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Abstract: Five isolates of a new member of the family Closteroviridae, tentatively named blackcurrant
leafroll-associated virus 1 (BcLRaV-1), were identified in the currant. The 17-kb-long genome codes for
10 putative proteins. The replication-associated polyprotein has several functional domains, including
papain-like proteases, methyltransferase, Zemlya, helicase, and RNA-dependent RNA polymerase.
Additional open reading frames code for a small protein predicted to integrate into the host cell wall,
a heat-shock protein 70 homolog, a heat-shock protein 90 homolog, two coat proteins, and three proteins
of unknown functions. Phylogenetic analysis showed that BcLRaV-1 is related to members of the genus
Closterovirus, whereas recombination analysis provided evidence of intraspecies recombination.

Keywords: Ribes; currant; closterovirus; recombinants/recombination

1. Introduction

Black and red currants (Ribes species (spp.)) are economically important berry crops. They are
deciduous, unarmed shrubs native to the northern latitudes of Asia, Europe, and North America,
and they belong to the subgenera Coreosma and Ribesia of the genus Ribes [1]. The genus includes
more than 150 diploid species and numerous cultivated varieties [2]. Diseases caused by viruses and
virus-like agents have been studied in currants from the beginning of last century [3–5]. New currant
viruses were recently identified using traditional methods or high-throughput sequencing (HTS) [6–11].

Notwithstanding the progress in currant virology, there are gaps in the knowledge, one of
which is addressed here through the characterization of a new closterovirus complex, affecting both
black and red currants. Roberts and Jones observed closterovirus-like particles in Ribes in 1997 [12].
In 2010, Besse et al. observed similar particles in currants showing downward leaf rolling and
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interveinal reddening in the summer and autumn [6]. They produced antisera for serological detection,
and designed primers allowing for the detection of two molecular variants of this virus. In 2015,
Ho et al. reported a closterovirus in black currant in the USA and developed a molecular diagnostic
assay for its detection [13].

The family Closteroviridae includes the genera Ampelovirus, Closterovirus, Crinivirus, and Velarivirus,
with vectors ranging from mealybugs and soft scales to aphids and whiteflies [14,15]. The genome
segments are encapsidated by two coat proteins (CPs) in characteristically long, flexuous particles [14].
Closterovirids have a five-gene block involved in virion assembly and movement that, in addition to
two CPs, includes a small transmembrane protein, a ~60 kDa protein, and a HSP70 homolog [15]. Their host
range is usually narrow, but the acquisition of accessory genes is believed to play a role in host-range
expansion [15].

Here, we studied in depth a closterovirus species, tentatively named blackcurrant leafroll
associated virus 1 (BcLRaV-1), identified in black and red currants including particle morphology,
genome organization, and the evolutionary forces acting on the virus.

2. Materials and Methods

2.1. Transmission Electron Microscopy

Virus particles from isolate BC28074 were purified as described by Gugerli and Ramel [16] and
observed using a Tecnai Spirit transmission electron microscope (TEM).

2.2. Genome Assembly and Organization

The genome of all isolates was obtained using a combination of HTS and Sanger sequencing in
four labs and sequences deposited in GenBank (Table 1).

Table 1. Origin of currant isolates and the description of high-throughput sequencing (HTS).

BcLRaV-1 Isolate/GenBank
Accession Number Plant Origin Symptoms Sequencing

Input HTS Output

G55/MH460557 Red currant,
Gabreta 55 Czech Republic Asymptomatic Total RNA:

mRNA enriched
20 millions,

100 bp reads
GR/MH460558 Red currant,

Gondouin Rouge Czech Republic Asymptomatic

SLO/MH480582 Black currant,
unknown cultivar Slovenia Asymptomatic Total RNA:

Ribo-depleted
10 millions, 2 ×

150 nt reads

BC28074/MH541840 Black currant,
28074 Switzerland Leafroll [6] Viral-associated

nucleic acid
50 millions,

2 × 75 nt reads

US/MH500053 Black currant,
NCGR PI 556169 USA Yellow line

patterns [13]
Enriched

double-stranded RNA 76,214 reads

GR and G55: Four red currant accessions were extracted with the GeneJET Plant RNA Purification
Kit (Thermo Fisher Scientific, Vilnius, Lithuania) and mRNA-enriched (TruSeq Stranded mRNA kit,
Illumina, San Diego, CA, USA) before being subjected to HTS (SeqMe s.r.o., Dobříš, Czech Republic).
Missing sequence segments were obtained by PCR amplification using the Q5 High-Fidelity Master
Mix (NEB, Ipswich, MA, USA). The 5′-termini were completed and sequenced with a 5′ rapid
amplification of complementary DNA (cDNA) ends (RACE) kit (Invitrogen, Carlsbad, CA, USA),
and the 3′-ends were derived as previously described [17]. Sequence verification and gap-filling were
done through Sanger sequencing of PCR amplicons or cloned into a pGEM T-Easy vector system
(Promega, Road Madison, WI, USA).

SLO: Total RNA was extracted from 100 mg of leaf tissue using an RNeasy Plant Mini Kit
(Qiagen, Sverige, Denmark), in which RLT buffer was supplemented with a 10% Plant RNA Isolation
Aid (Thermo Fisher Scientific). The extracted total RNA was quantified on a Bioanalyzer 2000.
Ribosomal RNA was depleted using a RiboMinus Plant Kit for RNA-Seq (Thermo Fisher Scientific),
and total RNA libraries were then prepared following the manufacturer’s instructions for a TrueSeq
Stranded mRNA kit (Illumina), without the poly-A enrichment step. The RNA libraries were sequenced



Viruses 2018, 10, 369 3 of 11

on a Nextseq 500 sequencing machine at the Liege University in Belgium, with a read length of
2 × 150 nt. (Etiology fair COST Divas). Missing sequence fragments were PCR amplified using the
Phusion Flash High Fidelity Master Mix (Thermo Fisher Scientific), and the PCR products were directly
sequenced (Macrogen, Seoul, Korea).

BC28074: Virus particles were purified from mature leaves as previously described [18]. Subsequently,
RNA was extracted using an RNeasy Plant Mini kit (Qiagen, Hilden, Germany). The library was prepared
using the TrueSeq Stranded mRNA kit (Illumina) following the manufacturer’s instructions and subjected
to HTS on a HiSeq 4000 (Fasteris SA, Geneva, Switzerland). The 5′- and 3′-terminal sequences of BC28074
were obtained using a RACE system for the rapid amplification of cDNA ends (Invitrogen). At least
two PCR amplicons were cloned and Sanger-sequenced.

US: HTS was performed on degenerate oligonucleotide-primed reverse-transcription-PCR
(DOP RT-PCR) products derived from double-stranded RNA-enriched (dsRNA) material of the infected
plant, following the procedures described previously [7]. Missing genome fragments were obtained
via RT-PCR using virus-specific primers. The 5′-terminal sequences were obtained using a FirstChoice
RLM-RACE Kit (Thermo Fisher Scientific), whereas the 3′-ends were obtained using RACE–RT-PCR
on polyadenylated RNAs (Poly (A) Tailing Kit, Applied Biosystems, Foster City, CA, USA). All PCR
products were sequenced so as to achieve at least three-fold coverage of the regions.

2.3. In Silico Analyses

Sequence analyses were done using a CLC Genomics Workbench 9.5.1 (Qiagen) and the Geneious
9.1.5 software (Biomatters Limited, Auckland, New Zealand). Transmembrane prediction was
carried out using the TMHMM 2.0c tool (http://www.cbs.dtu.dk/services/TMHMM/). Multiple
sequence alignments were built with the Multiple Alignment using Fast Fourier Transform (MAFFT)
program [19]. Phylogeny reconstructions were inferred using the maximum-likelihood method with
an approximate likelihood ratio test for branches. The phylogenetic trees were visualized using the
Interactive Tree of Life v3 tool [20]. Putative recombination events were detected and evaluated in the
RDP4 program [21], using a MAFFT-built multiple alignment of the complete genome sequences.

3. Results and Discussion

3.1. Sequence and Genome Organization

The genomes of five isolates from Europe and North America, infecting both black and red
currants, were reconstructed (Table 1). The genome lengths ranged from 16,996 to 17,313 nucleotides
(nt) and coded for 10 open reading frames (ORFs; Figure 1 and Table 2), with genome organization
being identical among isolates. The results of the 3′-RACE with virus-specific primers on GR and
G55 suggested an absence of the poly(A) tail at the 3′-terminus, similar to other closteroviruses,
and therefore the analysis was not repeated for the other isolates.
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Figure 1. Schematic representation of the genomic organization of the Gabreta 55 (G55) isolate of
blackcurrant leafroll associated virus 1 (BcLRaV-1-G55). The genome is drawn as a black line, and the
predicted open reading frames (ORFs) are represented by shaded rectangles. Annotations, ORF numbers,
and identified functional domains are given below. Abbreviations: Pro—papain-like leader proteinase,
Zemlya—see text for description, MTR—methyltransferase, HEL—helicase, RdRP—RNA-dependent
RNA polymerase, HSP70—heat-shock protein 70, HSP90—heat-shock protein 90, CP— capsid protein,
and CPm—minor capsid protein.
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Table 2. Genomic characteristics of the BcLRaV-1 isolates.

Isolate
Genome
Length

(nt)

Genome Elements

5′-UTR
(nt)

3′-UTR
(nt)

Length of ORFs for Predicted Proteins (nt)/
Molecular Mass of Encoded Proteins (kDa)

1a/1b p6 HSP70h HSP90 CP CPm p17 p13 p26

G55 17,313 97 275 9939/371.9 147/5.7 1797/65.6 1593/61 636/23.6 606/22.3 456/16.8 348/13.1 690/25.6
GR 17,161 99 309 9906/370.5 147/5.7 1797/65.5 1590/60.9 636/23.6 606/22.2 441/16.3 348/13.2 690/25.8
SLO 16,894 1 * 260 * 9942/372.7 150/5.6 1797/65.7 1593/60.6 636/23.4 606/22.5 444/16.5 372/14.3 687/25.5

BC28074 17,141 102 290 9942/370.3 150/5.7 1797/65.9 1593/60.4 636/23.5 714/26.7 444/16.4 399/15 687/25.6
US 16,996 99 264 9942/372.7 150/5.6 1797/65.7 1593/60.7 636/23.4 606/22.5 444/16.6 372/14.2 687/25.5

* incomplete sequence, UTR—untranslated region.

ORFs 1 and 2 encode the replication-associated proteins (Table 2), in which ORF2 is presumably
translated via a +1 ribosomal frameshift from ORF1, a mechanism prevalent in closteroviruses [22],
resulting in a fusion polyprotein 1a/1b. The sequence surrounding the potential ribosome +1 slippage site
is conserved in all isolates: cg(a/g/c)guuUAAcua (the stop codon of ORF1 is capitalized; the first proposed
codon of ORF2 is underlined). A conserved domain search identified five replication-associated domains
in the 1a/1b protein (Figure 1). Two copies of a papain-like leader proteinase (Pro; pfam05533) were found
upstream of a methyltransferase motif (MTR; pfam01660). The copies were diverse, sharing only 21% to
30% amino acid (aa) identity within each isolate. While intragenome duplication of coat proteins is a fairly
common feature of family members, two copies of the leader protease are present in some members of
the genus Closterovirus. Duplication events are independent across species, followed by the functional
divergence of each copy [23]. The roles of previously studied viral leader proteases are not only limited to
self-processing (proteolysis), but also include the regulation of genome replication and transcription [24].
Host-specific effects were demonstrated for leader proteinases of grapevine leafroll-associated virus-2
(GLRaV-2) and particularly suggested that such diversification is needed for a closterovirus infection of
perennial and/or woody plants [24].

A recently described “Zemlya” region was identified after the MTR domain (Figure 1),
and presumably guides the remodeling of the endoplasmic reticulum membranes during infection,
a process connected to the formation of viral replication factories [25]. The Zemlya region was predicted
to form four α-helices, and three strictly conserved positions were found in known closteroviruses [25].
The BcLRaV-1 isolates differed in one of the conserved positions, featuring a valine instead of a proline
residue (Figure 2). This change is noteworthy, as the αD region was predicted to form an amphipathic
helix, and the proline, being strongly disfavored in helices, could induce a kink in the helix [25].
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Figure 2. Multiple alignment of the Zemlya-region sequences of beet yellows virus (BYV, NC_001598),
citrus tristeza virus (CTV, AB046398), rose leaf rosette-associated virus (RLRaV, NC_024906), strawberry
chlorotic fleck-associated virus (SCFaV, NC_008366), raspberry mottle virus (RMoV, NC_008585),
carrot yellow leaf virus (CYLV, NC_013007), mint virus 1 (MV-1, NC_006944), tobacco virus 1 (TV1,
NC_027712), grapevine leafroll-associated virus 2 (GLRaV-2, NC_007448), grapevine rootstock stem
lesion-associated virus (GRSLaV, NC_004724), BcLRaV-1-G55 (MH460557), BcLRaV-1-GR (MH460558),
BcLRaV-1-BC28074 (MH541840), BcLRaV-1-US (MH500053), and BcLRaV-1-SLO (MH480582). Gaps are
shown as dashes. Black triangles indicate conserved positions. Previously predicted [25] secondary
structure is shown above the alignment.
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The C-proximal part of the 1a/1b protein contains a viral helicase (HEL; superfamily 1, pfam01443)
and an RNA-dependent RNA polymerase (RdRP; pfam00978). Together with the MTR domain located
at the 1a/1b N-terminus, they constitute a replication module conserved across the entire alphavirus
superfamily [26]. In other closteroviruses, a large region between the MTR and HEL domains is
believed to be cleaved by either an unidentified viral or cellular protease [27]. The putative ORF3
encodes a p6 protein with a predicted transmembrane domain. The p6 counterpart in beet yellows
virus (BYV) is associated with the endoplasmic reticulum, and it functions as a cell-to-cell movement
protein [28]. It is separated by a short intergenic region from the putative heat-shock protein 70 homolog
(HSP70h; cd10170). The HSP70h of BYV and other closteroviruses is an integral part of the virion, and it
plays a role in cell-to-cell movement through its ATPase activity [15]. ORF5, coding for an HSP90h-like
protein (pfam03225), partially overlaps the 3′-proximal region of ORF4. Two putative structural
proteins, the major and minor capsid proteins (CP and CPm, respectively; (pfam01785)), are encoded
by ORF6 and ORF7, respectively. The closterovirus CPm was shown to be essential for encapsidation
of the 5′-region of the viral RNA. Downstream of the capsid proteins, closteroviruses encode a variable
number of accessory proteins, and their functionality was determined only for some. For example,
the p20 and p21 of BYV participate in systemic transport and the suppression of RNA silencing,
respectively [22]. In the citrus tristeza virus (CTV), p23, a suppressor of RNA silencing, did not
have any identifiable orthologs in other closteroviruses [29]. Similar to the majority of the studied
closterovirids, the three predicted ORFs downstream of the capsid proteins (p17, p13, and p26) did
not have significant (E-value cut-off: 10−3) similarity to other viral proteins and do not contain
transmembrane domains.

3.2. Divergence of BcLRaV-1

Nucleotide divergence between the isolates reached 39% (Figure 3). The black and red currant
isolates showed divergence of 35% and 29% among them, respectively. For individual proteins,
identities ranged from 45% for p13 to 83% for HSP70h.
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Figure 3. Pairwise nucleotide and predicted amino acid (aa) protein identities among BcLRaV-1 isolates.

Noticeably, neither the predicted 1b, HSP70h, nor the CP proteins showed more than 25% diversity,
the species demarcation identity criteria for closteroviruses [15]. No two isolates, except SLO and US,
shared no more than 90% amino acid identities across genes. The isolates infecting the red currant
were more than 80% identical, with the exception of p13.

The divergence of BcLRaV-1 isolates resembles those observed in grapevine leafroll-associated
viruses 3 and 4, members of the genus Ampelovirus [30,31], with values of 62% and 68%, respectively.
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For members of the genus Closterovirus, the most distant examples could be found among CTV
and GLRaV-2, with isolates sharing 79% and 72% nt identities, respectively. Analysis of the CP aa
homologies among CTV and GLRaV-2 isolates revealed divergence comparable to BcLRaV-1 (Figure 4).
A unimodal distribution was observed with peaks of 96% and 99% for CTV and GLRaV-2, respectively,
whereas the BCLRaV-1 profile differed, with the majority of values being in the 76–77% region.
It should be noted that the BcLRaV-1 analysis is only based on five isolates, unlike the other two
viruses, where the analyses were based on hundreds.
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Figure 4. Distribution of the pairwise amino acid CP sequence homologies of BcLRaV-1, GLRaV-2,
and CTV isolates. Complete protein sequences were obtained from GenBank (June 2018). The number
of analyzed sequences (ns) and their pairwise combinations (nc) are shown. The lowest identity value
is indicted by a red arrow. Additionally, the positions of the data points along the x axes are denoted
by tick marks.

Interestingly, the 5′- and 3′-untranslated regions (UTRs) showed considerable divergence,
with 65–81% and 56–76% of positions being conserved, respectively. For comparison, CTV isolates
show only 60–70% nt identity in 5′-UTRs [32].

3.3. Phylogenetic Analysis

A maximum likelihood phylogenetic inference of the aa sequences of 1b and CP of the five
isolates and representative members of the family confirmed the taxonomical status of BcLRaV-1 in
the Closterovirus genus (Figure 5). Phylogenetic trees based on the 1b and CP sequences (Figure 5a,b)
showed a clear separation of BcLRaV-1 from other members of the genus, whereas analysis based on the
HSP70h sequences (Figure 5c) supported its clustering with strawberry chlorotic fleck-associated virus,
raspberry leaf mottle virus, rose leaf rosette-associated virus, and CTV. The branching topology of the
BcLRaV-1 isolates showed some discrepancy. Black and red currant isolates were clustered separately
in the CP and HSP70h trees (Figure 5b,c), but were mixed in the 1b tree, with BC28074 grouping with
the red currant isolates (Figure 5a). The fact that divergent topologies produced the different genes
pointed to recombination. To test this hypothesis, a recombination analysis was performed.
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Figure 5. Phylogenetic analysis of the aligned amino acid sequences of (a) the polymerase (ORF2, 1b),
(b) the coat protein (ORF6), and (c) HSP70h (ORF4). Branching support with values more than 80%
is indicated by dots. Amino acid sequences used in the analysis were obtained from Genbank for the
following members of the family Closteroviridae: actinidia virus 1 (AcV-1), areca palm velarivirus 1 (APV1),
bean yellow disorder virus (BnYDV), beet pseudoyellows virus (BPYV), blackberry vein banding-associated
virus (BVBaV), blackberry yellow vein-associated virus (BYVaV), blueberry virus A (BVA), carnation
yellow fleck virus (CNFV), cucurbit chlorotic yellows virus (CCYV), cucurbit yellow stunting disorder
virus (CYSDV), grapevine leafroll-associated virus 1 (GLRaV-1), grapevine leafroll-associated virus 3
(GLRaV-3), grapevine leafroll-associated virus 4 (GLRaV-4), grapevine leafroll-associated virus 5 (GLRaV-5),
grapevine leafroll-associated virus 6 (GLRaV-6), grapevine leafroll-associated virus 7 (GLRaV-7), grapevine
leafroll-associated virus 10 (GLRaV-10), grapevine leafroll-associated virus 13 (GLRaV-13), lettuce chlorosis
virus (LCV), lettuce infectious yellows virus (LIYV), little cherry virus 1 (LChV-1), little cherry virus 2
(LChV-2), persimmon virus B (PeVB), pineapple mealybug wilt-associated virus 1 (PMWaV-1), plum bark
necrosis stem pitting-associated virus (PBNSPaV), potato yellow vein virus (PYVV), raspberry leaf mottle
virus (RLMV), strawberry pallidosis-associated virus (SpaV), sweet potato chlorotic stunt virus (SPCSV),
tomato chlorosis virus (ToCV), tomato infectious chlorosis virus (TICV).

3.4. Recombination Analysis

Recombination events supported by at least six of the nine algorithms applied in RDP4 [21]
were considered as possible events (Table 3; complete list in shown in Supplementary Material).
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Significant evidence of three events was found (Table 3). For the US isolate, the recombinant region
covered a part of ORF2 (1b protein) and stretched to ORF3 (p6 protein), involving the BC28074 and GR
lineages as major and minor parents, respectively. In contrast, G55 is a product of a recombination
event between the US and GR lineages, with a predicted recombinant area covering almost the entirety
of the 1a/1b coding area (Table 3).

Table 3. Recombination analysis of BcLRaV-1 isolates.

Predicted
Recombinant

Isolate

Position of the
Recombinant Part

(Predicted
Breakpoints)

Putative Parental
Isolates 1 Detection Method

Major
Parent

Minor
Parent R

D
P

G
EN

EC
O

N
V

B
oo

ts
ca

n

M
ax

ch
i

C
hi

m
ae

ra

Si
Ss

ca
n

Ph
yl

Pr
o

LA
R

D

3S
eq

G55 45–9957 Unknown
(US) GR 1.1 ×

10−52 NS 2 5.1 ×
10−40

2.2 ×
10−15

4.6 ×
10-33

2.3 ×
10-84 NS 2 NS 2 1.6 ×

10−5

US 7701–10,345 BC28074 GR 2.7 ×
10−5 NS 2 2.3 ×

10−2
1.5 ×
10−4

7.5 ×
10−6

5.8 ×
10−4 NS 2 4.3 ×

10-51
2.2 ×
10−5

US 4514–4729 GR G55 1.0 ×
10−3

2.5 ×
10−2

7.2 ×
10−3 NS 2 4.3 ×

10−2
8.5 ×
10−9 NS 2 NS 2 4.1 ×

10−2

1 Major and minor parents—predicted contribution of the larger and smaller sequence fragments, respectively, 2

NS—no support detected.

Recombination is one of the mechanisms facilitating viral evolution. For several closteroviruses
and ampeloviruses, recombination events have been identified [14,33]. Isolates from black or red
currant were involved in the recombination process, suggesting a complex evolutionary history
for BcLRaV-1. The number of analyzed isolates was, however, too low to trace any patterns in
diversity and their possible relationships. A further, thorough investigation should involve additional
whole-genome sequences, given the possible misidentification of potential recombinant sequences
(one of the identified parents might be of recombinant origin; see Supplementary Material).

3.5. Transmission Electron Microscopy

After particle purification of BC28074-positive leaf material showing leafroll symptoms
(Figure 6a), long thread-like particles were visualized (Figure 6b), typical for members of the family
Closteroviridae [15], with the most frequent length being 1500 nm and the most frequent width being ca.
11 nm (n = 125).
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Figure 6. (a) Leafroll symptoms on the black currant plant, 28074: downward curling of leaf margins
and interveinal red coloration (Switzerland, July 2017); (b) individual particles obtained after viral
particle enrichment of the black currant 28074 leaf material. The scale bar represents 100 nm.
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4. Conclusions

Several diverse closterovirid isolates were identified in the currant in Europe and North America.
Sequence analyses of the whole genome, as well as phylogenetic inference, confirmed that they
all belonged to a novel species of the genus Closterovirus, family Closteroviridae, tentatively named
blackcurrant leafroll associated virus 1 (BcLRaV-1). The presence of the virus was further confirmed
using electron microscopy and via sequencing of RT-PCR amplicons. Sequence comparison of all
genes revealed high molecular variability across isolates (Figure 3), with p13, a protein of unknown
function, being the least conserved. The phylogenetic analyses of selected proteins revealed topological
differences between the trees based on the 1b and CP/HSP70h (Figure 5), potentially presenting the
evidence of potential intraspecies recombination events. Indeed, several possible recombination
points were located between the black and red currant isolates (Table 3). This may indicate complex
transmission routes that enabled the coinfection of a single host by the hypothetical parental genomes
in the past. Nevertheless, recombination analysis involving a wider dataset is required to understand
the evolutionary process giving rise to the virus genome.

The nearly identical US and SLO isolates (Figure 3) may reflect a long-distance movement of
virus-infected Ribes plants. Further investigation should evaluate whether or not the divergent isolates
have different pathogenicity capacities.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/10/7/369/s1,
Table S1: Recombination analysis of BcLRaV-1 isolates.xslx.
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