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Abstract
Background: Streptococcus pneumoniae is the leading cause of bacterial meningitis. Pneumococcal
meningitis is associated with the highest mortality among bacterial meningitis and it may also lead
to neurological sequelae despite the use of antibiotic therapy. Experimental animal models of
pneumococcal meningitis are important to study the pathogenesis of meningitis, the host immune
response induced after infection, and the efficacy of novel drugs and vaccines.

Results: In the present work, we describe in detail a simple, reproducible and efficient method to
induce pneumococcal meningitis in outbred mice by using the intracranial subarachnoidal route of
infection. Bacteria were injected into the subarachnoid space through a soft point located 3.5 mm
rostral from the bregma. The model was tested with several doses of pneumococci of three
capsular serotypes (2, 3 and 4), and mice survival was recorded. Lethal doses killing 50 % of animals
infected with type 2, 3 and 4 S. pneumoniae were 3.2 × 10, 2.9 × 10 and 1.9 × 102 colony forming
units, respectively. Characterisation of the disease caused by the type 4 strain showed that in
moribund mice systemic dissemination of pneumococci to blood and spleen occurred. Histological
analysis of the brain of animals infected with type 4 S. pneumoniae proved the induction of meningitis
closely resembling the disease in humans.

Conclusions: The proposed method for inducing pneumococcal meningitis in outbred mice is
easy-to-perform, fast, cost-effective, and reproducible, irrespective of the serotype of
pneumococci used.

Background
Bacterial meningitis is an important infection of the cen-

tral nervous system (CNS), and the three major responsi-
ble bacteria are Neisseria meningitidis, Haemophilus
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influenzae and Streptococcus pneumoniae [1]. Despite the
use of antimicrobial therapy, pneumococcal meningitis
(PM) has the highest case-fatality rate (up to 30 %) for
bacterial meningitis, and in 27 % of cases, it leads to seri-
ous neurological sequelae, including cognitive impair-
ment [2,3]. Development of PM generally starts from
pneumococcal colonisation of the nasopharynx, which is
the natural reservoir of S. pneumoniae in humans and
especially in children [4]. The pathogenic steps leading to
PM include invasion of the bloodstream from the
nasopharyngeal mucosa, survival in the blood, and subse-
quent entry into the CNS by crossing the blood-brain-bar-
rier (BBB) [1,2]. However, PM can also be caused by either
contiguous spread of pneumococci infecting the sinuses
or the middle ear, or accidental traumatic inoculation of
bacteria into the CNS [2]. A recent paper showed that
non-hematogenous invasion of the brain by S. pneumo-
niae in mice may also occur through retrograde axonal
transport along olfactory neurons [5]. Once the pneumo-
coccus starts replicating in the cerebrospinal fluid (CSF),
severe inflammation occurs in cerebral vessels and sub-
arachnoid space, and damage to the brain parenchyma is
produced [1,2].

Animal models of PM have been developed in order to: (i)
characterise the pathogenesis of meningitis, (ii) analyse
the role of pneumococcal virulence factors in the disease,
(iii) understand the host immune response to S. pneumo-
niae infection, and (iv) test the efficacy of novel antibiotics
and vaccine candidates. Both infant and adult rats [6-9],
and also adult rabbits [10-13] have largely been employed
as animal models to characterise PM induced by intrac-
isternal inoculation of bacteria. Infant rats have also been
used to study haematogenous meningitis following intra-
peritoneal infection with S. pneumoniae [14]. However,
models of PM have also been developed in the mouse by
using the following routes of infection: (i) intraperitoneal
(i.p.) [15-17], (ii) intranasal (i.n.) [18,19], or (iii) intrac-
ranial (i.c.) parenchymal [20,21] or cisternal [22,23].
Haematogenous murine meningitis models (both i.p. and
i.n.) allow to study PM pathogenesis, and i.n. models are
particularly useful as they mimic the natural infection
route of S. pneumoniae in humans. However, those models
present the disadvantage that PM is induced in about half
of the animals, while the remaining mice may die of sepsis
without developing meningitis. Models of meningitis
induced by the i.p. route were employed to carry out ther-
apeutic studies [16] and investigations on PM pathogene-
sis [15,17]. The i.n. model by Zwijnenburg et al. [19] was
employed in interleukin (IL)-10, IL-18, and IL-1 receptor
deficient mice to investigate the role of different cytokines
in PM [24-26]. Direct induction (i.c. route) of PM mimics
meningitis caused by contiguous spread from the sinuses
or traumatic entrance of pneumococci into the CNS and
allows to study the host-parasite interaction in the brain.

Besides an early model of i.c.-induced meningitis in mice
[20] employed in therapeutic studies [6,20], the model by
Gerber et al. is an useful and reliable system for causing
PM in the mouse [21]. Following infection of C57BL/6
inbred mice into the right lobe of the brain with type 3
pneumococci, bacterial enumeration in different organs,
brain histology, behavioural tests, and clinical scores were
performed [21]. A model of intracisternal infection was
described by Koedel et al., who induced meningitis via
inoculation of S. pneumoniae (type 3) into the cisterna
magna of C57BL/6 mice and investigated the function of
nitric oxide in the disease [23]. Both models, largely
employed in studies on the roles of both pneumococcal
[27] and host factors [28-32] in PM, rely on the use of
inbred mouse strains and type 3 pneumococci.

In the present study, we describe an experimental model
of PM in outbred mice based on the direct inoculation of
bacteria into the subarachnoid space through a soft point
located 3.5 mm rostral from the bregma. Both the tech-
nique employed for infection and the anatomical coordi-
nates of the inoculation site are accurately described. The
model was tested with pneumococcal strains of three dif-
ferent capsular serotypes and it was characterised in detail
by using TIGR4 (type 4) as a model strain. The proposed
method is precise, simple, cost-effective, fast and repro-
ducible, and the disease induced closely resembles PM in
humans.

Results
Inoculation site and technique
The bregma is the intersection of the coronal and sagittal
sutures of the skull and can be recognised in mice by vis-
ual examination of the exposed skull (Fig. 1A). We inocu-
lated mice by the i.c. route through a soft point located
along the skull midline 3.5 mm rostral to the bregma (Fig.
1A). The stereotaxic coordinates of such inoculation point
are 0 mm (× plane), 3.5 mm rostral (y plane) and 2 mm
ventral (z plane) from the bregma [33]. A preliminary
study was carried out to trace diffusion of the inoculation
material from the point of injection into the brain. Three
animals were injected with 30 µl of trypan blue and sacri-
ficed 30 minutes after inoculation. Following decapita-
tion, skulls were sectioned into coronal planes, and
diffusion of trypan blue was observed (Fig. 1B). The dye
rapidly spread from the injection site into the subarach-
noid and ventricular spaces (Fig. 1B); hence, this infection
route is referred to as i.c. subarachnoidal. Histological
analysis of the brain sections confirmed that the inocula-
tion needle crossed the mouse frontal lobes and reached
the subarachnoid space (data not shown). In order to
assess whether the inoculation technique was traumatic to
animals, another experiment was performed by inoculat-
ing three control mice with saline. Animals recovered
soon after injection and did not present any neurological
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problem (i.e. lethargy, paralysis) for several weeks after
inoculation (data not shown).

These data allowed localisation of the anatomical coordi-
nates of the inoculation site and proved the suitability of
the i.c. subarachnoidal infection technique.

Meningitis induction by type 2, 3 and 4 S. pneumoniae
After characterisation of the inoculation site and tech-
nique, mice were infected with pneumococci, and the

establishment of PM was evaluated and clearly evidenced
by histological analysis (see below).

In order to test the model with different pneumococcal
serotypes, dose-dependent survival studies were per-
formed, and the lethal doses killing 50% of animals
(LD50) were calculated. We chose three commonly used S.
pneumoniae strains, such as D39, HB565, and TIGR4. The
D39 strain (type 2) is the encapsulated parent of the
rough type 2 R36A strain used by Avery [34-36]. The

Site of injection in mice inoculated via the i.c. subarachnoidal routeFigure 1
Site of injection in mice inoculated via the i.c. subarachnoidal route. Three MF1 mice were injected with 30 µl of 
trypan blue via the i.c. subarachnoidal route through a soft point located 0 mm lateral, 3.5 mm rostral and 2 mm ventral from 
the bregma. After 30 minutes, animals were sacrificed and decapitated. Their skulls were fixed in formalin, decalcified and then 
sectioned. Results from one mouse are shown. A. The exact location of the inoculation site with respect to the bregma is indi-
cated by an arrow. Location of the bregma is also shown. B. Mouse brains were cut in correspondence of the site of injection 
and then sectioned into coronal planes. Diffusion of trypan blue from the inoculation site into the subarachnoid and ventricular 
spaces is visible.
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HB565 strain (type 3) is a streptomycin-resistant deriva-
tive of the A66 strain used by Avery [34,36,37]. The sero-
type 4 TIGR4 is the genome strain sequenced by the
Institute for Genomic Research [38]. The survival patterns
of mice inoculated with D39 and HB565 were almost
identical, with LD50 of 3.2 × 10 and 2.9 × 10 colony form-
ing units (CFU), respectively (data not shown). The
TIGR4 strain was less virulent in the i.c. subarachnoidal
infection model compared to D39 and HB565, as its LD50
was 1.9 × 102 CFU (data not shown).

Animal survival and bacterial titres after infection with the 
TIGR4 strain
To describe the features of PM in detail following i.c. sub-
arachnoidal infection of mice, we chose to characterise
PM induced by the TIGR4 genome strain. For this pur-
pose, we performed time-dependent survival studies, bac-
terial counts in different organs/tissues, and histological
analysis of brain and spleen (see below). In order to study
animal survival, five groups of MF1 mice were infected
with doses of TIGR4 increasing from 10 to 105 CFU per
mouse. The percentage of animals surviving over time at
each bacterial dose was analysed by a Kaplan-Meier curve
(Fig. 2). After inoculating 10 CFU, only one mouse out of
eight died 72 hours after infection (87.5 % survival). At
the doses of 102 CFU and 103 CFU, 40 % of mice survived
pneumococcal challenge, whereas the remaining 60 %
died within 72 hours from infection. Survival further
decreased from 20 % in mice infected with 104 CFU to 0
% following infection with 105 CFU, which induced
severe symptoms and subsequent death of all mice within
the first 48 hours after challenge (Fig. 2). The median
time-to-death of the groups injected with 10, 102, 103,
104, and 105 CFU were 240, 70, 72, 72, and 40 hours,
respectively. From these results, the median survival time
of animals did not vary at intermediate doses (102, 103,
104 CFU), while it considerably decreased at the highest
dose (105 CFU) leading to rapid death of all mice.

To determine the number of pneumococci in brain,
spleen and blood at the final stages of the disease, mori-
bund mice infected with 105 CFU of TIGR4 were sacri-
ficed, samples collected and appropriately treated, and
viable counts were carried out. Moribund animals showed
comparable bacterial counts in the brain (3.1 × 106 ± 1.3
× 106 CFU/organ). Similarly, dissemination from the
brain to vital organs occurred and was consistent in all
animals, with bacterial counts of 3.8 × 106 ± 4.8 × 106 CFU
and 2.1 × 108 ± 3.0 × 108 CFU in the spleen and blood,
respectively (data not shown).

Histological characterisation of the PM model
In order to prove the establishment of PM and study the
features of the disease, we performed histological analysis
on the brain of moribund mice inoculated with several

doses of the TIGR4 strain and sacrificed at various time-
points after infection. Animals at the final stages of the
disease showed typical signs of meningitis (i.e. hunch-
backed, photophobic, lethargic), but they did not develop
hemiparesis or plegia. Moribund mice that had received
102, 103, 104, and 105 CFU were humanely killed at 72,
72, 48, and 24 hours post-infection, respectively. Two
animals for each pneumococcal dose and three additional
control mice were sacrificed. Brains and spleens were
excised and treated for both haematoxilin-eosin and
Gram staining.

In infected mice, no cerebral abscesses were observed, but
only granulocytic infiltrations involving the subarachnoid
and ventricular spaces. Differently, control animals
injected with saline showed no histological changes fol-
lowing inoculation. Brains of moribund mice following
infection with the TIGR4 strain showed different degrees
of inflammatory changes. Inflammation was regarded as
mild in the presence of marked congestion of leptomenin-
geal blood vessels with margination of polymorphonu-
clear cells (PMNs), edema, and wisps of fibrin (Fig. 3A).
Inflammation was considered severe when the subarach-
noid space (Fig. 3B,3C) and/or the ventricular spaces
(purulent ventriculitis) (Fig. 3D) contained cellular exu-
dates composed of PMNs entrapped in a dense fibrin net.
No large areas of cerebral necrosis were found; however,
in some cases, brain damage represented by neuronal
shrinkage was observed in the hippocampus (Fig. 3E).
Gram staining of brain sections of infected mice revealed
the presence of short chains (mainly diplococci) of Gram-
positive dark blue bacteria in the subarachnoid space;
pneumococci were located mainly extracellularly in a
background of PMNs (Fig. 3F). Analysis of the spleen of
animals infected with S. pneumoniae revealed histological
changes in both the white and red pulp with a massive
congestion of the red pulp (Fig. 3G), compared to the
spleen of control mice (Fig. 3H). These data demonstrate
that the i.c. subarachnoidal route of infection is an effec-
tive and reliable way for inducing PM in the mouse.

Discussion
S. pneumoniae is one of the causative agents of bacterial
meningitis responsible for death and sequelae worldwide.
The mouse has largely proved to be a reliable animal
model for studying two major pneumococcal diseases
such as pneumonia [39-44] and sepsis [45-47]. In the case
of PM, the rat [6-9,14] and the rabbit [10-13] have often
been preferred to the mouse. With the exception of an ini-
tial work describing an i.c. infection procedure for induc-
ing PM in mice in outbred mice [20], only recently,
models of PM based on i.c. inoculation were made avail-
able in inbred mice [21,23].
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In the present work, starting from an experimental
method used to study meningitis caused by Cryptococcus
neoformans [48], we developed a model of PM based on
the inoculation of bacteria into the subarachnoid space of
outbred mice. This infection route (i.c. subarachnoidal)
mimics bacterial entrance into the CNS from the sinuses
or the middle ear, or following a trauma. We chose to
inoculate mice into the subarachnoid space through a soft
point located on the skull 0 mm lateral, 3.5 mm rostral,
and 2 mm ventral from the bregma. Such point easily
allows inoculation of bacteria from the skull through the
frontal lobes into the subarachnoid space, as shown by a
preliminary experiment in which trypan blue was used to
localise the injection site and trace the inoculum within
the brain (Fig. 1). The finding that the inoculation tech-
nique did not cause any trauma to animals can be
explained by the fact that frontal lobectomy is tolerated in
both humans [49] and rats [50], as frontal lobes are
mainly committed to behavioural and cognitive func-
tions. We decided to use MF1 outbred mice because this

strain is well-known for its susceptibility to both intrana-
sal [40,51,52] and intravenous [47] challenge with S.
pneumoniae, and because the use of outbred strains is cost-
effective. Another research group had previously used CD-
1 outbred mice in a study on the efficacy of clinafloxacin
against PM; however, the authors did not provide a
detailed description of the model [22].

Our i.c. subarachnoidal infection model was tested by
using a range of bacterial doses of three different S. pneu-
moniae strains. The strains chosen are the serotypes rou-
tinely employed by researchers in the pneumococcal field,
and have proved to be highly pathogenic in different
mouse infection models [27,40,47,52]. The use of several
bacterial doses is also important, as it allows a more accu-
rate evaluation of virulence for each strain, as well as
establishing the most appropriate dose to be employed in
different studies. The model proved to be suitable for use
with pneumococci of different serotypes, as type 2 D39,
type 3 HB565, and type 4 TIGR4 were all able to cause PM

Kaplan-Meyer survival curve of mice infected with type 4 S. pneumoniaeFigure 2
Kaplan-Meyer survival curve of mice infected with type 4 S. pneumoniae. Five groups of MF1 mice (n = 6–10) were 
infected by the i.c. subarachnoidal route with different doses of type 4 S. pneumoniae ranging from 10 to 105 CFU per mouse. 
Mice were monitored for 10 days and survival was recorded. Results are expressed as percentage of survival over time.
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Histological analysis of the brain and spleen of mice infected with type 4 S. pneumoniaeFigure 3
Histological analysis of the brain and spleen of mice infected with type 4 S. pneumoniae. MF1 outbred mice were 
infected by the i.c. subarachnoidal route with the TIGR4 strain and humanely killed before reaching the moribund state. Brains 
(A-F) and spleens (G-H) were excised, fixed in formalin, embedded in paraffin, and stained with either haematoxilin-eosin or 
Gram. A. Mild inflammatory changes with congested leptomeningeal blood vessels and PMNs margination. B-C. Severe inflam-
mation characterised by cellular exudates composed of PMNs entrapped in fibrin in the subarachnoid space. In panel C, the 
fibrin web is clearly visible. D. Acute inflammation in the ventricular spaces. E. Brain damage in the hippocampus: neuronal 
shrinkage in the CA3 hippocampal region is shown in the inset. The location of CA1, CA2 and CA3 areas is represented. F. 
Gram staining of pneumococci in the subarachnoid space of the brain of moribund mice. Short chains (mainly diplococci) of 
Gram positive bacteria surrounded by granulocytes. G-H. Haematoxilin-eosin stained spleen sections. A distinct congestion of 
the red pulp together with considerable modifications of the white pulp are present in the spleen of animals infected with S. 
pneumoniae (G) compared to controls (H).
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with LD50 ranging from 2.9 × 10 to 1.9 × 102 CFU. Then,
PM was further characterised and standardised by using
TIGR4 as a model strain. Kaplan-Meier survival analysis of
animals inoculated with different doses of TIGR4 showed
that 105 CFU was lethal for all mice within 48 hours from
infection (Fig. 2), suggesting it as the appropriate dose
inducing PM similar to hyperacute meningitis in humans.
Moribund mice with acute meningitis after infection with
105 CFU were also septicaemic, as pneumococci could
also be recovered from the blood and spleen. Bacterial
titres were consistent in each organ/tissue of every mouse
examined, underlining the reproducibility of data obtain-
able by using our model. Dissemination of pneumococci
after infection with lethal doses is also in agreement with
other i.c. murine models of PM [21,22].

The actual induction and subsequent characterisation of
PM caused by the TIGR4 strain was then carried out by
histological analysis of the brain tissue from moribund
animals. We chose not to analyse PM by viable counting
of pneumococci in the CSF, due to the difficulty of sample
collection [53] and to the necessity of using pooled CSF
samples [21]. Histological examination of the brain
showed both cases of mild meningeal inflammation and
cases of severe granulocytic effusion in the subarachnoid
and ventricular spaces (purulent ventriculitis) (Fig. 3).
Cerebral abscesses were not observed, further confirming
that the our i.c. subarachnoidal model is indeed a menin-
gitis and not an encephalitis model of infection. Neither
inflammatory changes nor death were observed following
injection of saline into control mice. Inflammation and
PMNs distribution in the brain of moribund mice closely
mimicked the histopathology of meningitis in humans
[54]. Post-mortem examination of brains from patients
who rapidly (less than 24 hours) died due to hyperacute
meningitis generally reveals the presence of mild lesions
consisting of a sparse leptomeningeal exudate with vessel
congestion and PMN margination, in contrast to patients
who survived for two or more days, who often exhibit a
severe inflammation with fibrin and PMNs in subarach-
noid and ventricular spaces [54]. A detailed analysis of PM
largely resembling human meningitis was also reported
by Gerber et al., who injected C57BL/6 inbred mice into
the right lobe of the brain [21]. In that model, the inocu-
lation site was characterised by a large purulent infiltrate
present in both meninges and ventricula, and necrosis was
observed in all investigated brain regions [21]. In another
model, proposed by Koedel et al., pneumococci were
given by transcutaneous injection directly into the cisterna
magna [23]. In that study, brain lesions occurred in all
mice 24 hours after infection, and histopathological
examination revealed intense granulocytic infiltrations in
the subarachnoid and ventricular spaces, and absence of
cortical necrosis [23]. This finding differs from the model
by Gerber et al., who instead reported the presence of

extensive cerebral necrotic processes [21]. In our model,
we could not observe large areas of necrosis, but we found
some signs of neuronal damage (i.e. neuronal shrinkage
with picnotic nuclei) in the hippocampus of a few
animals.

Conclusions
The present work proposes a method to induce experi-
mental PM in outbred mice by using an i.c. subarachnoi-
dal route of infection. The stereotaxic coordinates of the
injection site are provided to allow easy recognition of the
inoculation point in the mouse. The model is simple and
fast, and the technique assures the development of men-
ingitis, as demonstrated by histological analysis, survival
data, and microbiological parameters. No significant dif-
ferences were observed in the ability of the three pneumo-
coccal strains used to cause disease, emphasising the value
of the model. It is worth noting that the use of outbred
mice still results in data reproducibility, as replicates in
this model closely paralleled each other in terms of sur-
vival, CFU counts per organ, and histopathological fea-
tures. In addition, experiments in outbred mice are cost-
effective and can be performed in larger animal groups
thereby improving statistical significance. This experimen-
tal PM model may be particularly useful for all researchers
involved in studies that will investigate the host-pathogen
interaction at the cerebral level, with emphasis on both
pathogen-associated virulence factors and host-specific
brain defences.

Methods
Pneumococcal strains, media and growth conditions
Survival studies were performed with the D39, HB565
and TIGR4 strains. TIGR4 was chosen as a model strain for
histological characterisation of PM and CFU counts in
organs. S. pneumoniae was cultured in Tryptic Soy Broth
(TSB, Difco, Detroit, MI) at 37°C with 5 % CO2. Solid
media were obtained by addition of 1.5 % agar and 3 %
defibrinated horse blood (Biotec s.n.c., Grosseto, Italy) to
TSB. When necessary, streptomycin was used at the final
concentration of 500 µg/ml.

Mice
Outbred 9-weeks-old female MF1 mice weighing 25–30
grams were obtained from Harlan Nossan (Correzzana,
Italy). Animals were allowed to settle in the new environ-
ment for one week before performing the experiments,
they were caged and given food and water ad libitum. All
animal experiments were approved by the Local Ethical
Committee (document no. 754/03, 12.9.03, see Addi-
tional file 1) and were conducted according to institu-
tional guidelines.
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Preparation of the challenge dose
Mouse-passaged S. pneumoniae strains were prepared by
using a modified version of a previously described
method [40]. Briefly, bacteria were injected i.p. into mice
and recovered 16 hours later from homogenising the
spleens with a screen mesh in 2 ml of ice-cold sterile H2O.
Passaged bacteria were grown to mid-exponential phase,
centrifuged for 20 minutes at 1500 × g, resuspended in
fresh TSB containing 10 % glycerol, and stored in aliquots
at -70°C. Numbers of bacteria were determined by viable
counting of serial dilutions in sterile phosphate-buffered
saline, pH = 7.4 (PBS), and plating onto blood-agar
plates. Before inoculation, bacteria were thawed at room
temperature, harvested by centrifugation, and resus-
pended in sterile PBS at the appropriate dilutions.

Mouse model of meningitis
PM was induced in lightly anaesthetised mice (50 mg/kg
ketamine and 3 mg/kg xylazine) by modifying a method
previously used to establish meningitis by C. neoformans
in mice [48,55]. Animals were immobilised by hand and
inoculated i.c. at a depth of about 2 mm through a soft
point located 3.5 mm rostral from the bregma. A prelimi-
nary experiment was carried out by injecting 30 µl of
trypan blue i.c. into three MF1 mice. After 30 minutes,
animals were sacrificed and decapitated. Their skulls were
fixed in 10 % buffered formalin for 24 hours and treated
with Decal (Decal Corporation, Tallman, NY) for 24
hours. Coronal sections of about 3 mm were made, and
diffusion of trypan blue was observed. Then, to localise
the injection site within the brain, the above sections were
embedded in paraffin and treated for histological analy-
sis. Standard experiments were performed by injecting the
bacterial inoculum in a total volume of 30 µl. Injections
were performed by using glass micro-syringes (Hamilton,
Bonaduz, Switzerland) with 26 gauge needles.

Survival studies
Different bacterial doses ranging from 10 to 104 CFU per
mouse were used to infect mice (n= 4) with strains D39
and HB565. In the case of TIGR4, groups of 6 to 10 ani-
mals each were inoculated with doses ranging from 10 to
105 CFU per animal. Control mice were inoculated with
PBS (30 µl). Mice were closely monitored twice a day for
clinical symptoms (starry fur, hunched appearance, pho-
tophobia, lethargy, moribund). Mice were humanely
killed before reaching the moribund state. Survival was
recorded for 10 days (240 hours).

Microbiology and histology
Infected mice were sacrificed either for microbiological or
histological analysis. Animals were humanely killed
before being moribund, and various samples were col-
lected. For CFU counts, blood was withdrawn by cardiac
puncture before sacrifice and added to a tube containing

3.8 % of sodium citrate. Brains and spleens were excised
and homogenised in 2 ml of sterile PBS. Bacterial counts
in blood, brain and spleen were performed by plating 10-
fold dilutions onto blood-agar plates. For
histopathological analysis of tissues after infection with
TIGR4, brains and spleens were immediately fixed in for-
malin for 24 hours and then embedded in paraffin
according to standard procedures. The brains were
entirely sectioned along a coronal plane. Sections were
stained with both haematoxilin-eosin and Gram accord-
ing to standard techniques. Morphological changes were
assessed by using routine light microscopy. The presence
and degree of inflammation were carefully evaluated.

Statistical analysis
Calculations of LD50 values were performed by using both
the method by Reed and Muench [56] and Probit analysis
with 95 % confidence interval [57]. Survival over time was
analysed by the Kaplan-Meier curve.
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