CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 26 November 2014
Accepted 8 December 2014

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; magnesium copper(II) bis[orthophosphate(V)] monohydrate; hydrogen bonding; transition metal phosphates; hydrothermal synthesis

CCDC reference: 1038224
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of magnesium copper(II) bis[orthophosphate(V)] monohydrate

Jamal Khmiyas, ${ }^{\text {a* }}$ Abderrazzak Assani, ${ }^{\text {a }}$ Mohamed Saadi ${ }^{\text {b }}$ and Lahcen El Ammari ${ }^{\text {a }}$

${ }^{\text {a Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP }}$ 1014, Rabat, Morocco, and ${ }^{\text {b }}$ Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco. *Correspondence e-mail: j_khmiyas@yahoo.fr

Single crystals of magnesium copper(II) bis[orthophosphate(V)] monohydrate, $\mathrm{Mg}_{1.65} \mathrm{Cu}_{1.35}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, were grown under hydrothermal conditions. The crystal structure is formed by three types of cationic sites and by two unique $\left(\mathrm{PO}_{4}\right)^{3-}$ anions. One site is occupied by Cu^{2+}, the second site by Mg^{2+} and the third site by a mixture of the two cations with an $\mathrm{Mg}^{2+}: \mathrm{Cu}^{2+}$ occupancy ratio of 0.657 (3):0.343 (3). The structure is built up from more or less distorted $\left[\mathrm{MgO}_{6}\right]$ and $\left[(\mathrm{Mg} / \mathrm{Cu}) \mathrm{O}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ octahedra, $\left[\mathrm{CuO}_{5}\right]$ square-pyramids and regular PO_{4} tetrahedra, leading to a framework structure. Within this framework, two types of layers parallel to ($\overline{1} 01$) can be distinguished. The first layer is formed by $\left[\mathrm{Cu}_{2} \mathrm{O}_{8}\right.$] dimers linked to PO_{4} tetrahedra via common edges. The second, more corrugated layer results from the linkage between $\left[(\mathrm{Cu} / \mathrm{Mg})_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ dimers and $\left[\mathrm{MgO}_{6}\right]$ octahedra by common edges. The PO_{4} units link the two types of layers, leaving space for channels parallel [101], into which the H atoms of the water molecules protrude. The latter are involved in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonding interactions (one bifurcated) with framework O atoms across the channels.

1. Chemical context

Transition metal phosphates are an important class of materials characterized by a great structural diversity originating from the presence of different coordination polyhedra $M \mathrm{O}_{n}$ (with $n=4,5$ and 6) or the possibility of phosphate groups to condense. The alternation of PO_{4} tetrahedra and $M \mathrm{O}_{n}$ polyhedra can give rise to different anionic frameworks $\left[M^{\mathrm{II}} \mathrm{PO}_{4}\right]^{-}$ with pores or channels offering suitable environments to accommodate different other cations (Gao \& Gao, 2005; Viter \& Nagornyi, 2009). In previous studies, our focus of research was dedicated to the examination of mixed divalent orthophosphates with general formula $\left(M, M^{\prime}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot n \mathrm{H}_{2} \mathrm{O}$. For instance, we have succeeded in the preparation and structure determination of some new phosphates such as $\mathrm{Ni}_{2} \mathrm{Sr}\left(\mathrm{PO}_{4}\right)_{2}$.$2 \mathrm{H}_{2} \mathrm{O}$ (Assani et al., 2010a).

In the context of our main research, we report here the hydrothermal synthesis and structural characterization of the mixed-metal orthophosphate $\mathrm{Mg}_{1.65} \mathrm{Cu}_{1.35}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, isolated during investigation of the quinternary system $\mathrm{Ag}_{2} \mathrm{O}$ / $\mathrm{MgO} / \mathrm{CuO} / \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{H}_{2} \mathrm{O}$. The title compound crystallizes in the $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ structure type (Moore \& Araki, 1975) and is isotypic with other phases of the type $\left(M, M^{\prime}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Liao et al., 1995), viz. $\mathrm{Co}_{2.59} \mathrm{Zn}_{0.41}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Sørensen et al., 2005), $\mathrm{Co}_{2.39} \mathrm{Cu}_{0.61}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Assani et al., 2010b), $\left(\mathrm{Cu}_{1-x} \mathrm{Co}_{x}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0<x<0.20$ and $0.55<x<0.65)$, and $\left(\mathrm{Cu}_{1-x} \mathrm{Zn}_{x}\right)_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0<x<0.19)$ (Viter \& Nagornyi, 2006).

Figure 1
The principal building units in the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+2,-y+1,-z+1$; (iv) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (v) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{3}{2}$; (vi) $-x+2,-y+1,-z+2$; (vii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (viii) $-x+2,-y+2$, $-z+1$.]

2. Structural commentary

The principal building units of the crystal structure of the title compound are represented in Fig. 1. The metal cations are located in three crystallographically independent sites, one octahedrally surrounded site entirely occupied by Mg^{2+}, one site with a square-pyramidal coordination completely occupied by Cu^{2+} and one mixed-occupied $\left(\mathrm{Mg}^{2+} / \mathrm{Cu}^{2+}\right)$ site with an octahedral coordination. The $\left[\mathrm{Cu}_{1} \mathrm{O}_{5}\right]$ square pyramid is distorted, with $\mathrm{Cu}-\mathrm{O}$ bond lengths ranging from 1.9073 (17) to 2.2782 (16) A. Two $\left[\mathrm{Cu}_{1} \mathrm{O}_{5}\right]$ polyhedra are linked together by edge-sharing to build up a $\left[\mathrm{Cu}_{2} \mathrm{O}_{8}\right]$ dimer. By sharing

Figure 2
A polyhedral view of the title compound, showing the three-dimensional framework structure and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (dashed lines) in the channels.

Table 1
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O9-H9A $\cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.22	$2.867(2)$	132
O9-H9A $^{\mathrm{ii}}$	0.86	2.38	$2.934(2)$	123
${\text { O9-H9B } \cdots 8^{\mathrm{iii}}}^{2}$	0.86	1.93	$2.778(2)$	170

Symmetry codes: (i) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2} ;$
$-x+\frac{5}{2}, y+\frac{1}{2},-z+\frac{3}{2}$.
corners with PO_{4} tetrahedra, a layered arrangement parallel to ($\overline{1} 01$) is formed (Fig. 2). The mixed-occupied $[(\mathrm{Mg} /$ $\mathrm{Cu}) \mathrm{O}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)$] octahedron is likewise distorted, with $(\mathrm{Mg} /$ $\mathrm{Cu})-\mathrm{O}$ distances varying between $2.0038(18)$ and $2.384(2) \AA$. Two $\left[(\mathrm{Mg} / \mathrm{Cu}) \mathrm{O}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ octahedra share a common edge to built up another dimer $\left[(\mathrm{Mg} / \mathrm{Cu})_{2} \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ that links $\left[\mathrm{MgO}_{6}\right]$ octahedra and PO_{4} tetrahedra via common vertices to build the second type of layer lying parallel to the first (Fig. 2). Adjacent layers are connected into a threedimensional framework by common edges and vertices, and delimit channels parallel to [101], into which the hydrogen atoms of the water molecules protrude. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonding interactions between the water molecules and framework O atoms are present (Table 1, Fig. 2).

3. Synthesis and crystallization

The title compound, $\mathrm{Mg}_{1.65} \mathrm{Cu}_{1.35}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, was synthesized hydrothermally form a reaction mixture of $\mathrm{AgNO}_{3}, \mathrm{MgO}$,

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{Mg}_{1.65} \mathrm{Cu}_{1.35}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
M_{r}	333.65
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	296
$a, b, c(\AA)$	$8.0701(1), 9.8661(2), 8.9944(2)$
$\beta\left({ }^{\circ}\right)$	$115.242(1)$
$V\left(\AA^{3}\right)$	$647.76(2)$
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	5.16
Crystal size (mm)	$0.31 \times 0.27 \times 0.18$
Data collection	
Diffractometer	Bruker X8 APEX
Absorption correction	Multi-scan $(S A D A B S ;$ Bruker,
	$2009)$
$T_{\text {min }}, T_{\text {max }}$	$0.574,0.748$
No. of measured, independent and	$9233,1673,1617$
\quad observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.025
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.676
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.020,0.058,1.24$
No. of reflections	1673
No. of parameters	129
H-atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.55,-0.34$

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).
metallic copper, and $85 \mathrm{wt} \%$ phosphoric acid in the molar ratio $\mathrm{Ag}: \mathrm{Mg}: \mathrm{Cu}: \mathrm{P}=1: 4: 4.5: 6$ in 12.5 ml of water. The hydrothermal reaction was conducted in a 23 ml Teflon-lined autoclave under autogenous pressure at 493 K for three days. The resulting product was filtered off, washed with deionized water and dried in air. The obtained blue crystals correspond to the title compound.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The $M 2$ site features mixed occupation by Mg^{2+} and Cu^{2+} whereas the other two cationic sites do not show any significant disorder. Refinement of the occupancy of $M 2$ resulted in a ratio of $\mathrm{Mg}^{2+}: \mathrm{Cu}^{2+}=$ 0.657 (3):0.343 (3). The O-bound H atoms were initially located in a difference map and refined with $\mathrm{O}-\mathrm{H}$ distance restraints of 0.83 (5). In the last refinement cycle, the distances were fixed at $0.86 \AA$ and the H atoms refined in the ridingmodel approximation with $U_{\text {iso }}(\mathrm{H})$ set to $1.5 U_{\text {eq }}(\mathrm{O})$. The highest remaining positive and negative electron densities observed in the final Fourier map are at $0.81 \AA$ and $0.43 \AA$, respectively, from Cu .

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Mohammed V, Rabat, Morocco, for financial support.

References

Assani, A., Saadi, M. \& El Ammari, L. (2010a). Acta Cryst. E66, 144. Assani, A., Saadi, M., Zriouil, M. \& El Ammari, L. (2010b). Acta Cryst. E66, i86-i87.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gao, D. \& Gao, Q. (2005). Micropor. Mesopor. Mater. 85, 365-373.
Liao, J. H., Leroux, F., Guyomard, D., Piffard, Y. \& Tournoux, M. (1995). Eur. J. Solid State Inorg. Chem. 32, 403-414.

Moore, P. B. \& Araki, T. (1975). Am. Mineral. 60, 454-459.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sørensen, M. B., Hazell, R. G., Bentien, A., Bond, A. D. \& Jensen, T. R. (2005). Dalton Trans. pp. 598-606.

Viter, V. N. \& Nagornyi, P. G. (2006). Inorg. Mater. 42, 406-409.
Viter, V. N. \& Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, $935-$ 939.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, 55-57 [doi:10.1107/S2056989014026930]

Crystal structure of magnesium copper(II) bis[orthophosphate(V)] monohydrate

Jamal Khmiyas, Abderrazzak Assani, Mohamed Saadi and Lahcen El Ammari

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Magnesium copper(II) bis[orthophosphate(V)] monohydrate

Crystal data

$\mathrm{Mg}_{1.65} \mathrm{Cu}_{1.35}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$F(000)=651$
$M_{r}=333.65$
Monoclinic, $P 2_{1} / n$
Hall symbol: -p 2 yn
$a=8.0701$ (1) \AA
$b=9.8661(2) \AA$
$c=8.9944$ (2) \AA
$\beta=115.242(1)^{\circ}$
$V=647.76(2) \AA^{3}$
$Z=4$

Data collection

Bruker X8 APEX

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min }=0.574, T_{\text {max }}=0.748$
$D_{\mathrm{x}}=3.421 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1673 reflections
$\theta=2.9-28.7^{\circ}$
$\mu=5.16 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, blue
$0.31 \times 0.27 \times 0.18 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.058$
$S=1.24$
1673 reflections
129 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

9233 measured reflections
1673 independent reflections
1617 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=28.7^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 13$
$l=-12 \rightarrow 12$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0209 P)^{2}+1.2623 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.55 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.34$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0022 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against all reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Cu1	$0.64417(4)$	$0.37312(3)$	$0.56030(3)$	$0.00781(10)$	
Mg1	$0.98357(10)$	$0.62883(7)$	$0.72316(9)$	$0.00506(16)$	
Cu2	$0.88601(7)$	$0.86606(5)$	$0.46685(6)$	$0.00771(19)$	$0.343(3)$
Mg2	$0.88601(7)$	$0.86606(5)$	$0.46685(6)$	$0.00771(19)$	$0.657(3)$
P1	$0.70807(7)$	$0.57775(6)$	$0.32947(7)$	$0.00456(13)$	
P2	$0.88138(7)$	$0.33721(6)$	$0.86197(7)$	$0.00517(13)$	
O1	$0.5825(2)$	$0.51553(17)$	$0.4023(2)$	$0.0088(3)$	
O4	$0.8713(2)$	$0.64903(17)$	$0.4655(2)$	$0.0092(3)$	
O3	$0.5882(2)$	$0.68080(16)$	$0.19945(19)$	$0.0068(3)$	
O2	$0.7722(2)$	$0.46440(16)$	$0.2486(2)$	$0.0071(3)$	
O5	$0.8579(2)$	$0.36647(17)$	$1.0187(2)$	$0.0088(3)$	$0.0081(3)$
O6	$0.7227(2)$	$0.24356(17)$	$0.7487(2)$	$0.0078(3)$	
O7	$0.8521(2)$	$0.46259(17)$	$0.75021(19)$	$0.0094(3)$	
O8	$1.0684(2)$	$0.27408(17)$	$0.9037(2)$	$0.0139(4)$	
O9	$1.1046(2)$	$0.9118(2)$	$0.4255(2)$	0.021^{*}	
H9A	1.0944	0.9060	0.3265	0.021^{*}	
H9B	1.2106	0.8782	0.4857		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Cu 1	$0.01066(15)$	$0.00588(15)$	$0.00473(15)$	$-0.00143(9)$	$0.00122(11)$	$0.00069(9)$
Mg 1	$0.0054(3)$	$0.0042(3)$	$0.0049(3)$	$-0.0001(2)$	$0.0016(3)$	$0.0003(3)$
Cu 2	$0.0060(3)$	$0.0097(3)$	$0.0068(3)$	$0.00074(16)$	$0.00216(19)$	$0.00187(17)$
Mg 2	$0.0060(3)$	$0.0097(3)$	$0.0068(3)$	$0.00074(16)$	$0.00216(19)$	$0.00187(17)$
P 1	$0.0056(2)$	$0.0043(3)$	$0.0034(2)$	$0.00024(18)$	$0.00156(19)$	$-0.00019(18)$
P 2	$0.0064(2)$	$0.0046(2)$	$0.0041(2)$	$-0.00022(19)$	$0.00177(19)$	$0.00026(19)$
O1	$0.0092(7)$	$0.0097(8)$	$0.0091(7)$	$0.0016(6)$	$0.0054(6)$	$0.0036(6)$
O4	$0.0084(7)$	$0.0097(8)$	$0.0062(7)$	$-0.0017(6)$	$-0.0001(6)$	$-0.0025(6)$
O3	$0.0088(7)$	$0.0052(7)$	$0.0050(7)$	$0.0016(6)$	$0.0017(6)$	$0.0011(6)$
O2	$0.0084(7)$	$0.0061(7)$	$0.0064(7)$	$0.0022(6)$	$0.0027(6)$	$-0.0014(6)$
O5	$0.0111(8)$	$0.0102(8)$	$0.0053(7)$	$-0.0004(6)$	$0.0036(6)$	$-0.0014(6)$
O6	$0.0091(7)$	$0.0078(7)$	$0.0060(7)$	$-0.0027(6)$	$0.0019(6)$	$0.0005(6)$
O7	$0.0083(7)$	$0.0056(7)$	$0.0071(7)$	$-0.0014(6)$	$0.0011(6)$	$0.0021(6)$
O8	$0.0086(7)$	$0.0099(8)$	$0.0094(8)$	$0.0025(6)$	$0.0035(6)$	$0.0030(6)$
O9	$0.0085(7)$	$0.0256(10)$	$0.0073(8)$	$0.0035(7)$	$0.0032(6)$	$0.0045(7)$

Geometric parameters (A, ${ }^{\circ}$)

Cu1-O1	1.9073 (17)	$\mathrm{Cu} 2-\mathrm{O}^{\text {iv }}$	2.0837 (16)
$\mathrm{Cu} 1-\mathrm{O} 8^{\text {i }}$	1.9322 (17)	$\mathrm{Cu} 2-\mathrm{O} 4$	2.1442 (18)
Cu1-O6	1.9980 (16)	$\mathrm{Cu} 2-\mathrm{O} 9^{\text {viii }}$	2.384 (2)
Cu1-07	2.0169 (16)	P1-O4	1.5340 (17)
$\mathrm{Cu}-\mathrm{Ol}^{\text {ii }}$	2.2782 (16)	P1-O2	1.5392 (16)
Mg1-07	2.0236 (18)	P1-O3	1.5401 (16)
$\mathrm{Mg} 1-\mathrm{O} 2^{\text {iii }}$	2.0898 (17)	P1-O1	1.5491 (17)
Mg1-O4	2.1070 (18)	P2-08	1.5241 (17)
Mg - $\mathrm{O3}^{\text {iv }}$	2.1071 (17)	P2-05	1.5279 (17)
Mg - $\mathrm{Ob}^{\text {v }}$	2.1156 (17)	P2-07	1.5473 (17)
$\mathrm{Mg} 1-\mathrm{O} 5^{\text {vi }}$	2.1205 (18)	P2-06	1.5550 (17)
Cu2-09	2.0038 (18)	O9-H9A	0.8600
$\mathrm{Cu} 2-\mathrm{O} 5^{*}$	2.0268 (17)	O9-H9B	0.8600

$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 8^{\text {i }}$	96.29 (7)	$\mathrm{O} 5^{v}-\mathrm{Cu} 2-\mathrm{O} 2{ }^{\text {vii }}$	80.18 (7)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 6$	172.25 (7)	$\mathrm{O}-\mathrm{Cu} 2-\mathrm{O} 3^{\text {iv }}$	82.06 (7)
O 8 - $\mathrm{Cu}-\mathrm{O} 6$	91.43 (7)	$\mathrm{O} 5^{-}-\mathrm{Cu} 2-\mathrm{O}^{\text {iv }}$	107.59 (7)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 7$	99.62 (7)	$\mathrm{O} 2{ }^{\text {vii }}-\mathrm{Cu} 2-\mathrm{O}^{\text {iv }}$	163.32 (7)
O 8 - $\mathrm{Cu}-\mathrm{O} 7$	146.81 (7)	$\mathrm{O} 9-\mathrm{Cu} 2-\mathrm{O} 4$	105.96 (8)
O6-Cu1-O7	73.33 (7)	$\mathrm{O} 5^{2}-\mathrm{Cu} 2-\mathrm{O} 4$	87.11 (7)
$\mathrm{O}-\mathrm{Cu}-\mathrm{Ol}^{\text {ii }}$	77.52 (7)	$\mathrm{O} 2{ }^{\text {vii- }} \mathrm{Cu} 2-\mathrm{O} 4$	117.13 (7)
$\mathrm{O} 8^{\text {i- }} \mathrm{Cu} 1-\mathrm{Ol}^{\text {ii }}$	116.46 (6)	$\mathrm{O3}^{\text {iv- }-\mathrm{Cu} 2-\mathrm{O} 4}$	78.56 (6)
$\mathrm{O} 6-\mathrm{Cu}-\mathrm{Ol}^{\text {ii }}$	99.65 (6)	$\mathrm{O} 9-\mathrm{Cu} 2-\mathrm{O} 9^{\text {viii }}$	89.45 (7)
$\mathrm{O} 7-\mathrm{Cu}-\mathrm{Ol}^{1 i}$	95.41 (6)	$\mathrm{O} 5^{v}-\mathrm{Cu} 2-\mathrm{O} 9^{\text {viii }}$	80.53 (6)
$\mathrm{O} 7-\mathrm{Mg} 1-\mathrm{O} 2^{\text {iii }}$	98.29 (7)	$\mathrm{O} 2^{\text {vii }}-\mathrm{Cu} 2-\mathrm{O} 9^{\text {viii }}$	81.28 (6)
O7-Mg1-O4	101.96 (7)	$\mathrm{O} 3{ }^{\text {iv}}-\mathrm{Cu} 2-\mathrm{O} 9^{\text {viii }}$	85.44 (6)
O 2 iii- $\mathrm{Mg} 1-\mathrm{O} 4$	96.67 (7)	$\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{O} 9^{\text {viii }}$	155.82 (7)
$\mathrm{O} 7-\mathrm{Mg}-\mathrm{O3}^{\text {iv }}$	171.09 (8)	$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 2$	111.26 (9)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Mg} 1-\mathrm{O}^{\text {iv }}$	90.39 (7)	$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 3$	110.54 (9)
$\mathrm{O} 4-\mathrm{Mg}-\mathrm{O3}^{\text {iv }}$	78.89 (7)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$	110.47 (9)
O7-Mg1- $\mathrm{Ob}^{\text {v }}$	86.54 (7)	O4-P1-O1	109.79 (9)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Mg} 1-\mathrm{O}^{\text {v }}$	166.01 (7)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	108.93 (9)
O4-Mg1- $\mathrm{O}^{\text {V }}$	95.14 (7)	O3-P1-O1	105.69 (9)
$\mathrm{O3}^{\mathrm{iv}}-\mathrm{Mg} 1-\mathrm{O}^{\text {v }}$	84.55 (7)	O8-P2-05	110.47 (9)
$\mathrm{O} 7-\mathrm{Mg} 1-\mathrm{O}^{\text {vi }}$	89.35 (7)	O8-P2-07	110.33 (9)
$\mathrm{O} 2{ }^{\text {iii- }}-\mathrm{Mg} 1-\mathrm{O} 5^{\text {vi }}$	77.24 (7)	O5-P2-O7	113.81 (9)
O4-Mg1-O5 ${ }^{\text {ri }}$	167.90 (8)	O8-P2-06	111.75 (10)
$\mathrm{O} 3^{\mathrm{iv}}-\mathrm{Mg} 1-\mathrm{O} 5^{\text {vi }}$	90.60 (7)	O5-P2-O6	108.96 (9)
$\mathrm{O} 6^{v}-\mathrm{Mg} 1-5^{\text {ri }}$	89.76 (7)	O7-P2-O6	101.22 (9)
O9- $\mathrm{Cu} 2-\mathrm{O} 5^{\circ}$	165.32 (8)	H9A-O9-H9B	104.9
O9-Cu2-O22 ${ }^{\text {vii }}$	87.74 (7)		

[^0]
supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O9—H9A $\cdots \mathrm{Ol}^{\text {vii }}$	0.86	2.22	$2.867(2)$	132
O9—H9A $\cdots 6^{\text {iii }}$	0.86	2.38	$2.934(2)$	123
O9-H9B $\cdots \mathrm{O}^{\mathrm{ix}}$	0.86	1.93	$2.778(2)$	170

Symmetry codes: (iii) $-x+2,-y+1,-z+1$; (vii) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (ix) $-x+5 / 2, y+1 / 2,-z+3 / 2$.

[^0]: Symmetry codes: (i) $x-1 / 2,-y+1 / 2, z-1 / 2$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+2,-y+1,-z+1$; (iv) $x+1 / 2,-y+3 / 2, z+1 / 2$; (v) $-x+3 / 2, y+1 / 2,-z+3 / 2$; (vi) $-x+2$, $-y+1,-z+2$; (vii) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (viii) $-x+2,-y+2,-z+1$.

