
Copyright © 2023 by The Korean Society of Nephrology
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial and No Derivatives License (http://
creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted non-commercial use, distribution of the material without any modifications, 
and reproduction in any medium, provided the original works properly cited.

Background: Kidney organoids derived from human pluripotent stem cells (hPSCs) contain multilineage nephrogenic progenitor cells and 
can recapitulate the development of the kidney. Kidney organoids derived from hPSCs have the potential to be applied in regenerative medi-
cine as well as renal disease modeling, drug screening, and nephrotoxicity testing. Despite biotechnological advances, individual differences 
in morphological and growth characteristics among kidney organoids need to be addressed before clinical and commercial application. In 
this study, we hypothesized that an automated noninvasive method based on deep learning of bright-field images of kidney organoids can 
predict their differentiation status. 
Methods: Bright-field images of kidney organoids were collected on day 18 after differentiation. To train convolutional neural networks 
(CNNs), we utilized a transfer learning approach. CNNs were trained to predict the differentiation of kidney organoids on bright-field images 
based on the messenger RNA expression of renal tubular epithelial cells as well as podocytes. 
Results: The best prediction model was DenseNet121 with a total Pearson correlation coefficient score of 0.783 on a test dataset. W classi-
fied the kidney organoids into two categories: organoids with above-average gene expression (Positive) and those with below-average gene 
expression (Negative). Comparing the best-performing CNN with human-based classifiers, the CNN algorithm had a receiver operating char-
acteristic-area under the curve (AUC) score of 0.85, while the experts had an AUC score of 0.48. 
Conclusion: These results confirmed our original hypothesis and demonstrated that our artificial intelligence algorithm can successfully rec-
ognize the differentiation status of kidney organoids. 
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Introduction 

Organoids are self-organizing three-dimensional (3D) ag-

gregations of cells that represent the structure and function 

of organs and can be generated from human pluripotent 

stem cells (hPSCs) in vitro [1–5]. Kidney organoids derived 

from hPSCs contain multilineage nephrogenic progenitor 

cells and can recapitulate the development of the kidney 

[6]. A direct comparison of gene expression and localiza-

tion between kidney organoids in vitro and human kidneys 

revealed that podocytes derived from hPSCs resemble 

podocytes in vivo at the capillary loop stage of glomerular 

development [6]. Kidney organoids derived from hPSCs 

can be used in regenerative medicine as well to model re-

nal diseases, function in drug screening, and evaluate the 

nephrotoxicity of compounds [7–12]. 

Despite biotechnological advances, individual differ-

ences in the morphological and growth characteristics of 

kidney organoids, despite culture for the same time period 

and in the same well, have to be addressed prior to their 

clinical and commercial use [13]. A method for selecting 

highly matured kidney organoids is required to obtain re-

producible and credible data from kidney organoid experi-

ments. 

To assess maturity based on the morphological and growth 

characteristics of kidney organoids, immunohistochemistry, 

immunofluorescence microscopy, and transcriptomic anal-

ysis using real time (RT) polymerase chain reaction (PCR) or 

single-cell RNA sequencing analysis have been used [13,14]. 

However, these traditional analytic tools necessitate the 

destruction of cells within kidney organoids. Analysis of the 

morphological or growth characteristics of kidney organoids 

in a living state is essential. 

In this study, we hypothesized that basic-contrast bright-

field optical microscopy images could be used to assess the 

differentiation status of kidney organoids. Because manual 

selection under a microscope with bright-field imaging is 

subjective and results in variability between observers, a 

deep learning approach based on bright-field is required 

[13–17]. In this study, we demonstrated that an automated 

noninvasive method based on bright-field deep learning 

was able to predict the differentiation status of kidney or-

ganoids. 

We used a convolutional neural network (CNN)-based 

approach to analyze organoid images. The CNN compris-

es convolutional layers that determine the relationships 

between spatially adjacent regions of the images. This ap-

proach has been used in a variety of fields in biology and 

medicine. For example, this approach has been applied to 

classify skin cancer and detect diabetic retinopathy in reti-

nal fundus images [18,19]. Inspired by these examples, we 

hypothesized that a CNN would be able to extract sufficient 

information about tissue specification from bright-field im-

ages. Therefore, we utilized a CNN to predict the differen-

tiation of kidney organoids and compare its classification 

performance with that of experts. 

Methods 

Kidney organoid differentiation 

WTC11 induced pluripotent stem cell (iPSC) between 

passages 30 and 60 were used. Kidney organoid differen-

tiation was induced as described previously [7]. In brief, 

iPSCs were plated at a density of 5,000 cells/well in a 24-

well plate in mTeSR1 medium (Stem Cell Technologies) + 

10 µM Y27632 (LC Laboratories) on plates (SPL Life Sci-

ences) coated with 1% GelTrex (Thermo Fisher Scientific) 

(day –3). The medium was exchanged with 1.5% GelTrex in 

mTeSR1 (day –2), mTeSR1 (day –1), RPMI (Thermo Fisher 

Scientific) + 12 µM CHIR99021 (Tocris, Bristol, UK) (day 0), 

or RPMI + B27 supplement (Thermo Fisher Scientific) (day 

1.5) and cells were fed every 2–3 days to promote kidney 

organoid differentiation. Organoids were analyzed on day 

18.  

Immunofluorescence analysis  

For immunofluorescence, organoids were fixed on day 18 

unless otherwise noted. For fixation, phosphate-buffered 

saline (PBS; Thermo Fisher Scientific) + 4% paraformal-

dehyde (Electron Microscopy Sciences) was added to the 

medium for 15 minutes, after which the samples were 

washed three times with PBS. Fixed organoid cultures were 

blocked in 5% donkey serum (Millipore, Burlingto) + 0.3% 

Triton-X-100/PBS, incubated overnight in 3% bovine se-

rum albumin (SigmaAldrich, St. Louis) + PBS with primary 

antibodies, washed, incubated with AlexaFluor secondary 

antibodies (Invitrogen), washed, and stained with DAPI or 

mounted in Vectashield H-1000. Images were acquired us-
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ing a Zeiss LSM 700 confocal microscope (Carl Zeiss) and 

ZEN 3.1 software. 

The following primary antibodies were used: anti-E-cad-

herin (ECAD) (1:100, ab11512; Abcam), anti-LTL (1:100, FL-

1321; Vector Labs), and anti-nephrosis 1 (NPHS1) (1:100, 

AF4269; R&D System). 

Quantitative real time polymerase chain reaction 

Kidney organoid samples were harvested, and total RNA 

from each sample was isolated using an RNAiso Plus Kit 

(Takara) according to the manufacturer’s instructions. Com-

plementary DNA (cDNA) was synthesized using a Maxima 

First Strand cDNA Synthesis kit for RT-qPCR (Thermo Fish-

er Scientific). Gene expression was analyzed with Power 

SYBR Green PCR Master Mix (Applied Biosystems) using 

real-time PCR (Applied Biosystems). Specific primers used 

were: human synaptopodin (SYNPO), F-5’ GCTGAGGAG-

GTGAGATGCAG and R-5’ CTCTGGAGAAGGTGCTGGTG; 

NPHS1, F-5’ GGCTCCCAGCAGAAACTCTT and R-5’ CA-

CAGACCAGCAACTGCCTA; sodium-glucose cotransport-

er 2 (SGLT2), F-5’ GGGTTACGCCTTCCACGAG and R-5’ 

AGATGTTTCCCACGGCTGG; gamma-glutamyltransferase 

1 (GGT1), F-5’ TGACCTTCAGGAGAACGAGA and R-5’ 

TCTTCTTCATGGCTCTGCGT; ECAD, F-5’ CGAGAGCTA-

CACGTTCACGG and R-5’ GGGTGTCGAGGGAAAAATAGG; 

and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 

F-5’ AGGGCTGCTTTTAACTCTGGT and R-5’ CCCCACTT-

GATTTTGGAGGGA. All quantitative RT-PCR (qRT-PCR) re-

actions were performed in triplicate and relative messenger 

RNA (mRNA) expression levels were determined using the 

2-ΔΔCt method. 

Dataset preprocessing 

We preprocessed the kidney organoid dataset as described 

below before introducing the bright-field images of kidney 

organoids into our proposed deep neural network model. 

Because the considered bright-field images of kidney or-

ganoids contain noisy regions, e.g., floating inclusions, we 

cropped all regions except the organoid region. We also 

used this cropping process to register the positions of the 

different organoids. For preprocessing of input dimen-

sions, we used zero padding on cropped bright-field imag-

es of kidney organoids to avoid losing spatial information 

present for each image. Most typical methods, e.g., resiz-

ing, prevent the model from extracting spatially relevant 

features. Additionally, we applied min-max normalization 

to the bright-field images of the kidney organoid and qRT-

PCR expressions. We also augmented the training images 

by flipping the images horizontally and vertically and rotat-

ing these images 90°. 

Proposed prediction method 

Differentiation of kidney organoids based on bright-field 

images was predicted using CNNs. We utilized a transfer 

learning-based approach with four well-performing mod-

els (ResNet50 [20], InceptionV3 [21], EfficientNetB5 [22], 

and DenseNet121 [23]) pretrained on ImageNet [24]. Res-

Net50 could solve the problem of vanishing or exploding 

gradients with skip connections. These add the input to the 

output after weight layers. InceptionV3 aims for less com-

putational power by optimizing the network using a variety 

of strategies such as factorized convolutions and dimen-

sion reduction. 

EfficientNetB5 is a model that is constructed by efficient-

ly balancing the layer scaling factors like width, depth, and 

image resolution. DenseNet121 contains densely connect-

ed layers and these connections create strong supervision, 

allowing the connections to obtain information related to 

the differentiation status of kidney organoids on bright-

field images. While these models’ hyper-parameters are 

optimized to maximize their regression performance with 

regard to predicting the differentiation of kidney organoids, 

we performed comparison studies to determine which 

model exhibited the best predictive performance for dif-

ferent biomarkers of kidney organoids. To assess the pre-

dictive performance of the CNN models, we used Pearson 

correlation coefficient (PCC) scores. PCC scores can be 

used to measure the linear correlation between actual and 

predicted values and can be expressed as: 

where Y and Y
^
 are the actual and predicted qRT-PCR ex-

pression values, respectively; Cov is the covariance; and 

σY is the standard derivation of Y. We validate our method 

with five-fold cross-validation by splitting the dataset into 

five nonoverlapping subsets. 

PCC = ,
Cov (Y, Y

^
)

σYσY
^
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The above method of optimizing CNN models according 

to specific and various substructures of organoids was used 

as a biomarker selection criterion. We determined the op-

timal biomarkers in each substructure of kidney organoids, 

such as podocytes and proximal tubules, by comparing the 

performance of deep learning models. We evaluated two 

biomarkers for each substructure and selected one of these 

to determine whether the kidney organoids were highly 

differentiated using deep learning. 

Last, we adopted a gradient-based class activation map-

ping (gradCAM) method to further evaluate the proposed 

model’s visual contributions to the prediction results [25]. 

To validate the gradCAM method, we implemented a qual-

itative comparison using immunofluorescence images of 

kidney organoids. As long as the substructure of kidney 

organoids was correctly highlighted, we were able to deter-

mine their differentiation status in a noninvasive manner 

using gradCAM. 

Proposed classification method 

To verify that our proposed method can potentially be 

utilized to guide the selection of biomarkers for predicting 

the differentiation of kidney organoids, we compared its 

performance to those of experts. Organoid images were 

used; images with above-average quantitative PCR (qPCR) 

expression were labeled as Positive, and images with be-

low-average expression were labeled as Negative. 

Accuracy, sensitivity, specificity, F1 score, receiver op-

erating characteristic (ROC)-area under the curve (AUC), 

and the time required to perform the task were compared 

between our algorithm and experts. Accuracy is a statistical 

measure that refers to the proportion of correct determina-

tions divided by the total number of images in the dataset. 

Sensitivity is defined as the true positive rate of all images 

with a condition, and specificity is defined as the true neg-

ative rate of all images that did not have a condition. The F1 

score is the harmonic mean of the sensitivity and precision, 

which in this study referred to the proportion of correct 

positive predictions divided by the number of total images 

that were positive. The AUC score is calculated as the area 

under ROC curves where the false positive rate versus the 

true positive rate was plotted for different threshold values. 

The Student t test was used in the between-group analysis. 

The tested null hypothesis was that two independent sam-

ples would have identical averages and the populations 

would have identical variance. The p-value indicates the 

probability of observation above the extreme values if the 

hypothesis is true.  

Results  

Differentiation of human induced pluripotent stem 
cell-derived kidney organoids and the collection of the 
training dataset 

To generate kidney organoids derived from human iPSCs, 

we applied an adherent culture differentiation protocol 

(Fig. 1A). On day 18 of differentiation, human iPSC-derived 

kidney organoids had discrete nephron-like structures 

consisting of podocytes, proximal tubules, and distal tu-

bules (Fig. 1B). Bright-field microscopy showed that the 

kidney organoids had different morphologies (distribution 

of podocytes, proximal tubules, and distal tubules) from 

one another despite differentiation for the same amount 

of time (18 days) (Fig. 2A). Given our hypothesis that the 

morphology of kidney organoids obtained by bright-field 

microscopy reflects the gene expression of podocytes, 

proximal tubules, and distal tubules, we performed a pre-

liminary experiment. An expert-selected 15 kidney organ-

oids with “good morphology” and 15 kidney organoids with 

“unsatisfactory morphology” according to bright-field mi-

croscopy morphology (Fig. 2B); and qPCR was performed 

using primers targeting podocyte-, proximal tubule-, and 

distal tubule-specific genes (Fig. 2C). Fig. 2C shows that the 

gene expression of NPHS1 and SYNPO (podocyte markers), 

SGLT2 and GGT1 (proximal tubular markers), and ECAD 

(distal tubular marker) were significantly increased in 

kidney organoids with a “good morphology” compared to 

those with an “unsatisfactory morphology.” These findings 

suggest that accurate analysis of morphology by bright-

field microscopy could predict the degree of differentiation 

of kidney organoids. 

For an objective analysis of the bright-field images of 

the kidney organoids, approximately 150 kidney organ-

oids were differentiated and analyzed. To train our model 

and label the dataset, we collected bright-field images for 

each kidney organoid on day 18 of differentiation and per-

formed qPCR using podocyte-, proximal tubule-, and distal 

tubule-specific primers. 

78 www.krcp-ksn.org

Kidney Res Clin Pract 2023;42(1):75-85



Figure 1. Kidney organoid differentiation. (A) Kidney organoid differentiation protocol. Kidney organoids were analyzed on day 18 of 
differentiation. (B) Immunofluorescence staining images show that podocytes NPHS1, proximal tubules (LTL), and distal tubules (ECAD) 
were evenly distributed in the kidney organoid. 
ECAD, E-cadherin; iPSC, induced pluripotent stem cell; NPHS1, nephrosis 1.

Convolutional neural network can predict the differentia-
tion of kidney organoids 

We conducted experiments with several CNN models 

to predict the differentiation of kidney organoids. As the 

feature extractors, four CNN models, i.e., ResNet50, Incep-

tionV3, EfficientNetB5, and DenseNet121, were trained 

using the kidney organoid dataset. To compare the predic-

tion performance of the above models, we used the PCC; 

+1 indicates a complete positive linear correlation; and the 

closer the value is to +1, the better the performance of the 

deep learning model. Furthermore, we employed a five-

fold cross-validation method for each model to evaluate 

its predictive ability by averaging the prediction results for 

each data fold set to improve the reliability of the results. 

We predicted the qPCR expressions of the following bio-

markers: NPHS1, SYNPO, SGLT2, GGT1, and ECAD. Quan-

titative results, namely the average and standard deviation 

values of PCC scores for estimating the qPCR expression 

values of kidney organoids on the testing set, are provided 

in Table 1. DenseNet121 achieved remarkable performance 

for all biomarkers except NPHS1, and EfficientNetB5 

slightly outperformed DenseNet121 by 0.022 with regard 

to the qPCR expression of NPHS1. DenseNet121 was the 

optimal model for predicting the differentiation of kidney 

organoids and extracting features from bright-field images 

of the organoids. We confirmed that the total PCC score 

of DenseNet121 was 0.783; this indicates a strong positive 

relationship between actual and predicted values. These 

results suggest that a deep learning method overcomes 

AA
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Day 2Day 1Day 0
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+ 10 µM Y27632
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Table 1. Comparison of Pearson correlation coefficient scores among convolutional neural network models

Biomarker
Deep learning

ResNet50 InceptionV3 EfficientNetB5 DenseNet121
Score p-value Score p-value Score p-value Score p-value

Podocyte
  NPHS1 0.637 ± 0.295 0.12 0.605 ± 0.237 0.05 0.778 ± 0.075 <0.05 0.756 ± 0.128 <0.05
  SYNPO 0.524 ± 0.257 0.11 0.550 ± 0.161 <0.05 0.671 ± 0.199 <0.05 0.719 ± 0.133 <0.05
Proximal tubule
  SGLT2 0.792 ± 0.045 <0.05 0.691 ± 0.115 <0.05 0.786 ± 0.100 <0.05 0.874 ± 0.054 <0.05
  GGT1 0.786 ± 0.087 <0.05 0.436 ± 0.109 0.08 0.602 ± 0.174 <0.05 0.805 ± 0.110 <0.05
Distal tubule
  ECAD 0.648 ± 0.078 <0.05 0.681 ± 0.081 <0.05 0.644 ± 0.153 <0.05 0.760 ± 0.049 <0.05
Total 0.677 ± 0.113 0.593 ± 0.105 0.696 ± 0.082 0.783 ± 0.059

Data are expressed as mean ± standard deviation.
ECAD, E-cadherin; GGT1, gamma-glutamyltransferase 1; NPHS1, nephrosis 1; SGLT2, sodium-glucose cotransporter 2; SYNPO, synaptopodin.

Figure 2. Comparison of the morphology and gene expression levels of kidney organoids. (A) Organoids were visually selected and 
classified into two categories, satisfactory and unsatisfactory morphology, and stained with NPHS1, LTL, and ECAD antibodies for im-
munofluorescence staining. NPHS1, LTL, and ECAD were evenly expressed in organoids with a satisfactory morphology, whereas in un-
satisfactory morphology organoids, these markers had reduced or biased expression levels (scale bar = 200 μm). (B) The top 10% and 
bottom 10% of the organoid bright-field images were compared (scale bar = 200 μm). (C) Gene expression levels of NPHS1, SYNPO 
(podocyte markers), SGLT2, GGT1 (proximal tubular markers), and ECAD (distal tubular marker) in (B) were compared and are present-
ed in a graph.
ECAD, E-cadherin; NPHS1, nephrosis 1; SGLT2, sodium-glucose cotransporter 2; SYNPO, synaptopodin.
*p < 0.05, **p < 0.01.

the limitation of predicting qPCR expression using only 

two-dimensional (2D) microscopic image data of kidney 

organoids. 

In addition, there was a high correlation between actual 

and predicted values when SGLT2 was predicted using 

DenseNet121; the average PCC score was 0.874. In this 

way, we developed an appropriate deep learning model 

(DenseNet121) to analyze the differentiation of kidney or-
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ganoids.  

As several biomarkers can be used to evaluate the differ-

entiation of kidney organoid substructures, we developed 

criteria for selecting the most suitable biomarkers using 

deep learning. As shown in Fig. 3A, prediction performance 

was compared by assessing the correlations between the ac-

tual and predicted qPCR expression levels of the biomarkers 

NPHS1 and SYNPO, which are expressed in podocytes. All 

CNN models showed a better ability to predict the expres-

sion of NPHS1 than of SYNPO. For example, the PCC score 

of EfficientNetB5 for predicting the expressions of NPHS1 

was 0.778, while the PCC of the best model for SYNPO, i.e., 

DenseNet121, was 0.719. Similarly, all CNN models better 

predicted the expressions of SGLT2 than of GGT1 (biomark-

ers indicating the degree of differentiation of the proximal 

tubule), with DenseNet121 yielding a PCC score of 0.874 for 

SGLT2 (Fig. 3B). These results indicate that the expression 

of NPHS1, SGLT2, and ECAD can be utilized to analyze the 

differentiation of kidney organoid substructures, i.e., podo-

cytes, proximal tubules, and distal tubules, respectively, in a 

noninvasive manner. 

We further compared immunofluorescence images with 

activation maps to predict qPCR expressions. We employed 

gradCAM, which highlights regions on the CNN model’s 

activation map to predict expression. In other words, grad-

CAM, utilizing the gradient information of parameters and 

feature maps in the internal layers of the network, can be 

used to interpret the decision-making for predicting the 

qPCR expressions. Immunofluorescence images of kidney 

organoids and the activation maps of the proposed model 

for predicting the expression of selected biomarkers, i.e., 

NPHS1, SGLT2, and ECAD, are shown in Fig. 4. Red, white, 

and green regions in the immunofluorescence images 

correspond to NPHS1, SGLT2, and ECAD expression, re-

spectively; these images demonstrate that the activation 

maps focused attention on the appropriate regions. This 

highlights the importance of activation maps in accurately 

predicting qPCR expression. 

Convolutional neural network is more beneficial for clas-
sification of kidney organoids compared to human classi-
fiers 

To compare the performance of our DenseNet121 model 

with that of experts, we requested that two independent 

experts assign the following labels to kidney organoids: 

“useful organoids (Positive)” or “nonuseful organoids 

(Negative).” As shown in Fig. 5A, we employed metrics of 

accuracy, sensitivity, specificity, F1 score, and AUC to eval-

uate the classification performance of the experts and the 

proposed model. Comparing the best-performing CNN 

with human-based classifiers, the CNN algorithm had an 

accuracy of 76.67%, while the experts had an accuracy of 

48.94% in classifying the organoids. DenseNet121 had an 

AUC average score of 0.85, while the experts had an AUC 

score of 0.48. 

Times needed by the experts and our CNN to classify 

organoids are shown in Fig. 5B. The experts required 1.04 

Figure 3. Comparison of biomarkers in the various substructures of kidney organoids. (A) Prediction results for podocytes (NPHS1, 
SYNPO). (B) Prediction results for proximal tubules. The convolutional neural network as a whole predicted NPHS1 and SGLT2 expres-
sion better than it did SYNPO and GGT1 expression.
GGT1, gamma-glutamyltransferase 1; NPHS1, nephrosis 1; SGLT2, sodium-glucose cotransporter 2; SYNPO, synaptopodin.

AA BB
NPHS1 SYNPO SGLT2 GGT1
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seconds to empirically judge the differentiation of kidney 

organoids using morphological information from bright-

field images. In contrast, the deep learning model required 

0.014 seconds to generate highly accurate classification 

results. This indicates that our noninvasive analysis tech-

nique is suitable for assessing the differentiation of kidney 

organoids in real-time. 

Discussion 

Despite the advances in differentiating kidney organoids 

from hPSCs, these organoids are still immature compared 

with human adult kidneys. Kim et al. [6] reported that 

hPSC-podocytes of kidney organoids have junction-rich 

basal membranes with junctional migration and microvil-

lus-rich apical membranes but do not form bona fide foot 

processes with tertiary interdigitations seen in the capil-

lary loop stage of glomerular development in the human 

kidney. Using single-cell transcriptomic analysis, Wu et al. 

[26] demonstrated that kidney organoid cells are immature 

compared with fetal and adult human kidneys, and 10% 

to 20% of kidney organoid cells are nonrenal, “off-target” 

cells. Kim et al. [27] showed that the hPSC-proximal tubule 

of kidney organoids has a resorption function similar to 

that of in vivo, but the barrier function of tubular structures 

is still immature.  

To overcome the immaturity and the clinical application 

of kidney organoids for nephrotoxicity testing or regener-

ative medicine, an advanced protocol to generate highly 

matured kidney organoids similar to adult human kidneys 

is required. Predicting the maturity and selecting matured 

kidney organoids may also be an attractive option for their 

clinical use [28]. 

In this study, we proposed a deep learning-based nonin-

vasive method for accurate and rapid prediction of kidney 

organoid differentiation. 

We first utilized different CNN models as feature ex-

tractors to predict the mRNA expressions of specific kidney 

biomarkers using morphological information present in 

bright-field images of kidney organoids. We employed the 

Figure 4. Visual interpretation of the convolutional neural network model’s decision-making based on immunofluorescence mi-
croscopic images. Representative confocal images of kidney organoids with a “satisfactory morphology.” Representative images of 
the gradient-weighted class activation mapping (gradCAM) of podocyte, proximal tubule, and distal tubule in kidney organoids with a 
“satisfactory morphology.” Representative confocal images of kidney organoids with an “unsatisfactory morphology.” Representative 
images of the gradCAM of podocyte, proximal tubule, and distal tubule in kidney organoids with an “unsatisfactory morphology.” 
ECAD, E-cadherin; NPHS1, nephrosis 1.
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gradCAM method to highlight regions in immunofluo-

rescence images in which to predict gene expression and 

identified an optimal CNN model suitable for identifying 

well-differentiated kidney organoids. Our proposed CNN 

model was more accurate and faster at classification than 

were the experts. 

Previous studies reported the utilization of deep learning 

in the field of organoid technology [13–17]. To predict the 

differentiation status of retina organoids, Kegeles et al. [13] 

trained CNNs on bright-field images of retina organoids 

labeled with RxGFP and divided organoids into retina and 

non-retina based on fluorescent reporter gene expression. 

Their deep learning-based computer algorithm to predict 

retinal differentiation in stem cell-derived organoids based 

on bright-field imaging, performed better than the expert 

in predicting retina organoid fate [13]. 

We predicted the differentiation level of kidney organ-

oids based on mRNA expression levels rather than 2D con-

focal images of kidney organoids as in a previous study. In 

kidney organoids, the prediction of differentiation based 

on 2D confocal images has some disadvantages. Because 

kidney organoids are 3D structures, 2D confocal images 

might not accurately reflect tubular structures or podocytes 

and vascular networks and can be unsuitable for obtaining 

quantitative biomarker expression data. Furthermore, the 

predictive power of deep learning based on 2D confocal 

images can be weakened by the lack of a clear consensus 

of criteria that can be used to assess the differentiation of 

kidney organoids from 2D confocal images. 

However, prediction based on mRNA expression levels 

has several advantages. mRNA expression levels represent 

the levels in the entire kidney organoids. Quantitative data 

for 6 to 10 genes can be obtained simultaneously for one 

kidney organoid, which facilitates the comparison of vari-

ous biomarkers among kidney organoids. For this reason, 

we chose to assess the differentiation level of kidney or-

ganoids based on mRNA expression levels rather than 2D 

confocal images. 

However, prediction based on mRNA expression levels 

does have some limitations. First, protein expression and 

Figure 5. Comparison of a human-based classifier and CNN-based classifier. (A) Evaluation of the classification performance with 
accuracy, sensitivity, specificity, F1 score, and AUC. (B) Times needed by the experts and our CNN to classify organoids. CNN classified 
organoids about 74 times faster than experts.
AUC, the area under the receiver operating characteristic curve; CNN, convolutional neural network.
* p < 0.05, **p < 0.01.
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the structural development stage of the kidney organoids 

are not necessarily correlated with mRNA expression lev-

els. The development of CNN models based on the combi-

nation of mRNA expression levels and 2D confocal images 

can increase the accuracy of prediction of the differentia-

tion status of kidney organoids. Second, to assess the pre-

cise maturity of kidney organoids, analysis of cell-to-cell 

interaction and function of kidney organoids is essential. 

However, the CNN model based on mRNA expression in 

this study is limited to predicting the cell-to-cell interaction 

and function of kidney organoids. In addition, in terms 

of the CNN-based approach, there is a limit to analyzing 

3D-shaped organoids only in 2D bright-field images. The 

advanced CNN models to predict the cell-to-cell interac-

tion based on single-cell RNA sequencing analysis as well 

as predict the functionality of kidney organoids are needed. 

In conclusion, we demonstrated that a CNN model could 

accurately predict kidney organoid differentiation based 

on the analysis of simple bright-field images of kidney or-

ganoids. This noninvasive and nondestructive prediction 

method may accelerate the transition of kidney organoid 

technology “from the bench to the bedside.” 
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