
pharmaceutics

Review

Recent Advances in pH- or/and Photo-Responsive Nanovehicles

Yuseon Shin 1, Patihul Husni 1 , Kioh Kang 1, Dayoon Lee 1, Sehwa Lee 1, Eunseong Lee 2 , Yuseok Youn 3

and Kyungtaek Oh 1,*

����������
�������

Citation: Shin, Y.; Husni, P.; Kang, K.;

Lee, D.; Lee, S.; Lee, E.; Youn, Y.; Oh,

K. Recent Advances in pH- or/and

Photo-Responsive Nanovehicles.

Pharmaceutics 2021, 13, 725. https://

doi.org/10.3390/pharmaceutics13050

725

Academic Editor: Fabio Pastorino

Received: 26 April 2021

Accepted: 11 May 2021

Published: 14 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of
Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; sus9417@cau.ac.kr (Y.S.);
patihul.husni@unpad.ac.id (P.H.); rldh4122@cau.ac.kr (K.K.); dayoon1231@cau.ac.kr (D.L.);
summermaria@cau.ac.kr (S.L.)

2 Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea; eslee@catholic.ac.kr
3 School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; ysyoun@skku.edu
* Correspondence: kyungoh@cau.ac.kr; Tel.: +82-2-824-5617

Abstract: The combination of nanotechnology and chemotherapy has resulted in more effective drug
design via the development of nanomaterial-based drug delivery systems (DDSs) for tumor targeting.
Stimulus-responsive DDSs in response to internal or external signals can offer precisely controlled
delivery of preloaded therapeutics. Among the various DDSs, the photo-triggered system improves
the efficacy and safety of treatment through spatiotemporal manipulation of light. Additionally,
pH-induced delivery is one of the most widely studied strategies for targeting the acidic micro-
environment of solid tumors. Accordingly, in this review, we discuss representative strategies for
designing DDSs using light as an exogenous signal or pH as an endogenous trigger.

Keywords: chemotherapy; nanovehicles; light; pH; stimuli; photothermal; photodynamic; protona-
tion; acid-labile bond

1. Introduction

Successfully developed cytotoxic drugs have enabled advances in chemotherapy,
which has greatly improved the prognosis and quality of life of cancer patients [1]. Chemother-
apeutic agents in combination with nanotechnology have resulted in more effective drug
design and development of cancer treatments [2–4]. Various materials have been developed
for nano-sized drug delivery systems (DDSs), which are capable of targeting tumor sites
spatiotemporally for the desired treatment [5]. Nanovehicles physically or chemically
incorporated with drugs effectively deliver the payload to solid tumors through long
systemic circulation without extravasation and passive targeting, enhanced permeability
and retention (EPR) effect [6–8]. The favorable properties of nanomaterials have led to
impressive progress in the development of innovative nanovehicles for therapeutic agents,
which have shown enhanced efficacy and minimized toxic side effects of the incorpo-
rated anticancer agents due to increased accumulation of drugs in the target tissues [9–15].
However, the nanovehicle itself may often be trapped in the cellular endosome, or the
nanovehicle as a protective barrier may not be completely disrupted at the tumor site;
thus the drugs in the nanovehicles may not be released efficiently [16]. Consequently, a
stimuli-responsive delivery system exhibiting controlled release of therapeutic payloads
in response to a given stimulus can serve as a promising strategy for enabling precision
delivery of drugs and improving antitumor activity [17]. Stimulus-sensitive DDSs can
be designed to respond to stimuli (both alone and in combination) in the endogenous
environment (pH, enzyme activity, redox reactions, and others [18,19]) or exogenous or
externally applied triggers (e.g., light, temperature, ultrasound [20]). Responsiveness to
a specific internal or external stimulus in the diseased site could enhance the precisely
controlled release and accumulation of preloaded therapeutic agents from nanovehicles
delivered to target sites, leading to higher efficiency of antitumor treatment [21–23].
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Among previously mentioned methods for external stimulation, light is a particularly
attractive strategy for therapeutic applications owing to easy adjustment of its intensity, non-
invasive application, and exquisite temporal and spatial control. Light-responsive systems
that absorb light, a type of electromagnetic wave, use light energy to trigger changes in the
chemical bonds, polarity, and chemical groups or induce the generation of heat and reactive
oxygen species (ROS) (Scheme 1A). On this basis, photo-responsive DDSs have been
widely explored for enabling the release of tumor-targeting drugs at a therapeutic index by
precisely controlling the light irradiation site, dosage, and time. Light-based innovative
delivery platforms generally use two patterns: photo-induced chemical transformation
(Scheme 1a) and photo-mediated intermediate reaction (Scheme 1b,c). Photochemical
platforms can be transformed when the chemical structure of the material absorbs light at
specific wavelengths. Comparatively, photo-mediated platforms, such as photothermal
or photodynamic delivery systems, can generate heat or ROS under light irradiation,
triggering the transformation of nanovehicles to promote drug release.
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Scheme 1. Schematic illustration of the concept of (A) light- or (B) pH-responsive drug delivery
systems (DDSs); a. photo-isomerization, b. photodynamic responsive DDSs, c. photothermal-
responsive DDSs, d. protonation-based DDSs, e. acid-labile bond cleavage-based DDSs.

pH-responsive systems have been most widely studied for designing nanosystems
for anticancer drug delivery (Scheme 1B). As shown in Scheme 2, most solid tumors have
a lower extracellular pH (pHex) than normal tissues, with a mean value of 6.8 (ranging
from 5.7 to 7.8) [24]. In general, cancer cells use glucose for glycolytic metabolism and
produce lactic acid faster, regardless of hypoxia, than normal cells to acquire the energy
required for their survival; the high metabolic rate of these tumor cells has been studied
as a major cause of the acidic tumor micro-environment (pH ranging from 6.5 to 7.2) [25].
In addition, intracellular endosomes and lysosomes have a considerably lower pH of
4.5–6.5 (endosomal pH (pHen)) [26,27]. pH-responsive systems have been developed
using chemical structural changes, such as changes in hydrophilicity by deprotonation
and protonation (de/protonation) and degradation of chemical bonds by acid-catalyzed
cleavage. These pH-responsive systems can be used for preventing various drugs and
carriers for cancer treatment from being trapped in endosomes [28,29]. Therefore, pH-
responsive DDSs are important for controlling drug delivery in tumor diseases.
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Scheme 2. Schematic illustration of differences in pH at the cellular level.

In this review, recently developed photo-responsive nanovehicles and pH-responsive
nanovehicles are discussed, with a focus on the representative strategies for designing pH-
or photo-responsive nanovehicles. Additionally, we address pH- and photo-dual stimuli-
responsive nanovehicles for maximizing antitumor activity. This review mainly focuses on
the principles and benefits of these nanovehicles, stimuli-responsive polymers, and various
critical chemical bonds and functional groups of the materials that are exploited to achieve
the pH- and/or photo-responsiveness of DDSs.

2. Photo-Responsive Nanovehicles

Light-responsive nanovehicles using diverse light sources, such as ultraviolet (UV),
visible, and near-infrared (NIR) light, exhibit more controllable drug release through the
spatiotemporal control of light [30]. The reaction process in a nanovehicle can be controlled
by the light intensity, emission wavelength, pulse length, and exposure time [31]. The
photo-responsiveness indicates two patterns of light-induced chemical transformation
and a light-generated intermediate reaction. In the first category, the chemical structure,
including photo-responsive molecules, can be transformed through reactions such as photo-
isomerization and photo-cleavage upon absorption of light with specific wavelengths.
Comparatively, the second group of photo-responsive nanovehicles generates intermediate
molecules via photosensitive agents (PSAs) such as metal nanoparticles, carbon nanotubes,
and organic dyes. Photo-responsive nanovehicles have been applied for optical imaging,
phototherapy, and theragnosis for preventing and treating tumors. Table 1 is a summary of
photo-responsive nanovehicles.
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Table 1. Summary of representative photo-responsive nanovehicles.

Classification DDS Photosensitive Material Wave Length Tumor Model Ref.

Photo-Induced Chemical Transformation

Photo-
Isomerization

Photo-responsive
cationic vesicle Azobenzene 350 nm, 434 nm MDA-MB-231 [32]

Micelle based on SP-
(PDMAEMA-block-PMMA),

SP-(PMMA-block-PDMAEMA)
blocks

Spiropyran 365 nm HeLa [33]

Photo-Induced
Cleavage

MCP/DOC/shRNA Coumarinyl ester 405 nm, 365 nm HepG2/ADR [34]

LIP-DT-COU-MTX Coumarin 800 nm HeLa, A549 [35]

Photo-mediated materials

Photothermal
Therapy (PTT)

GNRs/SiO2/GO-PEG Graphene oxide 808 nm MCF-7 [36]

DOX@PCNFs Carbon nanotubes 808 nm Mg-63 [37]

DOX/MSN–Au Au 808 nm A549 [38]

CuS@MPS-DOX Cupric sulfide 808 nm U87MG [39]

PBNP Prussian blue 808 nm Neuro2a [40]

FM Indocyanine green 808 nm KB [41]

Photodynamic
Therapy (PDT)

ACP-DOX + Apa Protoporphyrin IX 635 nm MCF-7/ADR [42]

Rh-L-CA4 Protoporphyrin IX 531 nm AY-27 [43]

PPa@prodrug NPs Pyropheophorbide a 660 nm 4T1 [44]

Ce6-PEG-Azo-PCL Chlorine e6 671 nm HeLa [45]

TA-COF-P@CT Chlorine e6 650 nm 4T1 [46]

2.1. Photo-Responsive Nanovehicles Using Photo-Induced Chemical Transformation

Photo-responsive nanovehicles using photosensitive chemistry have been developed
and studied, providing the capacity for incorporation of drugs, targeting tumor sites,
controlled drug release through direct modification of the chemical structure of materials,
or decomposing the materials under light illumination. First, cis and trans isomerization
of photo-reactive nanovehicles is a common strategy that has been used for changing the
polarity of materials with azobenzene or spiropyran (SP) and for promoting the release of
the drug payload [47]. In the case of azobenzene, when materials include a conjugated π
system with strong absorption from UV to visible red light, the cis isomer of azobenzene is
converted to trans-azobenzene [48]. It shows a strong π−π transition in the UV region and a
weak π−π transition in the visible region. Photo-isomerization of the azobenzene group can
regulate light-induced drug release. For instance, Seidal et al. developed an azobenzene-
based photo-responsive carrier composed of azobenzene trimethylammonium bromide
(azoTAB) and sodium dodecylbenzenesulfonate (SDBS), which showed reversible photo-
isomerization for the treatment of breast cancer. As shown in Figure 1, the vesicle carriers
formed from the longest trans-azoTAB showed higher siRNA and paclitaxel encapsulation
and more effective transfection. The drug co-loading vesicle carriers can enhance cell death
and anti-apoptotic B-cell lymphoma-2 protein suppression due to UV-triggered release of
the drugs from the ruptured vehicles [32].
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Figure 1. (A) Structure of azoTAB and SDBS surfactants, as well as the trans to cis photo-isomerization
of azoTAB upon exposure to visible (434 nm) or UV (350 nm) light. The lengths of the alkyl spacers in
azoTAB analogs are n = 2 (2-azo-2), n = 4 (2-azo-4), or n = 6 (2-azo-6). (B) Illustration of the reversible
transition of cationic vesicles to free surfactants with UV illumination. Reproduced from [32] with
permission, copyright 2020, American Chemical Society.

SP has additionally been studied as an isomerization species; it reversibly transforms
into different structures through photoreaction. SP refers to a closed cyclic isomer that
exhibits hydrophobicity; it becomes another form of merocyanine (MC) under UV irradi-
ation. In SP, which has a non-planar form because of the vertical position of indolenine
and benzopyran, the photoreaction cleaves the spiro C–O bond, yielding a hydrophilic
plane state of the MC form [49]. In contrast, in the MC type, it absorbs visible light, which
triggers SP-type isomerization [50,51]. Reversible structural isomerization physically and
chemically affects the connected substances and surrounding structures. Among recent
studies, Bahareh Razavi et al. reported multi-responsive micellar assemblies composed
of poly(dimethylaminoethyl methacrylate) (PDMAEMA) and poly(methyl methacrylate)
(PMMA). SP-(PDMAEMA-block-PMMA) and SP-(PMMA-block-PDMAEMA) were syn-
thesized via atom transfer radical polymerization (ATRP) using an SP ATRP initiator. The
doxorubicin (DOX)-loaded micelles prepared from the block copolymers increased DOX
release in response to changes in temperature and pH, which significantly increased under
UV irradiation. This was due to an increase in water solubility and a change in micelle
morphology caused by the isomerization of SP to MC by UV irradiation [33].

Another nanovehicle strategy using UV irradiation is photo-induced cleavage using
agents such as o-nitro benzyl and coumarinyl ester. The drugs connected through these
linkages can be released through irreversible cleavage, under the light illumination of
the appropriate wavelength. o-nitro benzyl and its derivatives cause a series of radicular
mechanisms and hydrogen abstraction by UV light (365 nm) irradiation, releasing the con-
nected molecules [52]. Another favorable photo-inducible cleavage material, coumarinyl
ester, has exhibited strong fluorescence and light energy release [53]. The coumarinyl ester
is irreversibly cleaved in response to UV light. Usually, coumarin is incorporated into a
polymer through an ester bond for imparting hydrophobic properties. The ester bond is
cleaved by an external light stimulus and the remaining polymer backbone frame forming
a carboxylic acid structure leads to the collapse of the nanovehicle owing to its hydrophilic
nature [54]. Wu et al. developed a photo-responsive mesoporous silica nanoparticle (MSN)
using both o-nitro benzyl and coumarinyl ester as a co-delivery vehicle for P-glycoprotein
short-hairpin RNA (shRNA) and DOX. MSN was linked to PDMAEMA by coumarin ester
bonds (MSN-Cou-PDMAEMA) (MCP) for the photo-responsive release of shRNA and
incorporated with DOX in combination with hexadecyl-o-nitrobenzyl. The shRNA and
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DOX were released when sequentially irradiated with UV light of 405 nm and 365 nm,
respectively, resulting in synergistic effects in multidrug-resistant HepG2/ADR human
liver cancer cells (Figure 2) [34].
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Figure 2. (A) Chemical structure and photolysis of photo-responsive vehicle (MCP) and DOX prodrug
(DOC). (B) Schematic illustration of sequential release of shRNA and DOX regulated by 405 and
365 nm light irradiations, using photo-responsive mesoporous silica nanoparticles as co-delivery
vehicles for optimizing the synergistic therapy in multidrug-resistant cancer cells. Reproduced
from [34] with permission, copyright 2018, American Chemical Society.

Compared to UV light, which has limitations in clinical practice such as low penetra-
tion depth, risk of cell damage, and attenuation by blood and soft tissue, NIR rays with a
wavelength of 700~1000 nm exhibit considerable penetration features and low toxicity to
normal cells; the latter have been utilized as a favorable light source for triggering drug
release in photo-responsive nanovehicles [55,56]. Wu et al. reported an enzyme-reactive,
two-photon NIR-reactive pro-prodrug nanosystem for cancer detection and therapy. The
nanosystem was composed of methotrexate (MTX), DT-diaphorase-responsive quinone
propionic acid, and photo-responsive coumarinyl (DT-COU-MTX). DT-COU-MTX can
release the drug when subjected to two external stimuli, enzyme and light. In the absence
of DT-diaphorase, quinone propionic acid inhibited coumarin fluorescence and photo-
responsive cleavage through photo-induced electron transfer. In contrast, in the vicinity of
cancer cells overexpressing DT-diaphorase, the coumarin fluorescence of the pro-prodrug
was activated and could be monitored to detect the tumor. Thereafter, MTX in the form of
a prodrug (HO-COU-MTX) was released through cleavage of the bond by two-photon NIR
irradiation, resulting in high cytotoxicity toward cancer cells with less effect on normal
cells (Figure 3) [35]. Another NIR-reactive substance, diazo-1,2-naphthoquinone, under-
goes Wolff rearrangement via photon induction. It is easily converted to the hydrophilic
3-indenecarboxylic acid (pKa 4.5). This Wolff rearrangement reaction can be generated
by one high-energy UV photon and two low-energy NIR photons. Therefore, it can be
effectively applied to NIR-triggered drug release systems [57–60].



Pharmaceutics 2021, 13, 725 7 of 32
Pharmaceutics 2021, 13, 725 7 of 31 
 

 

 

Figure 3. Schematic overview of a pro-prodrug nanosystem for imaging and therapy. Before en-

zyme activation, in the locked state pro-prodrug, the coumarin is a dormant photo-trigger with 

quenched fluorescence, while the enzymatic reaction leads to the cleavage of the quinone propi-

onic acid group, which not only restores the fluorescence of coumarin but also makes it an active 

photo-trigger, leading to the release of the active drug. Reproduced from [35] with permission, 

copyright 2018, Royal Society of Chemistry. 

2.2. Photo-Responsive Nanovehicles Using Photo-Mediated Materials 

Light can be converted into heat and generate ROS or gas from photo-responsive 

nanovehicles through mediators incorporated in the nanovehicle indirectly, along with 

chemical transformation or decomposition of the molecular structure in direct photo-re-

sponsive nanovehicles, as previously mentioned. Here, we briefly describe the utilization 

of mediators by light irradiation of photo-responsive nanovehicles using photothermal 

therapy (PTT) and photodynamic therapy (PDT). 

2.2.1. Photo-Responsive Nanovehicles Using PTT 

The photothermal effect is most commonly used for indirect photosensitive drug de-

livery. Nanomaterials that absorb the light of a specific wavelength convert light energy 

into thermal energy, inducing drug release or hyperthermia conditions for PTT [61]. In 

addition, the photothermal effect can promote the extravasation of nanomaterials from 

the blood in the tumor area irradiated with light and can enhance intracellular absorption 

and drug release, thereby resulting in an improved therapeutic effect [62–64]. NIR-reac-

tive nanostructures have been synthesized, and they are being actively studied as efficient 

photothermal nano-formulations for cancer PTT because NIR can penetrate deep tissues 

and show little toxicity [65–67]. Various mediator materials with the ability to convert NIR 

light into heat (photothermal properties) have been reported, such as carbon nanomateri-

als, gold (Au) nanomaterials, metal oxides/sulfides, indocyanine green (ICG), dyes, mela-

nin, and polyaniline. 

Among these photothermal nano-agents, carbon nanomaterials, a type of converter 

with excellent photothermal conversion ability, such as graphene oxide (GO) and carbon 

nanotubes (CNTs), have shown several favorable properties, including strong NIR ab-

sorption, large surface area for drug encapsulation, easy surface functionalization, and 

Figure 3. Schematic overview of a pro-prodrug nanosystem for imaging and therapy. Before enzyme
activation, in the locked state pro-prodrug, the coumarin is a dormant photo-trigger with quenched
fluorescence, while the enzymatic reaction leads to the cleavage of the quinone propionic acid group,
which not only restores the fluorescence of coumarin but also makes it an active photo-trigger, leading
to the release of the active drug. Reproduced from [35] with permission, copyright 2018, Royal Society
of Chemistry.

2.2. Photo-Responsive Nanovehicles Using Photo-Mediated Materials

Light can be converted into heat and generate ROS or gas from photo-responsive
nanovehicles through mediators incorporated in the nanovehicle indirectly, along with
chemical transformation or decomposition of the molecular structure in direct photo-
responsive nanovehicles, as previously mentioned. Here, we briefly describe the utilization
of mediators by light irradiation of photo-responsive nanovehicles using photothermal
therapy (PTT) and photodynamic therapy (PDT).

2.2.1. Photo-Responsive Nanovehicles Using PTT

The photothermal effect is most commonly used for indirect photosensitive drug
delivery. Nanomaterials that absorb the light of a specific wavelength convert light energy
into thermal energy, inducing drug release or hyperthermia conditions for PTT [61]. In
addition, the photothermal effect can promote the extravasation of nanomaterials from
the blood in the tumor area irradiated with light and can enhance intracellular absorption
and drug release, thereby resulting in an improved therapeutic effect [62–64]. NIR-reactive
nanostructures have been synthesized, and they are being actively studied as efficient
photothermal nano-formulations for cancer PTT because NIR can penetrate deep tissues
and show little toxicity [65–67]. Various mediator materials with the ability to convert NIR
light into heat (photothermal properties) have been reported, such as carbon nanomaterials,
gold (Au) nanomaterials, metal oxides/sulfides, indocyanine green (ICG), dyes, melanin,
and polyaniline.

Among these photothermal nano-agents, carbon nanomaterials, a type of converter
with excellent photothermal conversion ability, such as graphene oxide (GO) and carbon
nanotubes (CNTs), have shown several favorable properties, including strong NIR ab-
sorption, large surface area for drug encapsulation, easy surface functionalization, and
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low toxicity risk [68,69]. For instance, Qi et al. developed PEGylated GO-capped Au
nanorods/silica nanoparticles loading DOX by stacking and electrostatic interactions
(Figure 4). This nanovehicle exhibited high drug loading efficiency due to the large surface
area of GO and outstanding photothermal conversion efficiency because of the synergis-
tic photothermal effect of GO and Au nanorods. GO has functional groups such as free
carboxylic and hydroxyl groups so that GO can bind to drugs through covalent bond,
adsorption of drugs, hydrophobic attraction, and hydrogen bonding [36,70,71]. In addition,
the functional groups of GO can enable effective targeted drug delivery by binding to
the targeting moieties [72,73]. CNTs have several advantages such as chemical stability,
robustness, several binding sites for targeting proteins, and penetrative ability through
the cell membrane; they have additionally demonstrated their strong ability to transduce
visible and NIR light to heat. Dei et al. recently created a novel DOX-loaded porous carbon
nanofiber (DOX@PCNFs) that can release a drug payload under acidic conditions with
NIR exposure [37]. The in vitro and in vivo results showed that the DOX@PCNFs exhibit
high cellular uptake of the drug upon NIR light irradiation.
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Metal nanoparticles such as Au, silver, platinum, and metal oxide/sulfide have
been used as PTT materials because of their excellent ability to absorb light and produce
heat [38,74–79]. Among the PTT materials, Au nanoparticles have been intensively stud-
ied for the suppression of tumors because of their ability to convert NIR light to heat by
a strong localized surface plasmon resonance phenomenon in the NIR region [80]. For
instance, Yang et al. reported a nanovehicle sensitive to NIR light and glutathione (GSH)
that produced a chemo-photothermal synergistic effect. Au particles were conjugated
with mesoporous silica (MPS) by a disulfide bond and DOX was encapsulated inside the
pores of the MPS. These nanomaterials presented improved DOX and Au release resulting
from the opening of pores through the cleavage of disulfide bonds in the presence of
GSH and exhibited a synergistic effect in chemo-photothermal therapy under NIR irradia-
tion [38]. Peng et al. developed a cupric sulfide (CuS)-based nanoplatform composed of
CuS coated with MPS and DOX loaded in nanoparticles (CuS@MPS). The NIR thermal
image of CuS@MPS-DOX showed great photothermal efficacy and synergistic effects in
chemo-photothermal cancer therapy [39].
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Recently, various organic dyes have attracted attention, and they have been encap-
sulated photo-responsive nanovehicles [81]. Although these organic dyes are limited by
low stability under unceasing NIR light irradiation, they are potential converters for the
future owing to their biodegradability. Among the organic dyes, Prussian blue (PB) and
ICG have been studied. PB exhibits high NIR light absorption and biocompatibility [82],
and ICG presents a strong ability to convert absorbed NIR light to heat and lesser toxicity
and markedly decreases the effect time in the blood, considerably improving its efficacy
in vivo owing to the quick elimination of ICG [83]. Cano-Mejia et al. showed photothermal
immunotherapy, which combines PB nanoparticle (PBNP)-based PTT with anti-CTLA-4
checkpoint inhibition for treating neuroblastoma. PBNP reduced the tumor burden and
enhanced the immune response, specifically, it increased intrusion of lymphocytes and T
cells to the tumor site, which was complemented by the anticancer effects of anti-CTLA-4
immunotherapy, providing a more lasting treatment against neuroblastoma in in vivo
experiments. Mice treated with photothermal immunotherapy showed protection against
tumor rechallenge, resulting in improved immunity against tumors [40]. Yan and Qiu
developed an ICG-based photothermal nanovehicle. They prepared ICG-encapsulated mi-
celles with folate-conjugated poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone) (FA-PEOz-
PCL) [41]. The unstable ICG in water appeared to exhibit increased stability in micelles
and hyperthermia effect under NIR irradiation. The in vivo data demonstrated that the
micelles effectively targeted human epidermoid carcinoma cells (KB) tumor-bearing mice,
indicating their potential for theragnostic applications in cancer.

2.2.2. Photo-Responsive Nanovehicles Using PDT

PDT, a non-invasive cancer treatment that utilizes the generation of ROS via the
reaction of photosensitizers (PSs) responding to appropriate light irradiation has attracted
increased interest in the development of controlled targeting nanovehicles owing to their
advantages of ease of control, non-invasiveness, and spatial control [84,85]. PDT using
various PSs for cancer treatment has been well documented in other reviews [84–86].
Here, we briefly discuss photo-responsive nanovehicles by mediators induced by PSs via
interaction with light illumination. Recently, nanomaterials encapsulating both PSs and
drugs showed the feasibility of controlled drug release and increased effect on cancer
treatment [87]. PSs absorb light energy to express ROS and deplete oxygen to induce
hypoxia in cancer, enabling their application in mediator-responsive nanovehicles triggered
by ROS or hypoxic conditions [88–90]. ROS-responsive nanovehicles using ROS originating
from PSs under light radiation showed improved, controlled drug delivery through the
decomposition of nanovehicles [42,91–94].

Drug release can be triggered in ROS-responsive nanovehicles only in ROS-rich cells or
tissues when induced by highly reactive singlet oxygen generated from photo-responsive
PSs. For example, Wei et al. designed a new ROS-responsive nanomedicine based on
protoporphyrin IX (PpIX)-conjugated polymer micelles. The nanomedicine with acetylated-
chondroitin sulfate (AC-CS) backbone was loaded with dual chemotherapeutics, DOX and
apatinib (Apa), for the reversal of multidrug-resistant (MDR) tumors. When irradiated
at 635 nm, the nanoplatform generated excessive ROS, triggering the release of DOX and
Apa from the micelles by oxidation decomposition of the CS polysaccharide backbone.
Subsequently, the released Apa competitively inhibited the P-glycoprotein drug transporter
in the MDR tumor cell membrane, thereby leading to recovery of the chemical sensitivity
of DOX, ROS overproduction, the PDT effect, and apoptosis (Figure 5) [42].
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ROS-triggered linker cleavage can also be exploited for controlled drug delivery with
light exposure in ROS-activatable prodrug nanoplatforms [95–97]. ROS-activatable pro-
drugs are commonly composed of an ROS-trigger PS, drug, and ROS-responsive cleavage
linker. The ROS-trigger PS generates ROS under light irradiation, the linker can be cleaved
by endogenous ROS in the tumor or exogenous ROS from the ROS-trigger PS, and the
drug can be released, causing a toxic effect. Bio et al. verified a novel approach to activate
prodrugs with light using an ROS-cleavable prodrug in the mitochondria by PpIX [43].
Yang et al. prepared an ROS-activatable prodrug nanoplatform composed of 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2k)
nanoparticles incorporated with pyropheophorbide a (PPa) and thioether/selenoether-
linked conjugates of cabazitaxel (CTX) and oleic acid (OA) (Figure 6) [44]. In this nanoplat-
form, CTX was released not only through stimulation by ROS overexpressed in tumor cells,
but also through ROS production by PPa when irradiated with external light. The ROS-
responsive nanovehicles showed prolonged systemic circulation and drug accumulation in
the tumor, demonstrating a synergistic antitumor effect.
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In addition, hypoxic conditions have been used in nanovehicles based on photo-
induced mediators. PDT was performed through light irradiation and continuously de-
creased oxygen generation, which resulted in a temporary hypoxic environment at the
target sites. Hypoxia-responsive systems can detect and target tumor sites in a hypoxic
environment [38,45,98,99]. Wang et al. designed a new delivery system that combines PDT
with hypoxia-responsive nanovehicles. They synthesized the chlorine e6-PEG-azobenzene
linked poly(caprolactone) (Ce6-PEG-Azo-PCL) by coupling Ce6-decorated PEG and PCL
through hypoxia-responsive cleaved Azo linkage and loaded DOX into the nanovehicles
prepared with the amphiphilic polymers. After the robust self-assembled nanovehicles
were delivered to the tumor sites, light irradiation at 671 nm generated the ROS and hypoxia
micro-environment through the activation of Ce6, which amplified the stepwise ROS- and
hypoxia-triggered dissociation of Azo linkers through reduction and the release of DOX
from the disassembled nanovehicles into the tumor cells. The PDT and hypoxia-responsive
nanovehicles consequently showed integrated tumor suppression in vitro and in vivo [45].
In addition, to enhance anticancer efficiency, Ge et al. designed a photo-activated hypoxia-
responsive prodrug loading covalent organic frameworks (COF) for the delivery of Ce6
and tirapazamine (TPZ) (TA-COF-P@CT) by combining PDT and chemotherapy. TPZ can
be converted to cytotoxic radicals upon activation by various intracellular reductases under
hypoxic conditions, such as in tumors. While the generated radicals were easily oxidized
in a normal state with very few side effects, they were stable in a hypoxic environment
formed by PDT, exhibiting anticancer effects in tumor cells. TA-COF-P@CT was prepared
by the reaction of 1,3,5-triformyl-2,4,6-trihydroxybenzene (TP) and 4,4-azodiaminobenzene
(AD), decorated with PEG, and co-loaded with TPZ and Ce6. The ROS generated by light
(650 nm) irradiation created a hypoxic environment by consuming oxygen, decomposed
COF by breaking the azo linkage via overexpressed azo reductase in tumor cells under
hypoxic conditions, and released the loaded Ce6 and TPZ to kill cancer cells by generating
biotoxic oxyradicals (Figure 7) [46].
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Although controlled drug release using PDT has been demonstrated, photodynamic
responsive nanovehicles present certain challenges that need to be overcome. Endogenous
ROS or hypoxia in biological systems can lead to inappropriate drug release and side
effects. In addition, the PSs in these PDT systems are usually organic dyes that have poor
optical stability upon light irradiation [100]. Hence, the development of PSs with enhanced
photostability is an important step for enabling their use in broad applications.

3. pH-Responsive Nanovehicles

pH-responsive nanovehicles have been intensively exploited among environmental
stimuli-responsive nanovehicles, since it was discovered that the extracellular pH near tu-
mors is more acidic than that in normal tissues [24]. Hydrogen ions (called protons) in acidic
conditions can affect the structure of nanosized nanovehicles, resulting in pH responsive-
ness. Here, two types of pH-responsive nanovehicles are discussed; de/protonation-based
nanovehicles and acid-labile bond cleavage-based nanovehicles.

3.1. De/Protonation-Based Nanovehicles

De/protonation is the most commonly used mechanism for pH-responsive nanovehi-
cles in cancer therapy. As shown in Table 2, pH-responsive nanovehicles typically include
polyelectrolytes, such as cationic poly(β-amino ester) (PBAE), PDMAEMA, poly(histidine)
(poly(His)), poly(aspartic acid-graft-imidazole) (poly(Asp-g-im)), and anionic poly(Asp),
poly(acrylic acid) (PAA), polysulfonamide, etc. For advanced strategies to develop
biodegradable polyelectrolytes, it was also reported that biodegradable polymers such as
polypeptides and enzyme-sensitive crosslinked chitosan were utilized for de/protonation-
based nanovehicles by conjugating with pH-sensitive moiety to the biodegradable polymer
backbones [101–103]. The polyelectrolyte usually includes amine groups as cationic moi-
eties and –COOH as anionic moieties blocked with other polymers, such as hydrophilic or
hydrophobic polymers, which have been further utilized in pH-responsive polymers using
protonation and deprotonation mechanisms.
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Table 2. Examples of pH-sensitive cationic and anionic polymers.
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The cationic polyelectrolytes with amine groups, including PEG-poly(β-amino esters)-
poly lactic acid (PLA), PEG-poly(2-(diisopropylamino) ethyl methacrylate), 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] conjugated poly(β-
amino esters), PEG-poly(2-(diisopropylamino) ethyl methacrylate-co-dithiomaleimide),
PEG-poly(2-(dibutylamino) ethyl methacrylate-co-dithiomaleimide), and poly(N-vinylp-
yrrolidone)-poly(4-vinylpyridine) [104–108], can protonate under acidic conditions show-
ing hydrophilicity, while they can deprotonate under basic conditions, indicating hydropho-
bicity (−NR2 ↔ NR3

+). In contrast, anionic polyelectrolytes with –COOH, such as poly(N-
isopropylacrylamide-co-acrylic acid), PCL-SS-poly(methacrylic acid), CTS-poly(methacrylic
acid-co-N-isopropylacrylamide), poly(N-(4-methacrylamido)-N-(4,6-dimethylpyrimidin-
2-yl)benzene-1-sulfonamide-co-N,N′-dimethylacrylamide) [109–112], can deprotonate and
protonate in the opposite manner. For example, imidazole groups with a pair of elec-
trons on the unsaturated nitrogen atom can be easily protonated in slightly acidic envi-
ronments, resulting in conversion from hydrophobic to hydrophilic [113–121]. This can
cause destabilization of the nanovehicles and consequently release the encapsulated drug.
Poly(His)-PEG, developed by Bae et al., showed robust nano-sized core-shell micelles at
physiologic pH composed of hydrophobic cores by deprotonation of poly(His) and the
hydrophilic shell of PEG. However, at pHex, the protonation of poly(His) was triggered
in His moieties and induced the rupture of micelles due to the decrease in poly(His) hy-
drophobicity. Furthermore, the hydrophobic anticancer drugs incorporated in the core
of the pH-responsive micelles could be released under acidic conditions (pHen or pHex)
owing to the formation of a less hydrophobic core [117]. In addition, Oh’s group syn-
thesized poly[(benzyl-L-aspartate)-co-(N-(3-aminopropyl)imidazole-L-aspartamide)]-PEG
(PABI-PEG) for docetaxel (DTX) delivery [122]. PABI-PEG formed a stable nanovehicle
at pH 7.4 or higher; however, in acidic conditions, it became unstable due to protonation
of the imidazole group. DTX-loaded micelles showed pH-responsive drug release due
to structural changes caused by protonation of the imidazole group on the PABI blocks.
pH-responsive drug release and very low micelle concentrations at physiological pH can
result in high stability and reduce the toxicity of normal tissues, limiting drug loss.

Anionic polyelectrolytes have also been utilized for pH-responsive nanovehicles to
target tumors. The strategy using anionic amphiphilic block copolymer for tumor targeting
and pH-responsive nanovehicles can be different from that using cationic polymers. At
a low pH, such as pHen and pHex, anionic polymer blocks including –COOH can exist
as protonated (hydrophobic) blocks and cannot be used in tumor-targeting micelles from
anionic amphiphilic block copolymers. Therefore, the anionic block copolymer can be
coupled with basic drugs such as DOX using electrostatic interactions at physiological pH,
and the drug can be released at acidic pH through reduced interaction due to protona-
tion. For example, Yi et al. reported anionic block copolymers composed of PEG, PCL,
and carboxyl-modified PCL (COOH-PCEC) [123]. These copolymers encapsulated DOX
through electrostatic and hydrophobic interactions. The release of DOX was faster under
acidic conditions than under neutral conditions.

3.2. Acid-Labile Bond Cleavage-Based Nanovehicles

As mentioned previously, the differences in pH among the intracellular compartments
and between normal tissues and tumors have attracted interest for the development of
pH-dependent chemical structures. In particular, acid-labile bonds have been intensively
studied for triggering pH-responsive nanovehicles in pHex or pHen. Labile structures such
as hydrazone, imine, acetal, ester, and amide can be cleaved by acid hydrolysis in protic
acid as a catalyzer via a nucleophilic substitution reaction. The acid-labile linkers are stable
in normal tissues (pH ~7.4) but are breached in the acidic micro-environment of the tumor
by hydrolysis. Acid-labile chemicals have been used as functional groups in nanoplatforms
and are usually linked directly to the anticancer agents. Table 3 shows the most investigated
pH-responsive chemical bonds in cancer treatment and their degradation products.
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Table 3. Acid-labile chemical bonds and their degradation products.

Acid-Labile Bond Chemical Structure Degradation Products pH Range Ref.
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Labile chemicals containing C=N, such as hydrazones, imines, and oximes, with
their protonation in the sp2 nitrogen of the bond in an acidic environment, can be highly
susceptible to nucleophilic attack by water due to the enhanced electrophilicity of the sp2
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carbon [137]. In particular, hydrazone linkage with higher sensitivity at pHen (pH 5.0) and
a faster hydrolysis rate has been popularly applied to various pH-responsive systems such
as micelles, liposomes, dendrimers, linear polymers, star-shaped polymers, and inorganic
nanoparticles [124,138–142]. In addition, acid-labile bonds have been used to address the
PEGylation problem, in which the hydrophilic PEG coating of nanovehicles limits drug
release from the nanovehicle core and interferes with target-cell interactions and endosomal
escape. For instance, Manju Kanamala et al. used a hydrazone linker to solve the PEG
dilemma through cleavable PEGylation. They synthesized a PEG-cleavable pH-responsive
liposome (CL-PEG-pSL) and studied the feasibility of the PEG-detachment strategy in the
micro-environment of cancer cells. Compared to general liposomes, CL-PEG-pSL showed
improved endo/lysosomal escape ability in cancer cells and high tumor accumulation in
the MIA PaCa-2 pancreatic cancer cell xenograft model [125].

Imine bonds, unlike hydrazone, showed low stability at physiological pH due to
the absence of a mesomeric effect [137]. Accordingly, research has been conducted to
increase the stability by introducing π–π junctions with structures such as benzoic imine
and poly (propylene imine) [126,127,143]. Yuanyuan et al. designed a nanoplatform based
on dendritic large-pore mesoporous silica nanoparticles (DLMSNs) conjugated to peptides
via benzoic imine bonds using formyl benzoic acid-PEG-maleimide. After encapsulation
of CuS nanoparticles and immune adjuvant resiquimod (R848) in DLMSNs, the anti-PD-1
peptide AUNP-12 was conjugated to the surface through an acid-labile benzoic imine bond.
The pH-responsive nanoplatform released AUNP-12 through cleavage of the imine bond
at a weakly acidic pHex 6.5 and showed excellent PD-1/PD-L1 blocking efficacy. When
subjected to 960 nm laser irradiation, the systems induced photothermal ablation, resulting
in synergistic tumor vaccination and T lymphocyte activation, preventing tumor recurrence
and metastasis (Figure 8) [144].
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triple-negative breast cancer (TNBC) by combining photothermal ablation and immune remodeling. Reproduced from [144]
with permission, copyright 2020, American Chemical Society.

Additionally, oxime linkers with several advantages, such as click chemistry,
high stability, chemical selectivity, and compatibility with the functional groups of
biomolecules [128,145,146], have been researched for the development of pharmaceu-
tical applications using acid-labile bonds. Eirinaios et al. developed a prodrug GOXG,
which is a rapid and cost-effective “click” oxime bond ligation platform to assemble in
one-pot peptide-drug conjugates (PDCs). PDCs with the anticancer drug gemcitabine and
D-Lys6-GnRH (gonadotropin-releasing hormone; GnRH) as a cancer-targeting material
induced the separation of drugs from GOXG at pHen and pHlys through breakage of the
acid-labile oxime bond. [129].

3.2.2. Other Acid-Labile Bonds

Acetals and ketals are stable under basic conditions; however, they are easily hy-
drolyzed to aldehydes, ketones, and alcohols in an acidic environment. Both undergo
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first-order hydrolysis of hydronium ions, and the rate of hydrolysis can increase by 10 times
as the pH decreases [130]. Polyketals, which are more sensitive to pH than hydrazone,
are hydrophobic polymers with biodegradable ketal bonds in the polymer backbone; they
can encapsulate hydrophobic drugs or proteins [131,147,148]. In addition, these chemical
bonds can be used with other reaction systems to produce better results [132].

Since amides, as derivatives of carboxylic acids, are highly stable, strong acidic or
strong alkaline conditions are required to hydrolyze them. Considering that amides can
be degraded in the acidic tumor micro-environment, research on maleic acid amides has
been in the spotlight. Maleic acid derivatives can exhibit high pH sensitivity because
adjacent carboxylate groups easily attack the carbonyl group of the amide to form a
tetrahedral intermediate with a 5-membered ring [149]. Furthermore, researchers have used
substituted amide linkages such as β-carboxylic amides and cis-aconityl amide for tumor
targeting [133,150]. The cis-aconityl amide linker undergoes acid-catalyzed hydrolysis at a
hydrolytic bond (C-1) bond, leading to more complete drug release at the target because
of the high acid lability compared to the trans form [151]. β-carboxylic amides maintain a
negative charge at physiological pH 7.4; however, they transform into positively charged
primary amines under the acidic pH in the tumor, which results in a rapid drug release
and improved cell transduction efficiency due to electrostatic absorption endocytosis [133].

β-thiopropionate, which contains ester bonds, including succinic ester bonds, un-
dergoes hydrolysis under both acidic and alkaline conditions. The succinic ester can be
formed by the reaction of the linking unit succinic acid, which is composed of two carboxyl
groups and a hydroxyl group [152,153]. Compared to other acid-responsive bonds, the
β-thiopropionate formed by the linking thiol and acrylate can be hydrolyzed in an acidic
solution at a relatively slow rate to apply for sustained release of drugs [135,136]. Qiu et al.
developed a switchable fluorescent “Off” or “On” silver nanoparticle (AgNP) through the
nanoparticle surface energy transfer (NSET) effect. The hybrid nanoplatform (P(HEO2MA-
co-MACPT)@AgNP) was prepared by conjugating with poly(methacryloyloxy-3-
thiahexanoyl camptothecin (CPT)-co-2-(2-hydroxyethoxy)ethyl methacrylate) P(HEO2MA-
co-MACPT) and AgNPs using β-thiopropionate bonds. The NSET effect is a spectral phe-
nomenon in which electronically excited “donor” molecules (such as fluorescent molecules)
transfer excitation energy to nanoparticles depending on the distance between the donor
and acceptor. They used the acid-labile β-thiopropionate to control the NSET phenomenon
by varying the physical distance between camptothecin (CPT) and AgNPs. At pH 7.4, CPT
fluorescence was dissipated due to the NSET effect because the polymer backbone kept
the distance between CPT and AgNP close. In an acidic environment, the fluorescence
was recovered because the β-thiopropionate bond was cleaved; subsequently, CPT was
released from the nanovehicle. Additionally, the intensity of fluorescence increased over
time owing to the gradual decomposition of acid-labile bonds. The cytotoxicity of the
CPT-loaded nanovehicles showed pH-dependent effects and exhibited the potential for
use in studying the mechanisms of drug release behavior in cells based on changes in
fluorescence (Figure 9) [154].
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Figure 9. (A) Schematic illustration and intracellular release of CPT. Principle of NSET (nanoparticle surface energy transfer)
“on” and “off” for the P(HEO2MA-co-MACPT)@AgNPs. Fluorescence spectra of the hybrid AgNPs after incubation in PBS
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the P(HEO2MA-co-MACPT)@AgNPs. Reproduced from [154] with permission, copyright 2017, American Chemical Society.

4. Photo- and pH-Dual-Responsive Nanovehicles

Most stimuli-responsive nanovehicles have been designed using one stimulus; how-
ever, the biological performance of macromolecules is responsive to multiple stimuli, re-
sulting in several changes. For mimicking biological processes, various stimuli-responsive
moieties can be incorporated into a single nanovehicle, creating multi-stimuli-responsive
materials to provide more than one mechanism responsiveness for targeting cells [155–157].
The purpose of multi-stimuli-responsive nanovehicles is to achieve long circulation, high
accumulation in targeted sites, deep penetration in targeted tissues such as tumors, inter-
nalization in targeted cells, endosome escape, and controlled drug release. [157–164]. In ad-
dition, multi-stimuli-responsive nanovehicles have been engineered to facilitate multistage
drug delivery and achieve higher specificity and efficacy [157]. Recently, dual-responsive
nanovehicles that use light and pH responsiveness have been widely studied. Nanovehi-
cles can be fabricated using materials including polymers, liposomes, and solid inorganic
nanoparticles [165]. Various reactions to multi-stimuli-responsive nanovehicles have been
observed, such as charge conversion (e.g., de/protonation), change of structure/shape
or size conformation (e.g., degradation/cleavage/breakage) of the nanovehicles, and sol-
gel transition [155,157,166]. Among them, we focus on photo- and pH-dual-responsive
nanovehicles using the mechanisms of de/protonation and cleavage of the nanovehicles,
as previously mentioned.

4.1. De/Protonation Triggered by Light- and pH-Dual-Responsive Nanovehicles

Dual stimuli-responsive nanovehicles using pH-responsive polymers and incorporat-
ing PSs showed charge conversion such as protonation and deprotonation of the nanovehi-
cles in acidic or basic conditions and increased effects of PTT or PDT under light irradiation.
For example, Oh’s group developed pH-responsive polymers based on imidazole-modified
polypeptides for cancer targeting. They fabricated an on-demand pH-sensitive nanocluster
(NC) system encapsulating PS, gold nanorods (AuNRs), and DOX in a pH-responsive poly-
mer, poly(aspartic acid-graft-imidazole)-PEG (PAIM-PEG), to improve the therapeutic ef-
fect of chemo-photothermal therapy [167]. The NC system sustained a firm nano-assembly,
structured with less systemic toxicity at pH 7.4; they formed disintegrated structures due
to destabilization of their hydrophobic cores by protonation of the imidazole rings and
carboxyl groups in PAIM-PEG and released higher amounts of the drug at pH 6.5. Addi-
tionally, the NC enhanced antitumor efficacy synergistically, resulting from the improved
accumulation and release of DOX from the NC system and PTT of Au under locally irradi-
ated NIR light. In another study, Oh’s group developed visible light- and pH-responsive
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nanovehicles using PAIM-PEG and a photosensitive agent, indole-3-acetic acid (IAA), for
cancer treatment. Researchers have reported that protonation of the imidazole and carboxyl
groups of PAIM-PEG, resulting in destabilization of the micelle structures at acidic pH,
induced a synergistic ROS generation from IAA upon irradiation with visible light. At
physiological pH, lower systemic toxicity was observed in IAA-loaded micelles (ILMs).
Interestingly, the increasing accumulation and release of IAA from the micelles at pHex
or pHen and upon simultaneous local irradiation of visible light resulted in maximizing
antitumor efficacy, even when the amount of IAA was less than the IC50 of IAA [168].
More interestingly, the utilization of visible light instead of UV light could be expected to
decrease the side effects of UV light in clinical applications.

In addition, various structures such as star-shaped polymers and dendrimers have
been highly utilized to construct dual stimuli-responsive nanovehicles. Zhang et al.
constructed a PS core 4-armed star-shaped copolymer composed of [PEG-poly(2-(N,N-
diethylamino)ethyl methacrylate) (pDEA)-PCL]4-zinc β-tetra-(4-carboxyl benzyloxyl)phth-
alocyanine (PDCZP) capable of targeting tumors and responding to dual stimuli, light, and
pH. The pH responsiveness of PDCZP resulted from pDEA chains, which could shrink
in weakly basic environments (pH 7.4) through hydrophobic interaction and, in contrast,
extend in weakly acidic environments (pH 6.5 or 5.0) because of increased hydrophilicity
due to protonation of the amines of pDEA. The DOX-loaded nanovehicles showed the
formation of 50 nm-sized spherical particles at pH 7.4. In the nanovehicles delivered to
tumor cells, the rapid DOX release was triggered by the acidic pH, resulting in enhanced
antitumor effects through chemotherapy with DOX and PDT with core PS under light
irradiation (Figure 10) [169].
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Figure 10. Molecular structure of PDCZP and illustration of its pH-dependent drug release and
combination of chemotherapy and photodynamic therapy. Reproduced from [169] with permission,
copyright 2017, American Chemical Society.

Yuan et al. designed dual-responsive dendrimers containing SP groups for photo- and
pH-responsive nanovehicles. The star-shaped dendrimers were prepared by the conjuga-
tion of dendritic polyester and poly(ε-caprolactone)-poly(methacrylic acid-co-spiropyran
methacrylate) (DPCL-b-P(MAA-co-SPMA)). In this system, the isomerization of SP groups
under UV light irradiation or low pH resulted in either light- or pH-responsive abilities.
The SP isomerized to hydrophilic merocyanine MC under light irradiation and changed to
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merocyanine H+ (MCH) through protonation upon acid addition. These results showed
that the DOX-loaded dendrimers exhibited drug release when triggered by UV irradiation
or under acidic conditions and that, consequently, the controlled release system based
on SP was developed by either adjusting UV/Vis light illumination or changing the pH
values [158]. In addition, Wang and co-workers designed and prepared chitosan (CTS)-
modified liposomes loaded with resveratrol (Res) and coated them with Au nanoshells
(GNS@CTS@Res-lips). The drug release from the GNS@CTS@Res-lips, caused by pH- and
photo-dual-responsiveness, prominently increased the drug cellular uptake and chemo-
photothermal effect under NIR light irradiation (Figure 11). This study showed that the
higher release of Res at pH 5.0 (vs. pH 7.4) might be caused by protonation of amino
groups in CTS molecules in an acidic environment, which weakens the electrostatic interac-
tion with CTS and phospholipids, resulting in easy diffusion of Res molecules from the
liposomes [170].
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4.2. Degradation/Cleavage/Breakage Triggered by Light- and pH-Dual-Responsive Nanovehicles

Many studies have reported the utilization of light- and pH-responsive systems for
triggering the degradation/cleavage/breakage of nanovehicles. Oh’s group researched
polyelectrolyte nanoparticles composed of [PEG-2,3-dimethylmaleic anhydride grafted
poly(l-lysine)-poly(lactic acid)] PEG-PLL(-g-DMA)-PLA [168]. They developed a charge-
reversible nanovehicle using PEG-PLL(-g-Ce6, DMA)-PLA for PDT (Figure 12). The DMA
linkage to the lysine residue could be cleaved in response to a decrease in the pH of the
buffer, thereby regenerating the positive charge. The nanovehicle formed a stable structure
owing to the hydrophobic interaction of PLA and showed surface charge conversion at
acidic pH, which improved cell absorption, resulting in increased photo-toxicity. In addi-
tion, they studied various anticancer therapies using the surface charge conversion proper-
ties of PEG–PLL(-g-DMA)–PLA. For example, they developed a novel pH-responsive poly
ionomer complex system composed of PEG-PLL(-g-Ce6) and PEG-PLL(-g-DMA)-PLA. The
poly ionomer complex (PIC) system modulated the distance between the PS and DOX to
resolve the antagonistic effect of reducing the singlet oxygen as the distance between the
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two materials reduced. This system exhibited improved single anti-oxygen production
and anti-tumor activity compared to conventional nanovehicles because of changes in the
distance in the PIC system under acidic conditions [171].
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in the process of generating singlet oxygens. Reproduced from [171] with permission, copyright
2019, Elsevier.

In a recent study, Wu et al. studied a cap removal strategy using acetal bonds for multi-
modal imaging-guided low-temperature PTT/chemotherapy of cancer. They encapsulated
ICG and the Hsp90 inhibitor 17AAG in hollow mesoporous organic silica nanocapsules
(HMONs) and subsequently blocked them with gemcitabine (Gem) molecules through
acetal covalent bonds. At pH 7.4, small amounts of ICG and 17AAG were released, con-
firming the excellent capping effect of Gem under physiological conditions. In contrast,
the release of ICG and 17AAG increased dramatically at pH 5.0. The investigation of
cellular uptake and intracellular drug release using a laser confocal scanning microscope
showed strong intracellular ICG fluorescence at pH 6.0 but relatively weak fluorescence
at pH 7.4. These results indicated that ICG release was greatly stimulated by cleavage
of the acetal bond. In quantitative flow cytometric measurements, the cellular uptake of
the nanoplatform increased dramatically as the cell culture pH was changed from 7.4 to
6.0. This study presented a nanoplatform applying a pH-responsive gatekeeper, which
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minimizes damage to normal cells and provides an excellent low-temperature PTT strategy
for cancer cell inhibition (Figure 13) [172].
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or without addition of 10 mM GSH. (D) pH-induced hydrolysis of acetal bonds and biodegradation of the HMON
(hollow mesoporous organic silica nanocapsules) framework, triggering the pH/GSH-responsive payload release from
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ICG–17AAG@HMONs–Gem–PEG and (G) quantitative mean fluorescence intensities of the treated MDA-MB-231 cells at
pH 7.4 and 6.0, respectively. Reproduced from [172] with permission, copyright 2018, American Chemical Society.

Qiao et al. designed a pH- and photo-dual-responsive multifunctional lipid (Fa-ONB
lipid) consisting of activated folic acid combined with 4-(bromomethyl)-3-nitro-benzoic
acid and a didodecylamine scaffold. The Fa-ONB lipid could be cleaved by both an acidic
environment and UV light irradiation because of the o-nitrobenzyl ester bond. DOX-loaded
liposomes composed of Fa-ONB lipid and dipalmitoylphosphatidylcholine (FOBD) showed
an increase in drug release efficiency according to pH change and UV irradiation syner-
gistically (Figure 14) [173]. Nisar et al. engineered a photocleavable and pH-responsive
crosslinked nanovehicle. The hydrogel was prepared by functionalized CTS and a photo-
cleavable crosslinker, 4-formylphenyl 4-((4-formylphenoxy)methyl)-3-nitrobenzoate (CHO–
ONB–CHO). The hydrogel displayed not only a pH-responsive release behavior at acidic
pH but also a photocleavable behavior of the crosslinker when absorbing the UV light
(310–340 nm). These properties enabled drug release via hydrogel degradation [174].

Knežević et al. constructed a photo- and pH-dual-responsive nanovehicle using
nitroveratryl-carbamate-protected aminopropyl-functionalized MSNs. DOX was adsorbed
on nitroveratryl-carbamate-protected aminopropyl-functionalized MSNs. The photo-
cleavage of the carbamate linkages yielded the release of the drug from the nanovehicle.
Under UV light irradiation, positively charged propylammonium groups were generated
on the nanoparticle surface, leading to the desorption of positively charged DOX from
the surface of the nanoparticles. An increase in DOX release was under a weakly acidic
environment and prolonged irradiation time [175]. Xing et al. synthesized Janus Au-MSNs
loaded with paclitaxel (PTX) and DOX (PTX-Au-MSN-DOX JNPs). The PTX-Au-MSN-DOX
JNPs exhibited pH and NIR dual-responsive release properties. This system used thiol-β-
cyclodextrin as a vehicle for PTX on gold domains, while the other MS part served as a
vehicle for DOX. The pH-sensitive DOX release occurred because of the protonation and
dissociation of their amine groups under acidic conditions, whereas the release of PTX was
caused by the breakage of the Au–S bond under NIR irradiation (Figure 15) [176]. Lu et al.
developed nanovehicles using a new generation of hollow MSNs (HMSNs) to address the
issue of low drug loading in traditional MSNs. HMSNs were prepared to encapsulate rose
bengal (RB) and DOX. The surface of HMSNs was modified with hyaluronic acid (HA) via
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pH-sensitive Schiff base bonds (RB-DOX@HMSNs-N=C-HA). The pH-responsive Schiff
base bonds were designed to be hydrolyzed under acidic conditions, leading to DOX and
RB release from HMSNs and inhibition of tumor cell viability under light illumination [173].
In a recent study, they fabricated a targeted HMSN-based DDS for cancer chemo-PDT. ICG
and DOX were co-loaded into HMSNs. Dopamine-modified hyaluronic acid (DA-HA)
was connected to the HMSNs through boronate ester bonds for blocking the mesoporous
channels of the HMSNs (ID@HMSNs-B-HA). Boronate ester bonds are acid-sensitive bonds
that can exist stably under alkaline conditions and break in a weakly acidic environment.
DA-HA can wrap HMSNs well under physiological conditions while detaching from the
surface of HMSNs under acidic conditions, resulting in drug release [177].
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5. Conclusions

In this review, we address the mechanisms and design of photo-responsive nanovehi-
cles on the basis of recent research and the properties of polymers, peptides, and chemical
groups responsive to the tumor acidic micro-environment. Several materials that absorb
light can change their structures or release heat and ROS directly or indirectly through PSs,
thus exhibiting a great potential for constructing photo-responsive nanovehicles for drug
delivery. In addition, various materials with pH sensitivity and acid-labile chemical bonds
can be used in nanovehicles depending on their properties. Such smart nanovehicles can
improve the targeting of anticancer drugs and enhance tumor intracellular accumulation
and uptake, resulting in increased anticancer efficacy and reduced systemic side effects.
Recently, the development of two or more stimulus-based smart nanovehicles has been
eagerly supported. In the future, it will be possible to obtain better results for cancer
treatment owing to these multifunctional nanovehicles. Despite the wide range of efforts
in this new direction, there remain several challenges in improving the therapeutic efficacy
and safety of smart nanovehicles for clinical applications [178–180].

Photo-based transformation has critical drawbacks, such as low sensitivity to NIR
light and relatively high optical power density for most reactive motifs. Indirect photo-
responsive delivery may have disadvantages such as hypoxia-boosted tumor metastasis
and ROS or heat-induced damage to the drug encapsulated in the carrier. The acidic pH
region of tumors is generally far from the bloodstream, which may lead to an insufficient
response of acidic-pH-responsive nanoparticles. Additionally, as shown in Scheme 2, the
pH difference between healthy tissue and tumor tissue is not significant [181,182]. If future
research is focused on this area and is directed toward a solution, the photo- and/or
pH-induced nanovehicles can considerably benefit chemotherapy.
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