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Multi‑scale electronics transport 
properties in non‑ideal CVD 
graphene sheet
Bhupesh Bishnoi*, Marius Buerkle & Hisao Nakamura

In this work, we benchmark non‑idealities and variations in the two‑dimensional graphene sheet. 
We have simulated more than two hundred graphene‑based devices structure. We have simulated 
distorted graphene sheets and have included random, inhomogeneous, asymmetric out‑of‑plane 
surface corrugation and in‑plane deformation corrugation in the sheet through autocorrelation 
function in the non‑equilibrium Green’s function (NEGF) framework to introduce random distortion in 
flat graphene. These corrugation effects inevitably appear in the graphene sheet due to background 
substrate roughness or the passivation encapsulation material morphology in the transfer step. 
We have examined the variation in density of state, propagating density of transmission modes, 
electronic band structure, electronic density, and hole density in those device structures. We 
have observed that the surface corrugation increases the electronic and hole density distribution 
variation across the device and creates electron‑hole charge puddles in the sheet. This redistribution 
of microscopic charge in the sheet is due to the lattice fields’ quantum fluctuation and symmetry 
breaking. Furthermore, to understand the impact of scattered charge distribution on the sheet, we 
simulated various impurity effects within the NEGF framework. The study’s objective is to numerically 
simulate and benchmark numerous device design morphology with different background materials 
compositions to elucidate the electrical property of the sheet device.

Since the isolation of single-layer graphene in 2004, graphene has shown promising research results in labora-
tories across the  globe1, Furthermore, tremendous progress was made in fabricating and characterization tech-
niques to fabricate large-area graphene sheet  devices2,3. However, large-scale commercial production and market 
adoption are still very far from the horizon. The possible utilization of graphene sheets is in various applications 
from the transparent electrode, electronics, telecommunication equipment, and internet of thing (IoT) sensors. 
To realize this commercial adoption in the electronics and optoelectronics industry, the main challenge for gra-
phene is in the controllability, homogeneity, and uniformity in the electronic property in the mass roll-to-roll 
production process. The growth and transfer process, such as temperature variation and gas flow fluctuations in 
the chemical vapor deposition reactor, give rise to long-range spatial variation in the electronics performance 
parameter of the large-area graphene sheet. It prevents the seamless stitching of graphene single grain, which 
gives rise to imperfect lattices and grain boundary interfaces, causing a decrease in  conductance4–8. Moreover, 
the geometrical circumstance of the graphene sheet transfer scheme gives rise to spatial variation in the dop-
ing density. Therefore, for homogeneous and uniform graphene sheets, defect density is an important measure. 
However, we must consider the graphene sheet’s average defect density and spatial defect distribution profile to 
quantify the  effect9. Moreover, all those issues, as mentioned above, are a challenge to scale up the production. 
There are various methods proposed to fabricate the graphene sheet on an industrial scale, such as exfoliation, the 
epitaxial  method10, chemical vapor deposition (CVD)11, Roll-to-Roll plasma-enhanced chemical vapor deposi-
tion (PECVD)  method12–15. However, the synthesis of graphene on metal catalysts by CVD has been the most 
scalable process until now. Besides, all these process steps have their underline chemistry and influence on the 
quality of the graphene  sheet16. Therefore, the electrical quality of CVD/PECVD grown graphene sheets varied 
broadly from process to process and batch to batch. Besides, the transfer and isolation process are bottlenecks 
in the production scale and incorporate defects in the sheet and degrade the sheet’s electrical  quality17–20. These 
nanoscale atomistic effects during the growth and transfer steps influence the vital electrical properties of the 
sheet through variation in background carrier density, carrier mobility, and sheet resistivity. Electrical property 
mapping is critical for the process optimization and quality control of large-area graphene sheets in Roll-to-Roll 
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production. In terms of throughput and quality, all the electrical characterization method available is far behind 
the Roll-to-Roll production process. In recent times to numerically probe the above-mentioned microscopic 
variations and non-idealities in the macroscopic device, some notable theoretical and numerical efforts have 
been made in the community, e.g., Stegmann et al. investigate the current flow paths in the deformed graphene 
by using modified hopping parameters in a tight-binding approach and connecting it with the current classi-
cal trajectories in curved  space21. Also, the influence of a Gaussian strain on sublattice selectivity of impurities 
in graphene is investigated by modified tight-binding parameters and investigated the local density of states 
 variation22–25. However, unlike our multi-scale study, they investigate a single strain defect of Gaussian curvature 
in the flat graphene sheet or nanoribbon. In a realistic device scenario, however, many fluctuations exist and are 
random in nature. Also, local sublattice symmetry breaking and electron-hole puddles formation in graphene 
is theoretically discussed in some  detail26, and our numerical results match their prediction. Other than the 
above work, multi-scale quantum ballistic transport calculations have been performed in the recent past on flat 
 graphene27,28. Furthermore, our flat graphene sample calculation matches with them. To the best of the author’s 
knowledge, very few multi-scale incoherent and phase-coherent quantum transport calculations are performed 
in the graphene and two-dimensional system. All the scattering mechanisms are left as the residual calculation 
for future work. In this study, first, we will discuss and summarize the various numerical simulation results 
for the graphene device’s various aspects, variabilities, and non-idealities in device simulation, to elucidate the 
nature of variability in the measurand electrical properties for benchmarking purposes. In the subsequent article 
under preparation, we will also report the effect of each scattering mechanism in multi-scale simulation, their 
combined effect as self-energy incorporating explicitly in the NEGF loop as self-consistent Dyson equation in 
graphene sheet devices. Furthermore, The multi-scale non-equilibrium Green’s function formalism framework 
detail, its incoherent extension, implementation, important assumption, approximation, bottom-up atomistic 
tight-binding models, and numerical truncation to treat these non-ideal graphene devices are discussed in the 
method section and great detail at supplementary information section. Next, in the following result and discus-
sion section, we will discuss the multi-scale non-equilibrium Green’s function formalism numerical results and 
their physical interpretations. Finally, in the last section, we conclude the article by summarizing the results, 
observations, and future work in the two-dimensional material field.

Next, in the following methods section, we will discuss the multi-scale non-equilibrium Green’s function 
formalism used to get these results in the aforementioned section.

Method
At the nano-scale atomic composition, crystal symmetry and the spatial disorder affect the material’s bulk 
properties as quantum mechanics effects come into the picture and modify the electronic-phononic structure. 
Therefore, atomistic simulations are more appropriate to model the quantum device’s electronic properties in 
the entire Brillouin  zone29. The electronic band structure derives from the tight-binding method. The method is 
similar to the linear combination of atomic orbitals (LCAO) used to construct molecular  orbitals30,31. However, 
in the tight-binding approximation, electron-electron interactions of the orbital are neglected, but it gives an 
excellent approximation to electronic band structure. Furthermore, for more rigorous treatment, the Hubbard 
model was employed. The graphene is a two-dimensional sheet of carbon atoms arranged in a hexagonal lattice. 
2S, 2Px , and 2Py orbitals of carbon atom in graphene are SP2 hybridize, resulting in strong σ bonds where each 
carbon atom is bonded to all of its three neighbors carbon atoms. The Pz or π orbital of the carbon atoms defines 
the low-energy electronic bandstructure in graphene.

The primitive lattice vectors in graphene are,

The graphene primitive unit cell comprises two carbon atoms, and each atom has one valence 2Pz orbital. At the 
C1 atoms site valence φ2pz1 orbital is centered and at the C2 atoms site valence φ2pz2 orbital is centered, The tight 
binding wavefunction for graphene is,

After multiplying from the left by both of Pz orbitals to time-independent Schrödinger equation and integrating 
overall space, the dispersion relation is,

In tight-binding approximation, on-site and nearest-neighbor matrix elements are retained, and all the other 
terms are assumed too small enough to ignore the equation,
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ŷ.

(2)ψ�k(�r) =
1√
N

∑

h,j

e
i
(

h�k·�a1+j�k·�a2
)

(

c1φ2pz1
(

�r − h�a1 − j�a2
)

+ c2φ2pz2
(

�r − h�a1 − j�a2
))

.

(3)
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where

Graphene electronic band structure is defined in the tight-binding approximation while considering interactions 
up to third-nearest neighbors  as32,33,

where Ĥ1 is the first nearest neighbor Hamiltonian and Ĥ3 third nearest neighbor Hamiltonian. In the second 
quantization language, Hamiltonians are in real space representation is expressed as creation and annihilation 
operator acting on the π state on each carbon atom site as follow,

where c† creation and c annihilation operators, and summation runs over entire n lattice point, and l is first and 
m is third nearest neighbor site of n lattice point. First nearest-neighbor hopping parameter tn,l = −2.74 eV and 
third nearest neighbor tn,m = −0.3 eV . We have also passivated the dangling bond at the device edge by hydrogen 
passivation treatment in the device  simulation34. In the tight-binding framework dangling bonds at the surface 
or edge is passivated by primarily two numerical methods. In the first strategy, passivation atoms are implicitly 
incorporated without distinguishing passivation atom types and add a passivation potential to the dangling 
bonds’ orbital energies. This method works well with a relatively large system, arbitrary crystal structures, and 
hybridization symmetries. Furthermore, with appropriate parameters, it is applied to any passivation  scenario35. 
The second approach is explicit, including the passivation atoms and their coupling to the surface or edge atoms 
Hamiltonian matrix and limited to small molecules and  systems36. In this explicit treatment, ab-initio results 
for different passivation atoms used to fitting targets. The unsaturated dangling bonds at the edge or surface will 
result in edge or surface states at the electronic band structure. These unwanted states iron out by coupling the 
hydrogen passivation atoms to the surface’s or edge’s unsaturated dangling bonds in the device. We have used 
the P− D orbital tight-binding model, which represents the edge effects by explicitly including the passivated 
hydrogen in the Hamiltonian matrix. The carbon atom is represented by three Pz , Dyz , and Dzx orbitals. The 
simple single orbital Pz tight-binding model works well for the two-dimensional graphene sheet. More further 
details about the tight-binding framework address in the article’s supplementary information. In 1960 Keldysh, 
Kadanoff, and Baym first developed the non-equilibrium Green’s function formalism (NEGF)37,38. The adaption 
of NEGF formalism to semiconductor devices first demonstrated by Lake and  Datta39–42, in 1992 and later in 2002 
by  Wacker43. Through NEGF formalism, the time evolution of many-body quantum fields in thermodynamic 
equilibrium and non-equilibrium state can be  investigated44–49. These quantum fields constitute carriers such as 
electrons, phonons, spin, and electric-field in semiconductor  devices50–60.

The theoretical framework of Non-equilibrium Green’s function formalism with detailed reference is given 
in the supplementary information. Here we briefly summarize the NEGF formalism on a discrete device grid as,

where the bold symbol represent the vector space quantities, GR retarded, GA advanced, G< lesser, G> greater 
Green’s functions, �R retarded, �A advanced, �< lesser, �> greater self-energies of interaction between various 
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quantum field, A is spectral function related to the spectral peak of Green’s functions in energy spectrum, 
kt = (kx , ky) is parallel momentum in vector space, E is energy space, δ is Kronecker delta in discrete energy-
momentum space where Green’s functions realized it’s value, system Hamiltonian hnm =

∫

drφ∗
n(r)H0(r)φm(r) 

with hermitian h∗ml = hlm property, φ is tight-binding orbital describing the system from Eq. (3), r is position 
space, and n, m, l, v are discrete lattice point of device where Green’s propagator travel in coupled system of Eq. 
(7). From Eq. (7) the stationary state solution of non-equilibrium Green’s functions, the Density of state D(E) is 
defined by taking the trace of lesser G< Green’s functions as,

The carrier density N(r, t) in the non-equilibrium Green’s functions formalism is defined as,

In the stationary solution regime from Eq. (7) of NEGF in the (z) directional transport, eigenfunction expansion 
as orthonormal eigenstate φktn(z) , φ∗

ktm
(z) , the carrier density as,

For the contacted device with an external source and continuous supply of electrons in the non-equilibrium con-
figuration G<

nm(kt;E) is defined at different points in the device. Where l belongs to the active part of the device, 
m belongs to any point in the contacts with defined carriers Fermi distribution, and n belongs to the interface 
between both regions. Using the corresponding boundary conditions for hml,lm and with equilibrium contacts 
assumption as in bulk contacts, the Fermi distribution is in equilibrium. By using the fluctuation-dissipation 
theorem, the charge exchange rate ŴContact

ll1
(kt;E) with the contact is,

where Amm1 is spectral function correspond to lattice indices point at mm1 and hlm , hm1l1 is corresponding points 
at surface Hamiltonian in the boundary condition. From Eq. (10), and using the argument of Eq. (11), The 
Transmission probability T  at (kt;E) is defined as,

where in the non-interacting active part of the device indices l, l1, l2, l3 run covering all the points. And, ŴL
ll1

 is 
connected towards the left contact and ŴR

l2l3
 connected through the right contact. From the argument of Eqs. (11) 

and (12), the total number of the transmissible propagating modes of the wave-function in the device is defined 
as Density of Modes or Modes Density M at energy (E) is,

Though NEGF formalism is computationally intensive to solve compared to classical drift-diffusion and semi-
classical Boltzmann transport approach and has simulation overhead, it is a complete quantum treatment. 
Therefore, it gives excellent detail of insight into device operation in spatial resolution. We have employed 
Nano-Electronics Modeling Tools (NEMO5) , a multi-scale quantum transport kernel for nano-electronic device 
 modeling61,62. Its modular architecture parallelizes in a five-level message passing interface (MPI) in the position, 
momentum, energy, bias, and random seeding space. Due to the modular architecture of the transport kernel, 
various physical models add up and extend into it, the detailed discussion provided in the article’s supplementary 
information.

Result and discussion
We have employed multi-scale, multi-physics-based bottom-up, non-equilibrium Green’s function mechanism-
based quantum transport simulation techniques to investigate various device aspects and deduce the observable 
and measurable at the final stage in the computationally simulated devices. Moreover, most reported publications 
in the graphene and two-dimensional material field calculate electrical parameters of coherent transport limit 
and leave scattering interaction behind as a residual. The scattering nature and origin depend on graphene’s 
different fabrication process steps, the device orientation and substrate, and surface encapsulation in the device 
preparation step. The complete stepwise description of the theoretical framework provides in the article’s method 
section and supplementary information. This industrial research work was envisioned to show the opportunity 
of improving the electrical characterization of the roll-to-roll CVD graphene production process. Therefore, 
our results in this work are directed to corrugations and impurities effect in the reasonably clean state-of-art 
industrial production and transfer process. Here we will discuss the main results from numerical calculation.

Surface corrugation effect. We have investigated the out-of-plane random, inhomogeneous, asym-
metric structural corrugation effect in the electrically open infinite reservoirs contacted geometry of graphene 
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sheet to examine the large variability across the electric properties of CVD graphene sheet. Graphene is a 
single atom thin sheet of the carbon atom and needs a substrate to work as a device. The substrate’s effect is 
manifold, such as corrugation in the graphene sheet by the substrate surface profile and scattering through the 
substrate’s  impurities63,64. Due to thermodynamic instability, the corrugation and ripple have been observed 
in the free-standing and substrate-born graphene sheet devices. There is modest work reported on deformed 
graphene. Most of the previous work concentrated on a uniform, uniaxial or biaxial strain and centrosymmetric 
 deformations65–69. Katsnelson et al. derived the mathematical formulation for microscopic defects and generic 
random potential by ripples for the Dirac fermions from the semi-classical Boltzmann transport  view70. The 
fluctuating interatomic distances and angles between carbon bonds are described by in-plane and out-of-plane 
atomic displacements deformation tensor in the corrugated graphene. This work tried to elongate their origi-
nal idea in the non-equilibrium Green’s functions formalism (NEGF) based quantum transport domain. Based 
on the substrate material type and fabrication process, the corrugation profile has considerable variation from 
0.30 nm to 0.005 nm when placed on the substrate, graphene follows the underlying substrate’s surface mor-
phology, and these ripples induce stress in the sheet. Therefore, it will influence the electronic property of the 
graphene sheet. Variation in bonding lengths and angle between the carbon atoms in the corrugated graphene 
sheet depends on substrate morphology. In tight biding calculation, it modulates the hopping parameters in the 
hamiltonian. From Harrison’s model, the hopping parameter is inversely proportional to the square of the bond 
 length71. Due to corrugation, pz-orbitals are also bent, but hopping parameter variation due to bond length vari-
ation is more prominent compared to orbital  bending72. The surface corrugation effect in the graphene sheet 
modeled through the gaussian auto-correlation function in the transverse x and y-direction as,

where δh is the root mean square amplitude of fluctuations height. The correlation length lx and ly are in spatial 
domain morphology repetition length scale. The surface corrugation effect in the lattice is created in simulation 
by taking the Fourier transform of auto-correlation function from Eq. (14), applying a random phase, and tak-
ing an inverse Fourier transformation. In experiment, depending upon the fabrication and transfer process, and 
underline substrate morphology, the correlation length varies from 2 to 30 nm and corrugation amplitude 0.30 
nm to 0.005 nm from the SiO2 to h-BN substrate. To numerically simulate these substate effects and variation, we 
have calculated the density of state from Eq. (8), electronic density and hole density from Eq. (10), the density 
of propagating modes M(E) in x-, y-direction from Eq. (13), and electronic band structure from Eq. (7) for a 
flat and four different corrugation configuration. In corrugated graphene sheet the correlation length is kept at 
10nm and corrugation amplitude varying from 0.005 to 0.020nm in the corresponding Figs. 1, 2, 3. The x, y, and 
z-dimension scales in all the figures in this article are in the nanometer scale resolution. Following the quantum 
chemistry field conventions, the device structures are mapped and indicated as the multiplication of unit cells 
dimension. Therefore, we omit to show x, y, and z-dimension nanometer scales explicitly to avoid excessive 
cluttering in the figures from Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 throughout the article. The Fig. 1a correspond to 10x10 
graphene supercell flat structure, and Fig. 1b–e correspond to the corrugate device structure with roughness 
varying from 5 picometers (pm) to 20 picometers (pm), mimicking the roughness profile of corresponding 
h-BN and SiO2 substrate. Similarly, Fig. 1f–j represents the corresponding density of state, Fig. 1k–o represents 
the electronic density of modes M(E) in the x-y direction, Fig. 1p –t represents the electronic density, Fig. 1u–y 
represents the hole density and Fig. 1z–ad represents the electronic bandstructure of the corresponding device 
structure. In the simulated device, the primitive unit cell has two atoms per cell, and a finite element mesh 
simulates a total of 200 atoms with a domain size of 800 finite element mesh grid points. The P-D tight-binding 
model contains three orbitals, namely carbon Pz , and carbon-hydrogen passivated Dyz , Dxz orbitals. Therefore 
total degree of freedom in hamiltonian is 600 variable-sized orbitals. The K ′ and M ′ are high symmetric point 
corresponds to the folded reduce BZ-zone of graphene supercell. In the article’s supplementary information, 
from Fig. 1a–ad is also rendered in the full-text page resolution in the corresponding Supplementary Figs. 1–30 
for the reader’s reference.

We have observed from Fig. 1f–j, the density of states fluctuates from the flat to deformed structure pro-
gressively gives rise to additional states to scattered and decreases conductance. Also, in the deformed sample, 
sharp peaks appear in the density of states at lower energies compared to undeformed flat samples. We have also 
observed the disorder-induced Dirac point in the density of state shifting from zero energy point towards the 
right due to a shift in Fermi-energy also visible in from band structure plots Fig. 1z–ad as beforehand announced 
and reported in Raman spectra of the experimental graphene  sheet73. Moreover, the sharply peaked Van-Hove 
singularity point slowly shifts from low energy towards higher energy and slowly smoothing at these higher ener-
gies with the increased deformation in the sample. Even a tiny randomized inhomogeneous in-plane or out-of-
plane deformation strain will break the local sublattice and inversion symmetry in the one atom thin graphene. 
It will give rise to an inhomogeneous pseudo magnetic field that produces the additional density of the state’s 
low-energy peaks and increases the scattering probability with a deteriorating conductance. Moreover, inhomoge-
neous pseudo field incipient a non-equivalent charge density localization and distribution across the asymmetric 
sublattices of deformed regions. Furthermore, creating the electron-hole puddles in the graphene sheet can be 
seen from the numerical calculation from the electronic density Fig. 1p–t and hole density Fig. 1u–y. This will be 
more visible next for a larger size 100x100 graphene supercell sample simulation for electronic density Figs. 2g–3h 
and hole density Figs. 2i–3i. In the deformed sheet where sublattice and inversion symmetry is locally broken, 
energy bandgap opening is not visible from Fig. 1z–ad. However, as discussed in other studies, a sizeable large 
gaussian deformation can introduce an energy bandgap in the corrugated  sheet74. From density of modes M(E) 
Fig. 1k–o, we have observed the first transmission plateau weakly affected for the small deformations sample. 
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Figure 1.  Device structure 10x10 graphene supercell (a–e) corrugate-5pm to −20pm, Density of state (f) flat to 
(j) corrugate-5pm to −20pm, Electronic density of modes M(E) in x-y Direction (k) flat to (o) corrugate-5pm to 
-20pm, Electronic density (p) flat to (t) corrugate-5pm to −20pm, Hole density (u) flat to (y) corrugate-5pm to 
−20pm, and Electronic band structure (z) flat to (ad) corrugate-5pm to −20pm.
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However, progressively growing deformations induce a random fluctuation in the higher energy transmission 
plateau by reducing the plateau’s energy steps size following the density of state trajectories. It will mix up the 
various transmitting modes and wash out the clearly defined energy step size of the flat ballistic transmission 
modes. Therefore, it will lead to injected propagating electrons in graphene sheet with clearly defined energy that 
will not propagate in their own modes but have the further opportunity to interact with another mode through 
newly available deformed state and gain or release energy and transit between different conducting modes. It 
will provide them access to the new density of state to scattered further before reaching to drain contact from 
source contact. This verticle energy coupling will give rise to a phase incoherence in the ballistic regime. Overall 
electrical conductance in an energy window will degrade with increasing deformed samples from the idealistic 
flat scenario. First, the extra density of the state gives rise to an additional scattering probability, and second these 
energies mix up of different transmitting modes in the corresponding window. Moreover, degradation from ideal 
characteristics and fluctuation in density of state and modes density is more severe in the high-energy windows 
than in the low-energy region, and this trend is more severe for larger corrugated devices. Phenomenologically 
corrugated deform graphene sheet can be interpreted as a flat graphene sheet with local defect and scattering 

Figure 2.  Device structure 100x100 graphene supercell with surface corrugation 5pm and 10pm, and 
respectively Density of state (a, b), Electronic density of modes M(E) in x-y Direction (c, d), Electronic band 
structure (e, f), Electronic density (g, h), and Hole density (i, j).

Figure 3.  Device structure 100x100 graphene supercell with surface corrugation 15pm and 20pm, and 
respectively Density of state (a, b), Electronic density of modes M(E) in x-y Direction (c, d), Electronic band 
structure (e, f), Electronic density (g, h), and Hole density (i) at 20pm.
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center at each site and delocalized spread across the sheet. Deformation will introduce variation in density of state 
and transmission modes density in the entire scattering wavelength spectrum from the idealized flat graphene 
characteristic. Therefore, high-energy electronic states with small scattering wavelengths have more variation 
than low energy states. In near-zero energy fields, there is less distortion for more minor deformed structures. 
As the deformation grows at lattice size, It also starts distorting the low energy idealize characteristic of flat gra-
phene through a large scattering wavelength. Next, we have simulated the large 100x 100 graphene supercell to 
observe the above-discussed effect in greater spatial detail. The Figs. 2 and 3 correspond to 100 x 100 graphene 
supercell structure and correspond to the surface roughness device structure with roughness varying from 5 
pm to 20 pm, mimicking the roughness profile of h-BN and SiO2 substrate. Similarly, Figs. 2a–3b represents the 
corresponding density of state, Figs. 2c–3d represents the electronic density of modes M(E) in the x-y direction, 
Figs. 2g–3h represents the electronic density, Figs. 2i–3i represents the hole density and Figs. 2e–3f represents the 
electronic bandstructure of the corresponding device structure. In the article’s supplementary information, from 
Figs. 2a–3f is also rendered in the full-text page resolution in the corresponding Supplementary Figs. 37–55 for 
the reader’s reference. In the simulated device, the primitive unit cell has two atoms per cell, and a total of 20000 
atoms are simulated by a domain size of 80000 finite element mesh grid points. The total degree of freedom in 
hamiltonian is 60000 variable-sized orbitals.

The density of state from Figs. 2a–3b plotted for the larger device, and as previously discussed, we have 
observed density of state fluctuation; however, because of the relatively larger size in comparison to the correla-
tion length of deformation density of state variation relatively smoothen in compare to small size cell, Also, The 
Van-Hove singularity in the DOS curve is not spiked to very high in the curve due to the numerical resolution 
of computational calculation. Moreover, the slight shift in the Dirac point in the density of state with the corru-
gation follows the Fermi level calculation. The effective fermi level value follows the band structure calculation. 

Figure 4.  Device structure 10x10 graphene supercell (a, b) in-plane deformation roughness-5pm to −10pm, 
Electronic density of modes M(E) in x-y Direction (c, d) in-plane deformation-5pm to −10pm, Electronic 
density (e, f) in-plane deformation-5pm to -10pm, Hole density (g, h) in-plane deformation-5pm to −10pm, 
Density of state (i, j) in-plane deformation-5pm to −10pm, and Electronic band structure (k, l) in-plane 
deformation-5pm to −10pm.
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Also, the density of state shifts towards the right is due to a shift in Fermi-energy, as seen in the band structure 
plots and reported in Raman spectra of the experimental graphene  sheet75. However, this shift is minuscule in 
comparison to a small geometry corrugated structure from Fig. 1. From electronic density Figs. 2g–3h and hole 
density Figs. 2i–3i we represented a real-space description of confined states concentrating in the region where 
the pseudo magnetic field acquires its minima or maxima. Furthermore, this will provide inhomogeneous charge 
redistribution in the deformed lattice. Moreover, these features are independent of the lattice orientation of the 
graphene sheet and within reach of detailed STM characterization of the CVD graphene sheet for industrial-scale 
qualitative benchmarking. The emergence of a localized and delocalized state in graphene is due to symmetry 
breaking in the crystal. We have observed electronic bandstructure, from Figs. 2e –3f and the electronic state gets 
delocalized with more roughness. However, there is no bandgap opening at the K-point for these deformations 
values, but it can be possible, as discussed previously. Nonetheless, we have observed that energy splitting started 
at Ŵ and M point in the band structure for these deformation values. From Figs. 2c–3d, as previously discussed, 
the density of modes M(E) with increasing roughness corrugation states are getting delocalized and mixed up in 
the energy window from the flat sample. However, the density of the state smoothened for a larger sample. Still, 
overall transmission is decoherent because energy modes mix up and conductance decreases from the idealistic 
scenario. The density of modes calculation for the lower energy transmission follows the coherent transport 
regime. The transmission probability increases with the decreases in δh and the scattering rate decreases. The 
surface corrugation profile becomes smooth with the increase of correlation length and reduces the carrier scat-
tering rate. Fasolino et al. perform Metropolis algorithm-based Monte-Carlo simulations for intrinsic ripples in 
graphene with varying samples size of atoms from N = 240 to  1994076. For varying samples size at T = 300K, they 
found the ripples latent size of 5 to 10 nm long matching with the experiment  values77. In our work from NEGF 

Figure 5.  Primitive device structure 20 x 20 graphene supercell with substitutional Nitrogen impurity atom 
structure (a), Density of state (b), Electronic band structure (c), Density of modes (d), Self-consistent Poisson 
potential due to Nitrogen impurity (e), Electronic density (f), Hole density (g).
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calculation from comparing Figs. 2g–j and 3g–i on 25nm X 35nm graphene sheet, we have observed comparable 
ripples latent size with fluctuating electron-hole charge density puddle in our NEGF calculation.

We have also simulated a two-dimensional orthorhombic device structure to investigate whether a four 
atom per unit supercell will influence similarly or have different characteristics. This geometrical structure can 
be further tailored to make an armchair and zigzag nanoribbon configuration based upon confinement direc-
tion, boundary condition, and edge topology. In the article’s supplementary information, simulation results are 
rendered in the full-text page resolution from Supplementary Figs. 56–80 for the reader’s reference. We have 
observed a similar characteristic in the orthorhombic device structure as in the primitive device. The surface 
roughness in the corrugated device will shift the Fermi energy level from zero and a shift in the high symmetric 
points of the Brillouin zone of the ideal graphene sheet as reported in the experimental study of the twisted 
graphene  sheet75. The In-plane deformation profile also influences the electronic properties of the narrow-width 
graphene device and graphene nanoribbon. However, for the wide graphene sheet device on the substrates, the 
surface corrugation will always impact and fluctuate the device performance characteristics. Furthermore, in the 
corrugated device structure, the electron density distribution is nonuniform in the sheet implies that scattering 
rate and carrier conductivity are also spatially varying phenomena in the device. A highly corrugated device will 
complicate the band diagram with the mixing and split of various branches. In the corrugated device structure, 
we have observed the density fluctuation with the increase of corrugation compared to the flat configuration. 

Figure 6.  Primitive device structure 50 x 50 graphene supercell with substitutional Nitrogen impurity (a), 
Density of state (b), Electronic band structure (c), Density of modes (d), Self-consistent Poisson potential due to 
Nitrogen impurity projection on surface (e) Electronic density (f), Hole density (g).
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In addition, the local density of state variation suggests that the scattering probability should be in the spatial 
domain, momentum-dependent, and energy-dependent. Moreover, the current path will be highly disordered 
and nonlinear in such a device and follow the minimum resistance path. In the corrugated structure, density 
variations from the average density valuation in the flat configuration arise due to random quantum fluctuation 
due to variable atomic bond length and bond angle in the microscopic description of the material at the atomistic 
scale, and inversion symmetry and lattice symmetry breaking. These effects influence the macroscopic electronic 
and charge transport properties of the sample.

In‑plane deformation roughness effect. We have investigated the in-plane deformation effect on the 
electronics properties of the graphene sheet. In-plane, inhomogeneous deformation acts as a scattering source 
and affects the graphene sheet’s transport  property78. Auto-correlation function is used to statistically model the 
in-plane deformation  effects79. In the transport direction of z, the graphene sheet has a uniform ideal width of 

Figure 7.  (a) Device structure of corrugated 100 x 100 graphene supercell with 12 substitutional Nitrogen 
impurities for corrugate-5pm to 20pm, Electronic density of modes M(E) in x-y Direction (b–e) for corrugate-
5pm to 20pm, Electronic density  (f–i) for corrugate-5pm to 20pm, and (j) close up version of corrugate 20pm.
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W. At position z1 and z2 , the width deviates from the ideal width by δW(z1) and δW(z2) respectively. By auto-
correlation function the correlation between δW(z1) and δW(z2) is defined as,

By using the argument of correlation function R(z1, z2) = R(z1 − z2) and taking the Fourier transform of auto-
correlation function the power spectral density is,

The graphene sheet in-plane roughness profile is approximated as Gaussian or exponential  nature80. By using 
the exponential nature of the auto-correlation function,

where Wrms is fluctuation amplitude root mean square. Smoothness of the edge is measure by roughness correla-
tion length lc and z = nδz is total sampling length divide into δz = acc/2 sampling interval, and acc is carbon-
carbon bond length. By using Eq. (17) in the  (16) and taking the Fourier transformation, in real space in-plane 
deformation corrugation defined as the auto-correlation power spectrum is,

(15)R(z1, z2) =
〈

δW(z1)δW(z2)
〉

.

(16)R(q) =
∫

dzR(z) exp(−iqz).

(17)R(z) = W2
rms exp

[

− |z|
lc

]

Figure 8.  Primitive device structure 20 x 20 graphene supercell with substitutional phosphorus impurity 
with ten electronic charge (a), Density of state (b), Electronic band structure (c), Density of modes (d), Self-
consistent Poisson potential due to Phosphorus impurity (e), Electronic density (f).
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Finally, the real space roughness is calculated by applying a random phase to Eq. (18) and taking inverse Fourier 
 transformation81. Using NEGF formalism, we have created various numerical roughness profiles and evaluated 
the graphene sheet’s electronic transport properties.

We will discuss the results of 10x10 graphene supercell Fig. 4a–b, correspond to the in-plane deformation 
roughness device structure with roughness varying from 5 pm to 10 pm, mimicking the in-plane deformation 
profile of h-BN and SiO2 substrate. Similarly, Fig. 4i–j represents the corresponding density of state, Fig. 4c–d 
represents the electronic density of modes M(E) in the x-y direction, Fig. 4e–f represents the electronic density, 
Fig. 4g–h represents the hole density and Fig. 4k–l represents the electronic bandstructure of the corresponding 
in-plane deformation roughness device structure. In the article’s Supplementary information, from Fig. 4a–l is 
also rendered in the full-text page resolution in the corresponding Supplementary Figs. 81–92 for the reader’s 
reference. In all, the in-plane deformation roughness structure correlation is kept constant at 10nm length.

From Fig. 4, we have observed that an increase in the in-plane deformation from Fig. 4i 5 pm to Fig. 4j 10 pm, 
the density of state fluctuate more from the ideal flat structure of Fig. 1f, however, in comparison to corresponding 

(18)R(q) = W2
rmslc

1+ q2l2c
.

Figure 9.  Primitive device structure 50 x 50 graphene supercell with substitutional phosphorus impurity 
with ten electronic charge (a), Density of state (b), Electronic band structure (c), Density of modes (d), Self-
consistent Poisson potential due to Phosphorus impurity (e), Electronic density (f).
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surface roughness structures distortion in the density of the state is more diminutive. Also, from Fig. 4c–d, we 
have observed that an increase in the in-plane deformation will mix up more energy modes progressively by 
reducing the energy plateau and reduce the average transmission probability by providing an extra state to scatter. 
Furthermore, from Fig. 4e–l we have observed that increasing in-plane deformation will fluctuate electron-hole 
density in the sample. The correlation length of deformation will also change the localization length scale to 
mean free path for transport. Furthermore, depending upon the correlation length, more modes can mix up in a 
specific energy window of  transport82. Also, the modest increase in deformation amplitude will introduce these 
localized states, and transmission current through these new states will  progress83. However, a radical increase 
in the in-plane deformation will effectively decrease the sheet width available for propagating modes, increase 
the transport bandgap, and decrease the current value. One of the main contributions of roughness scattering 
through non-equilibrium Green’s functions formalism (NEGF) transport is that we have shown the corruga-
tions scatterers is a long-range scattering potential, as depicted in Figs. 2g–j and 3g–i on 25nm X 35nm sheet 
with varying corrugations from 5 pm to 20 pm. Furthermore, with the increasing strength of corrugations, the 
scatterer’s potential heavily disturbs graphene’s ideal electronic transport properties. In out-of-plane roughness 
due to the fluctuating scattering potential distribution, it creates electron-hole puddles in the sheet; further in-
plane roughness is not so dominant to perturb the ideal graphene’s transport as discussed above. Furthermore, to 
overcome these effects, graphene’s conductivity increases by intentional doping, but it will lower mobility. Also, 
conductivity is enhanced by using multiple graphene layers, but it will trade-off with the lower optical transmis-
sion in the device, restricting its application as the transparent electrode. In the in-plane deformation roughness 
effect, we have observed that only the carbon-carbon bond length is modified. However, in the surface roughness 
effect, both carbon-carbon bond length and bond angle are simultaneously randomized due to corrugation in 
the substrate. Therefore, the electronic band structure and other transport properties are more sensitive to these 
surface fluctuations and deviate further from the idealized flat graphene sheet.

Impurities effect. We have also investigated the effect of unwanted impurities on the electronic proper-
ties of the graphene sheet to elucidate the non-idealities that arrive during the fabrication and transfer step in 
a natural CVD-grown graphene sheet. Nitrogen and Phosphorus impurity atoms numerically substitute on the 
graphene sheet with corresponding bond radius and excess charge of the impurity atom. In the realistic scenario, 
numerous methods may arise in spatial charge distribution fluctuation in the graphene sheet. For example, an 
inhomogeneous electrical field applies at the gate or source/drain contact in the hall device through bias volt-
ages is one such feasibility. Also, an inhomogeneous spatial distribution of impurity atoms in the sheet or below 
in the substrate or an inhomogeneous strain field due to inherent ripple of flake and topological morphology 
of underline substrate or overlapping encapsulation may introduce these effects. Ziegler et al. mathematically 
formulated the impurity scattering using linear response theory Kubo formalism. Furthermore, gauged robust 
minimal conductivity independent of disorder of sample in the Boltzmann conductivity limit by applying mean-
field approximation to the Kubo conductivity tensor in a weak scattering regime exploiting the liner Dirac elec-
tronic bandstructure of  graphene84. However, our simulation work is based upon the Landauer formula in the 
non-equilibrium Green’s functions formalism, which is more generic to handle linear as well as non-equilibrium 
transport regimes and derived through Keldysh’s generalized perturbation theory for the non-equilibrium sys-
tem. In the non-equilibrium Green’s functions formalism, the generic interacting current ansatz has been given 
by Caroli et al.85–87 from the fluctuating electronic density between the interacting contact, and it corresponds to 
equation (5) of the Landauer formula for the current through an interacting electron  region88. We have numeri-
cally incorporated the spatial distribution of impurities atoms in graphene by solving the Poisson equation of 
spatially fluctuating impurities potential with NEGF formalism. Henceforward, we calculate the spatial charge 
distribution in terms of density of state, electronic and hole density, and variation in transmitting density of 
modes. Furthermore, we have investigated the change in electronic properties with the interpretation of impu-
rity density variation. We have varied the number of carbon atoms involving a substitutional impurity atom 
to consider these effects, effectively changing the device’s doping density. Furthermore, We have changed the 
impurity atom type, e.g., Nitrogen and Phosphorous atoms, with varying atomic radius. Besides, in the Phospho-
rous impurity study, we intentionally change the electronic valency of the ion with ten electronic charges. This 
fictitious super ion configuration is simulated to mimic a larger diameter atomic or molecular defect with the 
high electronic charge concentrated at a particular lattice site on graphene sheet in the substitutional or adsor-
bent configuration pattern during the fabrication or transfer step. To circumvent the high computational cost of 
non-local scattering self-energy term in the NEGF framework. Adsorbed or substrate charged impurities trap 
are modeled in the graphene sheet as charge impurity center and truncated at the U0 screened Coulomb poten-
tial energy superimposed upon the potential energy profile of impurity-free graphene sheet. Furthermore, the 
potential profile outside the screening length of impurity charges does not vary significantly from the impurity-
free device configuration as,

where r is the position of the current atom, �(r) is the screened Coulomb potential, Q is element charge, and r0 
is the position of the superimposed impurity atom, ε is the dielectric constant, U0 onsite core potential modified 
to adjust impurity atom state energy, and �D Debye screening length,

(19)�(r) = Q

4πεr
exp

− r−r0
�D ; r �= r0,

(20)�(r) = U0 ; r = r0
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where T is temperature, k is the Boltzmann constant, and Nd is the impurity doping concentration. The charge 
placement can be done randomly and explicitly at a particular atomic location with a random dopant distribu-
tion, sampling, and determining a stochastic model. With the added computation overhead, charge impurities 
can also be added as a scattering self-energy similar to an explicit way without requiring a sampling step in the 
NEGF coupled Eq. (7) of motion. However, the convergence achieves fast in the self-consistent born calculation 
with Poisson’s equation in a stochastic scheme. As the electrons and holes occupy low energy bands, long-range 
impurity potential interacts more critically with the device’s long-range externally applied electrostatic potential. 
Therefore from a theoretical perspective in the NEGF framework, a more rigorous model with multiple impurity 
scattering, impurity-impurity interaction, and interaction with the device’s electrostatic potential should be 
incorporated for better accuracy and added computational cost. Previously, Chen et al. demonstrated in-situ 
controlled potassium doping on pristine graphene devices in an ultrahigh vacuum chamber at a low T = 20 K 
temperature and measured gate-voltage-dependent conductivity, and investigated carrier density-dependent 
conductivity near Dirac-cone89. In our impurities, NEGF calculation similarly minimum conductivity value is 
observed. However, our calculation scenario is more complex. We calculate the transmission at room temperature 
and mix up all the propagating modes at thermal energy as it happens in the room temperature measurement 
in the CVD graphene sheet for any practical application. We have calculated the Density of state from Eqs. (8) 
and (19), electronic density and hole density from Eqs. (10) and  (19), density of propagating modes M(E) in 
x-, y-direction from Eqs. (13) and (19), Electronic band structure from Eqs. (7) and  (19), Spatially resolved 
electronic state and self-consistent Poisson potential from Eqs. (19) and  (21) on a graphene sheet with Nitrogen 
and Phosphorus atom substitute impurity in the Figs. 5, 6 and 8, 9 respectively for the various supercell size to 
investigate the effect of impurity density by varying the supercell size. As observed in the CVD-grown graphene 
samples, the doping density varied batch to batch based on the recipe. To investigate the correlation between the 
level of impurity effect on the relative size of the graphene sheet, we have used a single impurity with varying 
sizes of graphene structure. Next in the figure Fig. 5, Fig. 5a correspond to bigger 20x20 graphene supercell flat 
structure with substitutional Nitrogen impurity, fig. 5b corresponding density of state, Fig. 5c electronic band 
structure, Fig. 5d density of modes, fig. 5e self-consistent Poisson potential due to Nitrogen impurity, Fig. 5f 
electronic density, Fig. 5g hole density. In the article’s supplementary information, from Fig. 5a–g is also rendered 
in the full-text page resolution in the corresponding figures of Figs. 93–99 for the reader’s reference. Also, spa-
tially resolved electronic orbital wave-function amplitude |ψ |2 for first seven eigenvalues of stationary solution 
of Schrödinger equation from |ψ0|2 to |ψ6|2 in the corresponding graphene supercell is represented in the article’s 
supplementary information from Supplementary Figs. 100–106. In the simulated device, the primitive unit cell 
has two atoms per cell, and a total of 800 atoms are simulated with a domain size of 3200 finite element mesh 
grid points. The total degree of freedom in hamiltonian is 2400 variable-sized orbitals.

In Fig. 5, from Fig. 5b, we have observed that Nitrogen impurity will induce additional state and density of 
state fluctuation and hence provide more scattering probability to propagating electron in a graphene sheet. Also, 
from Fig. 5c there is a small energy bandgap opening in the band structure and change in dispersion curvature of 
Dirac fermion and a dip in Fermi level due to additional Nitrogen electronic charge in sheet. Furthermore, from 
Fig. 5d there is a more density of modes mixing up in comparison to idealistic characteristics as distinct energy 
level plateaus are vanishing. Moreover, from Fig. 5f–g electronic and hole density significantly fluctuate from the 
constant neutral density due to impurity induced self-consistent Poisson potential of 0.3 eV at the impurity site 
and spread in the vicinity of next to the next nearest neighbor in the lattice as observed in Fig. 5e. Next in the 
figure Fig. 6, Fig. 6a correspond to biggest 50x50 graphene supercell flat structure with substitutional Nitrogen 
impurity, Fig. 6b corresponding density of state, Fig. 6c electronic band structure, Fig. 6d density of modes, 
Fig. 6e self-consistent Poisson potential due to Nitrogen impurity, fig. 6f electronic density, Fig. 6g hole density. 
In the article’s supplementary information, from Fig. 6a to Fg. 6g is also rendered in the full-text page resolution 
in the corresponding figures of Figs. 107–113 for the reader’s reference. Also, spatially resolved electronic orbital 
wave-function amplitude |ψ |2 for first seven eigenvalues of stationary solution of Schrödinger equation from 
|ψ0|2 to |ψ6|2 in the corresponding graphene supercell is represented in the article’s supplementary information 
from Supplementary Fig. 114–120. In the simulated device, the primitive unit cell has two atoms per cell, and a 
total of 5000 atoms are simulated with a domain size of 20000 finite element mesh grid points. The total degree 
of freedom in hamiltonian is 15000 variable-sized orbitals.

In Fig. 6, from Fig. 6b, we have also observed that Nitrogen impurity will induce additional state and density 
of state fluctuation and hence provide more scattering probability to propagating electron in a graphene sheet; 
however, the severity of distortion is less in comparison to the smaller geometry case as discussed previously. 
Also, from Fig. 6c there is a restoration of the Dirac fermion band structure, and from Fig. 6d However, due 
to additional availability of state, there is a still density of modes mixing up in comparison to idealistic char-
acteristics as distinct energy level plateau are fading. However, distortion is less in comparison to the smaller 
geometry case of Fig. 5. Moreover, from Fig. 6f–g electronic and hole density significantly fluctuate from the 
constant neutral density due to impurity induced self-consistent Poisson potential of 0.3 eV at the impurity site 
and spread in the vicinity of next to the next nearest neighbor in the lattice as observed in surface projected Pois-
son potential landscape plot of Fig. 6e. Also, in comparison to Fig. 5 from Fig. 6, we have observed that a single 
impurity state in the larger device does not affect the energy band edge significantly on the energy scale. Also, 
it induces insignificant energy broadening compared to contact induces energy broadening as the system is in 
a non-equilibrium open quantum state. The weak perturbation effect of a single impurity state validates these 
estimates. Therefore, the device’s electrostatic potential landscape did not further calibrate for this new impurity 
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state induces a potential loop, and overall propagating states are unimpaired by this variation. However, such a 
numerical truncation situation rapidly changes for a smaller device geometry with a single impurity state or a 
larger device with multiple impurity states. Therefore, a more detailed self-consistent calculation incorporating 
an impurity potential loop is required to reach higher accuracy. Next, we have doped the corrugated graphene 
sheet of 100x100 supercell with substitutional Nitrogen impurities with varying corrugation from 5 pm to 20 
pm in the Fig. 7 to investigate the combined effect of impurities atom and out of plane corrugation. We have 
substituted the 12 carbon atoms with the Nitrogen at the atomic location numbers 2972, 3565, 7129, 7418, 
8127, 9101, 9178, 11032, 11692, 11707, 16757, 17155 in a graphene sheet constituting 20000 atoms carved out 
of 25nm x 40 nm flake. From Fig. 7, we observed that the transmission profile and atomistic electronic density 
were disturbed significantly by the dual effect from the flat idealistic and uniform charge distribution graphene 
sheet and the formation of electronic-hole puddle formation in the graphene flake. In the article’s supplemen-
tary information, from Fig. 7b–i is also rendered in the full-text page resolution in the corresponding figures of 
Figs. 121–132 for the reader’s reference. In the Fig. 7 with the progressively increasing corrugation profile with 
impurities atoms doping in the large 100x100 graphene supercell from corrugate-5pm Fig. 7b to 20pm Fig. 7e, 
We have observed the electronic density of transmission modes M(E) in x-y direction heavily distorted from the 
idealistic condition. Moreover, the electronic density for corrugate-5pm Fig. 7f to 20pm Fig. 7i, also fluctuated, 
as also seen in Fig.  7j view.

The impurity atoms, inhomogeneous impinging applied electrical field, and various strain fields through rip-
ples, corrugation in the graphene sheet increase the energy mixing of propagating density of modes. Furthermore, 
the extra state density assists in propagating electrons to scatter more, therefore reducing overall conductance. 
Nevertheless, at the same time, even the slight variation in band structure dispersion gives rise to variation 
in the effective mass of Dirac fermion from idealistic values, and overall observed mobility and conductivity 
deteriorate furthermore from the flat characteristic. We have observed the slight kink in the density of state 
around zero-energy Dirac point due to substitutional impurity and the start of band branch splitting around the 
high symmetric points of the Brillouin zone, which broadens the original graphene band at these points. These 
additional band branches will influence the energy landscape in the next few nearest-neighbor carbon atoms. 
Hence, more accuracy can be achieved in band structure calculation by adopting a higher-order tight-binding 
model for an impurity-driven sheet in an open boundary device or using an electrically close boundary sheet 
in the ab-initio calculation with few ten of thousand atoms device with additional computation overhead. Next, 
we have a doped graphene sheet with substitutional Phosphorus impurity. Although intentionally replace the 
electronic valency of the ion with ten electronic charges to create a fictitious super ion to mimic a larger diameter 
atomic or molecular defect with the high electric charge concentrated at a specific lattice site on the graphene 
sheet. In the figure Fig. 8, Fig. 8a correspond to 20 x 20 graphene supercell flat structure with substitutional 
Phosphorus impurity, Fig. 8b corresponding density of state, Fig. 8c electronic band structure, Fig. 8d density 
of modes, Fig. 8e self-consistent Poisson potential due to Phosphorus impurity, Fig. 8f electronic density. In the 
article’s supplementary information, from fig. 8a–f is also rendered in the full-text page resolution in the cor-
responding Supplementary Figs. 133–138 for the reader’s reference. Also, spatially resolved electronic orbital 
wave-function amplitude |ψ |2 for first seven eigenvalues of stationary solution of Schrödinger equation from 
|ψ0|2 to |ψ6|2 in the corresponding graphene supercell is represented in the article’s supplementary information 
figures from Figs. 139–145.

In Fig. 8, from Fig. 8b, we have observed that Phosphorus impurity with excessive charge will induce extra 
state density and hence provide more scattering probability to propagating electrons in a 20x20 graphene sheet. 
The density of state shifted significantly towards the left due to shifting in Fermi value due to excessive electronic 
impurity charge doped in this sample; a similar trend is visible in the band structure plot from Fig. 8c. There is 
a tiny band opening in the band structure, and the dispersion of graphene has heavily deteriorated from Dirac 
fermion. From Fig. 8d there is a more density of modes mixing up in comparison to idealistic characteristics as 
distinct energy level plateau dissolved. Moreover, from Fig. 8f electronic density significantly fluctuates from 
the constant neutral density due to impurity induced self-consistent Poisson potential of 0.85 eV at the impurity 
site and spread in the vicinity of next to the next nearest neighbor in the lattice as observed in surface projected 
Poisson potential landscape plot of Fig. 8e. The increase in the Poisson potential in this case as compared to 
Figs. 5e–6e is due to the excess charge we intentionally doped at a lattice site to investigate the effect of a heav-
ily contaminated site in a CVD Graphene sheet. Next, in the  Fig. 9, Fig. 9a correspond to 50 x 50 graphene 
supercell flat structure with substitutional Phosphorus impurity, Fig. 9b corresponding density of state, Fig. 9c 
electronic band structure, Fig. 9d density of modes, fig. 9e self-consistent Poisson potential due to Phosphorus 
impurity, Fig. 9f electronic density. In the article’s supplementary information, from Fig. 9a–f is also rendered 
in the full-text page resolution in the corresponding figures of Figs. 146–151 for the reader’s reference. Also, 
spatially resolved electronic orbital wave-function amplitude |ψ |2 for first seven eigenvalues of stationary solu-
tion of Schrödinger equation from |ψ0|2 to |ψ6|2 in the corresponding graphene supercell is represented in the 
article’s supplementary information Supplementary Fig. 152–158.

In Fig. 9, from Fig. 9b, we have observed that Phosphorus impurity with excessive charge will induce extra 
state density kink and hence provide more scattering probability to propagating electron in a 50x50 graphene 
sheet. However, again in comparison to Fig. 8b fluctuation in density of state of becoming smooth. The density 
of state shifted towards the left due to shifting in Fermi value because of excessive electronic impurity charge in 
the sample. In the band structure plot from Fig. 9c. There is a mixing of states, and the dispersion of graphene 
has heavily deteriorated. From Fig. 9d there is a more density of modes mixing up in comparison to idealistic 
characteristics as distinct energy level plateau dissolved. However, the situation improves from the smaller sample 
calculation with the same number of impurity charges. Moreover, from Fig. 9f electronic density significantly 
fluctuates from the constant neutral density due to impurity induced self-consistent Poisson potential as observed 
in Fig. 9e, however again, the fluctuation in electronic density reduce in comparison to small geometry sample as 
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in Fig. 8e. The phosphorus atom, due to its relative atomic size, bond radius, excess orbitals, and additional states 
compared to the carbon atom, the impurity effect spread in the graphene lattice. Also, these excessive impurity 
state influences the energy landscape in a couple of next nearest-neighbor carbon atoms. These excess impurity 
charges are included in numerical simulation by replacing the carbon atom with Nitrogen and Phosphorus atom 
with an adequate charge. From the above observation, we conclude that the enhancement of conductivity of 
graphene sheet through the substitutional and adsorbent impurity doping route will come with its tradeoff cost 
of the enhancement of additional density of states, deterioration of Dirac band dispersion, and fluctuation of 
transmission and modes density. Therefore reduce mobility values in the sheet. On the other hand, enhancement 
of conductivity of graphene by depositing multiple sheets in the device will reduce the transparency of the sheet 
and its possible application in display devices. Moreover, the enhancement of conductivity of graphene sheet 
through indirect induce doping by gate field will trade off with Fermi level shift and shift in conduction from 
valance band branch to conduction band branch. Furthermore, giving rise to ambipolar characteristics, and 
turning off such device by gate filed, especially in transistor application, will be difficult. The combined impact 
of corrugations and impurities may arise in practical fabrication and transfer processes. The practical impact 
of various nanoscale atomistic scattering mechanisms in the semiconductor consider by Matthiessen’s rule and 
total scattering length and time is the summation of all the underline individual  effects53,90–92, Furthermore, the 
most prominent mechanisms of these various physical effects determine the final device characteristic. In the 
NEGF loop, these various mechanisms are adopted as Dyson’s self-energy loop to solve self-consistently. The 
macroscopic sample’s characterization properties are defined by the microscopic averaging out of competing 
scattering statistics rather than individual scattering events of the order of the femtosecond process. Finally, we 
conclude the article with a summary of the results and observations.

Summary
We have numerically investigated various random, non-idealities, e.g., inhomogeneous out-of-plane surface 
corrugation, in-plane deformation, and excess atomistic charge impurities in the 2-dimensional graphene sheet. 
These non-idealities primarily arise in the Roll-to-Roll chemical vapor deposition (CVD) and plasma-enhanced 
chemical vapor deposition (PECVD) manufacture process. Mitigating these variances is necessary for the practi-
cal application success of the graphene industry, and the high fidelity and uniformity require in the graphene 
production, transfer, benchmark process is the utmost requirement for developing the graphene-based industry. 
We have employed a multiscale, multi-physics-based non-equilibrium Green’s function framework in a third 
nearest-neighbor tight-binding configuration. The Tight-binding model is computationally efficient to incorpo-
rate atomistic effects on mesoscopic electrical properties. Our detailed study provides an essential understanding 
for evaluating and benchmarking the electronic properties of graphene sheets. It also oversees the nanoelectronics 
device design aspect on graphene and 2-D material for practical application in industry. Our calculation has not 
explicitly treated surface roughness scattering as a self-energy term in the NEGF framework, which is numerically 
cumbersome, affecting the device’s performance. In future investigations, we will attempt to incorporate that in 
an equal mathematical footing in the framework. Also, a more sophisticated local density of state-dependent 
scattering model should be employed for a more detailed investigation of the highly corrugated device. Also, 
surface passivation treatment can influence the device’s electrical characteristics. Theoretical modeling of cap-
ping material effect, doping efficiency, long-range electrostatic screening, interface effect, interlayer phenomena, 
contact quality, and heat transfer in the low-dimensional material-based device should be examined further 
for quantitative evaluation. However, scattering is omitted and treated as residue in the most published articles 
in the 2-D materials domain and ignored without sufficient justification. In addition, the atomistic resolutions 
are critical for the charge in the self-consist computations. The theoretical treatment of defect situations is even 
challenging at the multiscale simulation. However, these are challenging transport situations at the nanoscale’s 
theoretical modeling in the graphene and 2-D material domain.
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