWAS findings the other for the 75,000 CpGs in the MRS). After further correcting 

this overall P-value for testing 8 data sets (Bonferroni corrected threshold 0.05/8=0.006), 

many tests remained significant.

We first looked for overlap of MWAS findings with the top 10,000 variants from the recent 

PGC MDD GWAS meta-analysis58, and indeed found overlap (Overall P-value <10−5). 

Many of the above pathways have been linked to autoimmunity and inflammation. We 

therefore tested whether our top findings were significantly enriched for loci containing 

SNPs that were reported to be associated with these disorders according to the NHGRI-EBI 

GWAS Catalog59. Significant enrichment was observed for loci associated with autoimmune 

disease and inflammation (Overall P-value <10−5). Results were mainly driven by the MRS 

likely because the GWAS Catalog results for a specific disease involve a limited number of 

SNPs resulting in low power when the top MWAS also contain few sites.

Next, we studied whether MWAS findings co-localized with cis expression quantitative trait 

loci (cis-eQTLs) in two brain regions (Brodmann area 9 and 24) and whole blood using 

GTEx version 760 as well as methylation quantitative trait loci (cis-meQTLs) in blood using 

a genome-wide study in 697 normal subjects21. Significant enrichment was observed for cis-

eQTLs in both brain regions as well as blood, indicating MWAS findings were 

overrepresented at true regulatory sites. The cis-meQTL analysis did not reach significance.

Finally, MWAS results were tested against Roadmap Epigenomics Project chromHMM Core 

15-state model chromatin tracks61. Figure S8 shows a very consistent pattern across fetal 

and adult brain as well as monocytes and groups of T cells in blood. Thus, MWAS signals 

were consistently found at weak/strong transcription sites with many tests having P-value 

<10−5 surviving corrections for testing 15 states (0.05/15=3.3×10−3). The MWAS results 

also showed enrichment for genic enhancers in brain tissue with potential importance for 

transcriptional regulation.

DISCUSSION

A resampling approach showed a highly significant association between methylation profiles 

in blood at baseline and MDD status 6 years later (AUC=0.724, P=2.0×10−16). Top MWAS 

results clustered in pathways, overlapped with findings of external GWAS studies, and co-

localized with eQTLS and (genic enhancers of) of transcription sites in brain and blood. 

These findings remained significant after correcting for multiple testing. The major themes 

emerging were cellular responses to stress and signaling mechanisms linked to immune cell 

migration and inflammation.
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External validation of a baseline immune component was obtained through significant 

enrichment of SNPs previously associated with autoimmune disease and inflammation. The 

exact molecular mechanisms this risk remain to be elucidated. However, several findings 

pointed to stress-induced immune cell activation and systemic inflammation. Namely, cross-

talk between the central nervous system and peripheral immune cells across the BBB 

appears to be a redundant theme. Our results also implicated inflammatory cytokine 

signaling and small-RNA transcription in recurrent MDD. It is interesting to note that 

snRNA complexes are often antigens for autoantibodies in autoimmune/autoinflammatory 

disorders62; 63.

The possibility of autoimmunity in MDD pathogenesis appears to be supported by previous 

studies establishing clear links between immune responses and mood64; 65. In patients, 

autoimmune disorders and severe infections greatly increase the risk for mood disorders66. 

The outcome of ongoing clinical trials of anti-inflammatory biologics (tocilizumab) as 

therapeutics for MDD will be of great interest67 and could further corroborate MDD as a 

systemic immune disorder.

It has been challenging to find strong predictors of MDD disease course68-72. The AUC of 

our methylation risk score (MRS) predicting MDD status 6 years later was 0.724. We also 

calculated the predictive power of a set of five putative MDD biomarkers, genome-wide 

SNP data, and 27 clinical, demographic or lifestyle variables. Our methylation predictor 

outperformed all these predictor sets and seemed to incorporate most of their predictive 

power, as the inclusion of any other set only marginally increased the AUC of the MRS.

The MBD-seq assay used in this article has several properties that makes it potentially useful 

for clinical applications. First, in comparison to other approaches such as targeted bisulfite 

sequencing or pyrosequencing, it is cost-effective. The MRS we used contained 75,000 

CpGs but it is prohibitive to assay that many sites with these targeted approaches. However, 

even for the reduced site MRS containing 771 CpGs the MBD-seq costs of about $300/

sample compare favorably to targeted bisulfite sequencing (about $450/sample) and 

pyrosequencing (about $1,450/sample). With sequencing costs dropping steadily, MBD-seq 

may become even more cost-effective in the future. Second, as all predictive sites can be 

used, it prevents loosing predictive power merely because relevant CpG sites are not 

assayed. Third, as it does not restrict assays to a specific set of sites there, it can 

simultaneously be used to calculate risk scores for other clinical features or risk of co-

morbid disorders. Fourth, MBD-seq can be performed with as little as 5–20ng of DNA14 

meaning that it suffices to use blood left over from routine clinical tests or collected through 

non-invasive procedures such as finger-pricks. Fifth, MBD-seq assays can be automated 

using standard robotics. This enables “high-throughput” testing by diagnostic laboratories.

Several limitations should be noted. Our study involved DNA obtained from whole blood. 

Because buccal epithelial and brain cells are derived from the same ectodermal layer during 

development, DNA methylation in buccal epithelia cells (e.g., as white blood are the main 

source of DNA in spit/saliva this can be collected through buccal swabs that scrape loose 

these cells) may potentially be more consistent with methylation patterns in brain73. 

Although our methylation predictor shows promise (e.g., AUC in the NESDA study is 
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comparable to that of the Framingham Risk Score 74, one of the most widely used prediction 

algorithms in medicine), replication in external samples is needed for establishing the 

veracity of the findings and generalizability to other patient populations. Thus, to estimate 

predictive power, we used k-fold cross validation. This ensures that in independent samples 

with the same properties and outcome measures, our findings would ”replicate” with an 

expected AUC of 0.724. However, it does not imply that the MRS will yield the same 

predictive power in patient populations that have different characteristics or with other 

outcome measures. As all our participants were diagnosed with MDD at the time of the 

methylation assessment, our analyses essentially control for disease status. However, 

peripheral methylation changes may still be a consequence of disease. Clearly, it would be 

better to use causal variables for predictions but identifying all these variable and 

establishing their etiological role will be a challenging and long process. In the meantime, 

being able to predict future disease status may have clinical utility (even if the all changes 

we observed at baseline would be the results of the disease) as it would enable the 

identification of patients at risk for recurrent MDD.

In summary, our results indicate that an immune signature of treatment-resistant depression 

is already present at baseline in NESDA and may confer long-term MDD risk. Although 

further studies are needed to study the generalizability to different patient populations, 

results suggest that methylation profiles in blood may present a promising avenue to support 

clinical decision making by providing empirical information about the likelihood MDD is 

chronic or will recur in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

The NESDA study is supported by the Geestkracht program of the Netherlands Organization for Health Research 
and Development (Zon-Mw, grant number 10–000-1002) and the participating institutions (VU University Medical 
Center, Leiden University Medical Center, University Medical Center Groningen. The current methylation project 
was supported by grant R01MH099110 from the National Institute of Mental Health. The sponsors had no role in 
the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, 
review, or approval of the manuscript; or decision to submit the manuscript for publication.

REFERENCES

1. (2017). Depression and Other Common Mental Disorders: Global Health Estimates. In. (Geneva, 
World Health Organization.

2. Hardeveld F, Spijker J, De Graaf R, Nolen WA, and Beekman AT (2009). Prevalence and predictors 
of recurrence of major depressive disorder in the adult population. Acta PsychiatrScand.

3. Mueller TI, Leon AC, Keller MB, Solomon DA, Endicott J, Coryell W, Warshaw M, and Maser JD 
(1999). Recurrence after recovery from major depressive disorder during 15 years of observational 
follow-up. The American journal of psychiatry 156, 1000–1006. [PubMed: 10401442] 

4. Bonasio R, Tu S, and Reinberg D (2010). Molecular signals of epigenetic states. Science 330, 612–
616. [PubMed: 21030644] 

5. Vialou V, Feng J, Robison AJ, and Nestler EJ (2012). Epigenetic Mechanisms of Depression and 
Antidepressant Action. Annu Rev Pharmacol Toxicol.

Clark et al. Page 9

Mol Psychiatry. Author manuscript; available in PMC 2020 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D, Holsboer F, Wotjak CT, 
Almeida OF, and Spengler D (2009). Dynamic DNA methylation programs persistent adverse 
effects of early-life stress. Nat Neurosci 12, 1559–1566. [PubMed: 19898468] 

7. Volkow ND, Koob G, and Baler R (2015). Biomarkers in substance use disorders. ACS Chem 
Neurosci 6, 522–525. [PubMed: 25734247] 

8. Chan RF, Shabalin AA, Xie LY, Adkins DE, Zhao M, Turecki G, Clark SL, Aberg KA, and Van den 
Oord EJCG (2017). Enrichment methods provide a feasible approach to comprehensive and 
adequately powered investigations of the brain methylome. Nucleic Acids Res epub 25 2 2017.

9. Aberg KA, Chan RF, Shabalin AA, Zhao M, Turecki G, Heine Staunstrup N, Starnawska A, Mors 
O, Xie LY, and van den Oord E (2017). A MBD-seq protocol for large-scale methylome-wide 
studies with (very) low amounts of DNA. Epigenetics, 0.

10. Penninx B, Beekman A, and Smit J (2008). The Netherlands Study of Depression and Anxiety 
(NESDA): Rationales, Objectives and Methods. International Journal of Methods in Psychiatric 
Research 17, 121–140. [PubMed: 18763692] 

11. Moreland B, Oman K, Curfman J, Yan P, and Bundschuh R (2016). Methyl-CpG/MBD2 
Interaction Requires Minimum Separation and Exhibits Minimal Sequence Specificity. Biophys J 
111, 2551–2561. [PubMed: 28002732] 

12. Nair SS, Coolen MW, Stirzaker C, Song JZ, Statham AL, Strbenac D, Robinson MD, and Clark SJ 
(2011). Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding 
domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence 
coverage bias. Epigenetics 6, 34–44. [PubMed: 20818161] 

13. Aberg KA, McClay JL, Nerella S, Xie LY, Clark SL, Hudson AD, Bukszar J, Adkins D, Swedish 
Schizophrenia C, Hultman CM, et al. (2012). MBD-seq as a cost-effective approach for 
methylome-wide association studies: demonstration in 1500 case--control samples. Epigenomics 
4, 605–621. [PubMed: 23244307] 

14. Aberg KA, Xie LY, Nerella S, Copeland WE, Costello EJ, and van den Oord EJ (2013). High 
quality methylome-wide investigations through next-generation sequencing of DNA from a single 
archived dry blood spot. Epigenetics 8, 542–547. [PubMed: 23644822] 

15. Aberg KA, Xie L, Chan RF, Zhao M, Pandey AK, Kumar G, Clark SL, and van den Oord EJ 
(2015). Evaluation of Methyl-Binding Domain Based Enrichment Approaches Revisited. PLoS 
One 10, e0132205. [PubMed: 26177298] 

16. Aberg KA, Chan RF, Shabalin AA, Zhao M, Turecki G, Staunstrup NH, Starnawska A, Mors O, 
Xie LY, and van den Oord EJ (2017). A MBD-seq protocol for large-scale methylome-wide studies 
with (very) low amounts of DNA. Epigenetics 12, 743–750. [PubMed: 28703682] 

17. Chan RF, Shabalin AA, Xie LY, Adkins DE, Zhao M, Turecki G, Clark SL, Aberg KA, and van den 
Oord E (2017). Enrichment methods provide a feasible approach to comprehensive and adequately 
powered investigations of the brain methylome. Nucleic Acids Res 45, e97. [PubMed: 28334972] 

18. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, and Schubeler D (2005). 
Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation 
in normal and transformed human cells. Nat Genet 37, 853–862. [PubMed: 16007088] 

19. Bock C, Tomazou EM, Brinkman AB, Muller F, Simmer F, Gu H, Jager N, Gnirke A, Stunnenberg 
HG, and Meissner A (2010). Quantitative comparison of genome-wide DNA methylation mapping 
technologies. Nat Biotechnol 28, 1106–1114. [PubMed: 20852634] 

20. Lentini A, Lagerwall C, Vikingsson S, Mjoseng HK, Douvlataniotis K, Vogt H, Green H, Meehan 
RR, Benson M, and Nestor CE (2018). A reassessment of DNA-immunoprecipitation-based 
genomic profiling. Nat Methods 15, 499–504. [PubMed: 29941872] 

21. McClay JL, Shabalin AA, Dozmorov MG, Adkins DE, Kumar G, Nerella S, Clark SL, Bergen SE, 
Swedish Schizophrenia C, Hultman CM, et al. (2015). High density methylation QTL analysis in 
human blood via next-generation sequencing of the methylated genomic DNA fraction. Genome 
Biol 16, 291. [PubMed: 26699738] 

22. Aberg KA, McClay JL, Nerella S, Clark S, Kumar G, Chen W, Khachane AN, Xie L, Hudson A, 
Gao G, et al. (2014). Methylome-wide association study of schizophrenia: identifying blood 
biomarker signatures of environmental insults. JAMA Psychiatry 71, 255–264. [PubMed: 
24402055] 

Clark et al. Page 10

Mol Psychiatry. Author manuscript; available in PMC 2020 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



23. Shabalin AA, Hattab MW, Clark SL, Chan RF, Kumar G, Aberg KA, van den Oord E, and Birol I 
(2018). RaMWAS: Fast Methylome-Wide Association Study Pipeline for Enrichment Platforms. 
Bioinformatics.

24. Shabalin AA, Clark S, Hattab MW, Aberg KA, and Van den Oord EJCG RaMWAS: Fast 
Methylome-Wide Association Study Pipeline for Enrichment Platforms. Bioinformatics.

25. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke 
JK, and Kelsey KT (2012). DNA methylation arrays as surrogate measures of cell mixture 
distribution. BMC Bioinformatics 13, 86. [PubMed: 22568884] 

26. Hattab MW, Shabalin AA, Clark SL, Zhao M, Kumar G, Chan RF, Xie LY, Jansen R, Han LK, 
Magnusson PK, et al. (2017). Correcting for cell-type effects in DNA methylation studies: 
reference-based method outperforms latent variable approaches in empirical studies. Genome Biol 
18, 24. [PubMed: 28137292] 

27. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, Jassal B, Jupe S, 
Korninger F, McKay S, et al. (2016). The Reactome pathway Knowledgebase. Nucleic Acids Res 
44, D481–487. [PubMed: 26656494] 

28. Cabrera CP, Navarro P, Huffman JE, Wright AF, Hayward C, Campbell H, Wilson JF, Rudan I, 
Hastie ND, Vitart V, et al. (2012). Uncovering networks from genome-wide association studies via 
circular genomic permutation. G3 (Bethesda) 2, 1067–1075. [PubMed: 22973544] 

29. Tibshirani R, Bien J, Friedman J, Hastie T, Simon N, Taylor J, and Tibshirani RJ (2012). Strong 
rules for discarding predictors in lasso-type problems. J R Stat Soc Series B Stat Methodol 74, 
245–266. [PubMed: 25506256] 

30. Simon N, Friedman J, Hastie T, and Tibshirani R (2011). Regularization Paths for Cox’s 
Proportional Hazards Model via Coordinate Descent. J Stat Softw 39, 1–13.

31. Friedman J, Hastie T, and Tibshirani R (2010). Regularization Paths for Generalized Linear Models 
via Coordinate Descent. J Stat Softw 33, 1–22. [PubMed: 20808728] 

32. Zou H, and Hastie T (2005). Regularization and variable selection via the elastic net. J Roy Stat 
Soc B 67, 301–320.

33. Hastie T, Tibshirani R, and Friedman J (2001). The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction.(New York: Springer Verlag).

34. Gerits N, Van Belle W, and Moens U (2007). Transgenic mice expressing constitutive active 
MAPKAPK5 display gender-dependent differences in exploration and activity. Behav Brain Funct 
3, 58. [PubMed: 17997833] 

35. Chen X, Long F, Cai B, Chen X, and Chen G (2018). A novel relationship for schizophrenia, 
bipolar and major depressive disorder Part 3: Evidence from chromosome 3 high density 
association screen. Journal of Comparative Neurology 526, 59–79. [PubMed: 28856687] 

36. Garriock HA, Kraft JB, Shyn SI, Peters EJ, Yokoyama JS, Jenkins GD, Reinalda MS, Slager SL, 
McGrath PJ, and Hamilton SP (2010). A genomewide association study of citalopram response in 
major depressive disorder. Biol Psychiatry 67, 133–138. [PubMed: 19846067] 

37. Ju XD, Guo Y, Wang NN, Huang Y, Lai MM, Zhai YH, Guo YG, Zhang JH, Cao RJ, Yu HL, et al. 
(2014). Both Myosin-10 isoforms are required for radial neuronal migration in the developing 
cerebral cortex. Cereb Cortex 24, 1259–1268. [PubMed: 23300110] 

38. Tonazzini I, Meucci S, Van Woerden GM, Elgersma Y, and Cecchini M (2016). Impaired Neurite 
Contact Guidance in Ubiquitin Ligase E3a (Ube3a)-Deficient Hippocampal Neurons on 
Nanostructured Substrates. Adv Healthc Mater 5, 850–862. [PubMed: 26845073] 

39. Miyata S, Kurachi M, Okano Y, Sakurai N, Kobayashi A, Harada K, Yamagata H, Matsuo K, 
Takahashi K, Narita K, et al. (2016). Blood Transcriptomic Markers in Patients with Late-Onset 
Major Depressive Disorder. PLoS One 11, e0150262. [PubMed: 26926397] 

40. Vincent DB, Jean-Loup G, Renaud L, and Etienne L (2008). Fast unfolding of communities in 
large networks. Journal of Statistical Mechanics: Theory and Experiment 2008, P10008.

41. Csardi G, and Nepusz T (2006). The igraph software package for complex network research. 
InterJournal Complex Systems 1695.

42. Cancino J, and Luini A (2013). Signaling circuits on the Golgi complex. Traffic 14, 121–134. 
[PubMed: 23078632] 

Clark et al. Page 11

Mol Psychiatry. Author manuscript; available in PMC 2020 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



43. Hansen MD, Johnsen IB, Stiberg KA, Sherstova T, Wakita T, Richard GM, Kandasamy RK, Meurs 
EF, and Anthonsen MW (2017). Hepatitis C virus triggers Golgi fragmentation and autophagy 
through the immunity-related GTPase M. Proc Natl Acad Sci U S A 114, E3462–E3471. 
[PubMed: 28389568] 

44. Machamer CE (2015). The Golgi complex in stress and death. Frontiers in Neuroscience 9, 421. 
[PubMed: 26594142] 

45. Machamer CE (2015). The Golgi complex in stress and death. Front Neurosci 9, 421. [PubMed: 
26594142] 

46. Alvarez-Miranda EA, Sinnl M, and Farhan H (2015). Alteration of Golgi Structure by Stress: A 
Link to Neurodegeneration? Frontiers in Neuroscience 9, 435. [PubMed: 26617486] 

47. Jawdekar GW, and Henry RW (2008). Transcriptional regulation of human small nuclear RNA 
genes. Biochimica et biophysica acta 1779, 295–305. [PubMed: 18442490] 

48. Andersen PR, Tirian L, Vunjak M, and Brennecke J (2017). A heterochromatin-dependent 
transcription machinery drives piRNA expression. Nature 549, 54–59. [PubMed: 28847004] 

49. Karijolich J, and Yu Y-T (2010). Spliceosomal snRNA modifications and their function. RNA 
Biology 7, 192–204. [PubMed: 20215871] 

50. Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF, Bestor T, and Hannon 
GJ (2008). A piRNA Pathway Primed by Individual Transposons Is Linked to De Novo DNA 
Methylation in Mice. Molecular Cell 31, 785–799. [PubMed: 18922463] 

51. Lin R, and Turecki G (2017). Noncoding RNAs in Depression In Neuroepigenomics in Aging and 
Disease, Delgado-Morales R, ed. (Cham, Springer International Publishing), pp 197–210.

52. Yang W, Wang Q, Kanes SJ, Murray JM, and Nishikura K (2004). Altered RNA editing of 
serotonin 5-HT2C receptor induced by interferon: implications for depression associated with 
cytokine therapy. Molecular Brain Research 124, 70–78. [PubMed: 15093687] 

53. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, Takahashi A, Flanigan ME, 
Aleyasin H, LeClair KB, et al. (2017). Social stress induces neurovascular pathology promoting 
depression. Nature Neuroscience 20, 1752–1760. [PubMed: 29184215] 

54. Luster AD, Alon R, and von Andrian UH (2005). Immune cell migration in inflammation: present 
and future therapeutic targets. Nature Immunology 6, 1182. [PubMed: 16369557] 

55. Barreiro O, De La Fuente H, Mittelbrunn M, and Sánchez-Madrid F (2007). Functional insights on 
the polarized redistribution of leukocyte integrins and their ligands during leukocyte migration and 
immune interactions. Immunological Reviews 218, 147–164. [PubMed: 17624951] 

56. Smith GC, Seaman SR, Wood AM, Royston P, and White IR (2014). Correcting for optimistic 
prediction in small data sets. Am J Epidemiol 180, 318–324. [PubMed: 24966219] 

57. DeLong ER, DeLong DM, and Clarke-Pearson DL (1988). Comparing the areas under two or more 
correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–
845. [PubMed: 3203132] 

58. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, Adams MJ, Agerbo 
E, Air TM, Andlauer TMF, et al. (2018). Genome-wide association analyses identify 44 risk 
variants and refine the genetic architecture of major depression. Nature Genetics 50, 668–681. 
[PubMed: 29700475] 

59. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, Junkins H, McMahon A, Milano A, 
Morales J, et al. (2017). The new NHGRI-EBI Catalog of published genome-wide association 
studies (GWAS Catalog). Nucleic Acids Research 45, D896–D901. [PubMed: 27899670] 

60. Gamazon ER, Segre AV, van de Bunt M, Wen X, Xi HS, Hormozdiari F, Ongen H, Konkashbaev 
A, Derks EM, Aguet F, et al. (2018). Using an atlas of gene regulation across 44 human tissues to 
inform complex disease- and trait-associated variation. Nat Genet 50, 956–967. [PubMed: 
29955180] 

61. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi 
A, Kheradpour P, Zhang Z, Wang J, et al. (2015). Integrative analysis of 111 reference human 
epigenomes. Nature 518, 317. [PubMed: 25693563] 

62. Coppo P, Clauvel JP, Bengoufa D, Oksenhendler E, Lacroix C, and Lassoued K (2002). 
Inflammatory myositis associated with anti‐U1‐small nuclear ribonucleoprotein antibodies: a 

Clark et al. Page 12

Mol Psychiatry. Author manuscript; available in PMC 2020 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subset of myositis associated with a favourable outcome. Rheumatology 41, 1040–1046. [PubMed: 
12209039] 

63. Kattah NH, Kattah MG, and Utz PJ (2010). The U1-snRNP complex: structural properties relating 
to autoimmune pathogenesis in rheumatic diseases. Immunological Reviews 233, 126–145. 
[PubMed: 20192997] 

64. Wohleb ES, Franklin T, Iwata M, and Duman RS (2016). Integrating neuroimmune systems in the 
neurobiology of depression. Nature Reviews Neuroscience 17, 497. [PubMed: 27277867] 

65. Crawford B, Craig Z, Mansell G, White I, Smith A, Spaull S, Imm J, Hannon E, Wood A, 
Yaghootkar H, et al. (2018). DNA methylation and inflammation marker profiles associated with a 
history of depression. Human molecular genetics 27, 2840–2850. [PubMed: 29790996] 

66. Benros ME, Waltoft BL, Nordentoft M, and et al. (2013). Autoimmune diseases and severe 
infections as risk factors for mood disorders: A nationwide study. JAMA Psychiatry 70, 812–820. 
[PubMed: 23760347] 

67. Kappelmann N, Lewis G, Dantzer R, Jones PB, and Khandaker GM (2016). Antidepressant activity 
of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic 
inflammatory conditions. Molecular Psychiatry.

68. van Loo HM, Aggen SH, Gardner CO, and Kendler KS (2015). Multiple risk factors predict 
recurrence of major depressive disorder in women. J Affect Disord 180, 52–61. [PubMed: 
25881281] 

69. Wardenaar KJ, van Loo HM, Cai T, Fava M, Gruber MJ, Li J, de Jonge P, Nierenberg AA, 
Petukhova MV, Rose S, et al. (2014). The effects of co-morbidity in defining major depression 
subtypes associated with long-term course and severity. Psychol Med 44, 3289–3302. [PubMed: 
25066141] 

70. van Loo HM, Cai T, Gruber MJ, Li J, de Jonge P, Petukhova M, Rose S, Sampson NA, Schoevers 
RA, Wardenaar KJ, et al. (2014). Major depressive disorder subtypes to predict long-term course. 
Depress Anxiety 31, 765–777. [PubMed: 24425049] 

71. Nelson JC, Zhang Q, Deberdt W, Marangell LB, Karamustafalioglu O, and Lipkovich IA (2012). 
Predictors of remission with placebo using an integrated study database from patients with major 
depressive disorder. Curr Med Res Opin 28, 325–334. [PubMed: 22292447] 

72. Riedel M, Moller HJ, Obermeier M, Adli M, Bauer M, Kronmuller K, Brieger P, Laux G, Bender 
W, Heuser I, et al. (2011). Clinical predictors of response and remission in inpatients with 
depressive syndromes. J Affect Disord 133, 137–149. [PubMed: 21555156] 

73. Langie SAS, Moisse M, Declerck K, Koppen G, Godderis L, Vanden Berghe W, Drury S, and De 
Boever P (2017). Salivary DNA Methylation Profiling: Aspects to Consider for Biomarker 
Identification. Basic Clin Pharmacol Toxicol 121 Suppl 3, 93–101. [PubMed: 27901320] 

74. Tzoulaki I, Liberopoulos G, and Ioannidis JP (2009). Assessment of claims of improved prediction 
beyond the Framingham risk score. JAMA 302, 2345–2352. [PubMed: 19952321] 

Clark et al. Page 13

Mol Psychiatry. Author manuscript; available in PMC 2020 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. MWAS of baseline methylation and MDD status six years later.
(A) Quantile-Quantile plot. The main diagonal of the plot indicates the P-values we would 

obtain assuming none of the CpGs predict MDD status six years later (MDDYear6) with the 

yellow curved lines denoting the 95% confidence intervals. The red points in the QQ plot are 

the observed MWAS P-values. (B) Manhattan plot. The plot shows the MWAS P-values by 

their chromosomal location. The dashed line indicates the threshold used for inclusion of 

CpGs in the MRS.
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Figure 2. Summary of pathway analysis.
We only show pathways that overlapped with at least 4 top MWAS genes and yielded over-

representation P-values < 0.05. Pathways often share genes. The raster plot visualizes the 

clustering of pathways (y-axis) as determined on the basis of their overlapping genes (x-

axis). The solid rectangles indicate genes that were both among the top MWAS results and a 

member of the listed pathway.
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Figure 3. Predictive power of the MRS.
(A) The number of CpG sites in the MRS (x-axis) is plotted against the AUC (y-axis). The 

asterix indicates the point where predictive power stabilizes. When many sites with no 

predictive power are added, it becomes more difficult for the elastic net to “find” the sites 

that predict. This explains the very minor gradual decrease when using more than 75,000 

CpGs. (B) Receiver operating characteristic (ROC) curves for different predictor domains. 

Domain abbreviations are: MRS for genome-wide methylation data, CDL for the 27 

Clinical, Demographic or Life style variables, SNPs for genome-wide SNP data, and 

Biomarkers for the five putative MDD biomarkers. (C) Receiver operating characteristic 

(ROC) curves for combined risk domains. MRS + CDL combines the predictive power of 

MRS and CDL. MRS + SNPs combines the predictive power of MRS and CDL.
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Table 1.

Correlation of clinical and lifestyle characteristics, and depression biomarkers with Year 6 depression status

Depressed Remitted Corr.
a P-value

Clinical

Symptom severity (IDS) 36.4(11.2) 31.3(10.1) 0.225 4.43×10−08

Co-morbid Anxiety 79.40% 70.60% 0.094 0.024

Any antidepressant 50.70% 41.10% 0.092 0.026

  SSRI 68.40% 71.30% 0.055 0.187

  SNRI 21.70% 23.50% 0.022 0.605

  TCA 9.90% 8.90% 0.032 0.435

  Other 22.70% 23.50% 0.029 0.483

Problematic benzodiazepine use 7.30% 7.32% −0.001 0.988

Psychotherapy 87.40% 86.10% 0.072 0.082

Family history of depression 80.40% 76.90% 0.039 0.342

NEO - Neuroticism 44.0(5.8) 41.4(6.1) 0.175 2.22×10−05

NEO - Extraversion 31.2(6.3) 33.8(6.5) −0.195 2.29×10−06

NEO - Openness 38.4(6.4) 38.5(6.2) −0.011 0.793

NEO - Agreeableness 42.8(5.6) 43.0(5.0) −0.022 0.603

Childhood trauma index score 1.28(1.24) 1.08(1.2) 0.082 0.049

Stressful life events (past year) 0.99(1.23) 0.95(1.1) 0.015 0.718

Lifestyle

Smoker −0.005 0.908

 Never 33.60% 29.50%

 Former 25.10% 32.50%

 Current 41.20% 37.90%

Alcohol use (AUDIT Score) 6.19(5.03) 5.88(5.0) 0.029 0.491

Body mass index (BMI) 26.1(5.4) 25.5(5.1) 0.049 0.238

Physical activity (MET-min/week) 3479(3236) 3708(3278) −0.033 0.424

Number of chronic diseases under treatment 0.77(0.99) 0.65(0.9) 0.043 0.300

Disability (WHO-DASII) 37.7(14.7) 30.9(14.5) 0.216 1.52×10−07

Biomarkers

Brain derived neurotrophic factor 9.12(3.59) 9.03(3.48) 0.013 0.759

Interleukin-6 1.13(1.22) 1.15(1.22) −0.009 0.831

Tumor necrosis factor- alpha 1.19(1.81) 1.09(1.37) 0.035 0.406

Vitamin D 59.8(26.5) 62.4(26.8) −0.046 0.276

Telomere length 1.10(0.29) 1.12(0.31) −0.024 0.556

a
Corr. is the correlation between the characteristic and Year 6 depression status (depressed\ remitted).
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Table 2.

Results GWAS enrichment analyses and co-localization analyses

External data Top MWAS MRS Overall

OR P-val. OR P-val. P-val.

PGC MDD GWAS meta 2.50 <10−5 2.36 <10−5 <10−5 *

GWAS cat. Inflammation* 1.03 0.44 1.26 <10−5 <10−5 *

GWAS cat. Infection* 1.20 0.13 1.09 0.08 0.08

GWAS cat. Autoimmune* 1.05 0.35 1.29 <10−5 <10−5 *

GTEx eQTLs BA24 1.46 <10−5 1.66 <10−5 <10−5 *

GTEx eQTLs BA9 1.52 <10−5 1.66 <10−5 <10−5 *

GTEx eQTLs whole blood 1.47 <10−5 1.62 <10−5 <10−5 *

McClay et. al. meQTLs 0.91 0.95 1.01 0.83 0.83

OR is odds ratio,

*
significant after correction for multiple testing. Number of SNPs in GWAS cat. inflammation, GWAS cat. infection, GWAS cat. Autoimmune was 

919, 520, and 1843 respectively.
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