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Abstract

The propensity of many proteins to oligomerize and associate to form complex structures from their constituent monomers,
is analyzed in terms of their hydrophobic (H), and electric pseudo-dipole (D) moment vectors. In both cases these vectors
are defined as the product of the distance between their positive and negative centroids, times the total hydrophobicity or
total positive charge of the protein. Changes in the magnitudes and directions of H and D are studied as monomers
associate to form larger complexes. We use these descriptors to study similarities and differences in two groups of
associations: a) open associations such as polymers with an undefined number of monomers (i.e. actin polymerization,
amyloid and HIV capsid assemblies); b) closed symmetrical associations of finite size, like spherical virus capsids and protein
cages. The tendency of the hydrophobic moments of the monomers in an association is to align in parallel arrangements
following a pattern similar to those of phospholipids in a membrane. Conversely, electric dipole moments of monomers
tend to align in antiparallel associations. The final conformation of a given assembly is a fine-tuned combination of these
forces, limited by steric constraints. This determines whether the association will be open (indetermined number of
monomers) or closed (fixed number of monomers). Any kinetic, binding or molecular peculiarities that characterize a
protein assembly, comply with the vector rules laid down in this paper. These findings are also independent of protein size
and shape.
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Introduction

One of the most fundamental aspects of the knowledge of

protein function is their ability to self-associate, constituting larger

structures suitable for many cell structures and functions. All those

characteristics involved when certain proteins form any kind of

association (from dimers to sizeable oligomers) have been of great

interest from the earliest moments of protein research and

continue to be the object of intense research in many areas [1–

5]. This interest covers the most basic knowledge in cell function

from actin and tubulin polymerization, to those mechanisms that

provoke serious diseases like Alzheimer’s, which imply large

amyloid aggregations in the cytoskeleton, just to mention two

conspicuous examples. These are both associative processes that

are essential for cell life [6–9] or bring disease and death [10–13].

These processes may show different association kinetics among

them but both may share common features that may yield some

clues about necessary conditions for association. Which of these

conditions are being shared by associations that end up with a

definitive number of monomers, such as virus capsids, or protein

cages (just to mention a few examples)? One of the fundamental

questions is what can be common to all associative processes and

what makes them different. The problem that thus arises is how to

characterize their analogies and differences in terms of a single

model. Many studies have addressed the problem from many

points of view. Recently, some approaches have been developed

by considering electric and hydrophobic interactions [14] but so

far no unified view has been established because the intrinsic

complexity of each particular process prevents or hinders the

generation of a unified description, let alone predictive models.

One of the limiting factors added to these difficulties lays in the

dependence on the availability of complete 3D structures. The

Protein Data Bank continuously increases the number of structures

available, as well as their completeness and accuracy. This article

is an attempt to find and use simple descriptors suitable in all

protein assembly processes.

We use some of the systems mentioned above as examples for

application of these descriptors. For clarity and space reasons, we

cannot address all quaternary assemblies, although some will be

mentioned as suitable for the same analysis. Results will be shown

in two groups: a) homogeneous associations in which there are an

unlimited number of monomers, and b) homogeneous systems

composed of a fixed number of monomers. In the first group, actin

polymerization, amyloid assembly and HIV capsid helical
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assemblies will be described. In the second group, we have chosen

Brome Mosaic virus capsid, protein cages and Ebola membrane

associated virus capsid. Our purpose is to try to find common clues

in these assemblies that may be extendable to other systems of

proteins. In Supporting Information other systems are analyzed

and tested with this methodology.

Based on studies of hydrophobic and electrical interactions as

being two of the most conspicuous forces characterizing proteins,

our group has been studying protein thermostability in the past

[15–17]. Hydrophobicity has been known to be an essential force

in configuring macromolecules ever since the very first studies, but

it has not been easy to formalize a theoretical system like the

electric forces. Even the use of the term ‘‘hydrophobic force’’ could

be questionable since hydrophobicity is of entropic origin. But in

spite of it, empirical formalizations of hydrophobic interactions

have been developed, especially by the use of force fields, as

alternative to surface-area models [18,19]. Besides a pseudo

electric dipole moment vector [16], D, this article includes a

descriptor for the hydrophobic effect, the hydrophobic moment

vector (H), defined in a similar manner as D relative to the

hydrophobicity of each amino acid. It will be shown how the

relative magnitudes and orientations of the D and H vectors and

their variations are able to describe and predict the behavior of

monomers in their ability to assemble. In this description, a given

protein is associated to a set of vectors, D and H, allowing the

prediction of its behavior interacting with other protein vector sets.

The main differences in the relative orientation of these vectors,

for different types of protein associations, will be shown.

In consonance with our previous work [16–17], we interpret a

decrease in the modulus of D, when two monomers form a dimer,

as a favorable configuration under the electric point of view, since

it means that the electric centroids are closer. As far as changes in

the modulus of the hydrophobic moment H are concerned, the

interpretation is not that immediate for the reasons given above

about the nature of the hydrophobic effect. We empirically use, as

a reference, the constitution of a membrane as a model of

interaction and stability in terms of hydrophobic moments as is

discussed in the paper. The attractiveness of this method lies in its

simplicity. Its description and predictive possibilities are discussed.

As already mentioned, this method takes into account only

electrical and hydrophobic interactions, leaving others, like

hydrogen bonding, out of the scope for simplicity. The results

presented are sufficiently significant, even though we are conscious

of the importance of other interactions. The purpose is to produce

a model as simple as possible.

Results

Transmembrane Proteins
In order to find an interpretation of protein hydrophobic

moments we studied the behavior and disposition of H vectors of

phospholipids within a membrane and their interaction with H
vectors of transmebrane proteins. (Vector quantities are denoted

by bold characters in this article). Each phospholipid constituting a

membrane has a hydrophobic centroid in its hydrophobic tail and

a hydrophilic centroid in its polar head. This defines a

hydrophobic moment vector approximately perpendicular to the

membrane surface (see Figure 1a). The parallel alignment of

phospholipids in a membrane determines the parallel alignment of

their hydrophobic moments in the most energetically stable

Figure 1. Membrane model of hydrophobic moments. Left: Cartoon representation of the hydrophobic moment vector, H (yellow arrow)
formed in a single phospholipid within a membrane. Its modulus is defined as the product of the total hydrophobicity of the phospholipid tail, times
the distance between the hydrophobic centroid (somewhere in the tail) and the hydrophilic centroid (in the polar head). Right: Schematic
representation of the transmembrane protein Chloroplast ATP synthase c-ring (PDBid 3V3C) inserted in a membrane. Blue and red arrows represent
hydrophobic (H) and electric dipole moment (D) vectors respectively. Small yellow arrows represent the hydrophobic moment of each layer
constituting the membrane. All hydrophobic moments of the phospholipids are quasi-parallel and perpendicular to the plane of the membrane.
doi:10.1371/journal.pone.0110352.g001
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configuration. In order to compare the orientation of hydrophobic

moment vectors of phospholipids in a membrane with those of

transmembrane proteins, we computed the H and D vectors for a

set of 40 TM proteins as well as the angles they form. Several

remarkable features are worth observing.

First, for all the proteins used, their H vectors were always

perpendicular to the membrane plane (thus, parallel to the

phospholipids hydrophobic moments), whether they were directed

towards the interior or the exterior of the membrane. In principle,

this supports the idea that hydrophobic vectors tend to align in

parallel arrangements in stable situations.

Second, it must be noted, that no single layer of phospholipids

can stay single in a stable situation. As a stable membrane is

composed of two opposing layers of phospholipids, hydrophobic

moments of both layers tend to cancel each other out.

Third, regarding transmembrane proteins, two clearly different

populations of angles between the H and D vectors (written as

D‘H in the rest of the article) appeared, regardless of whether the

TM proteins were of alpha or beta type. Those angles were either

small (17.2u62.3u) or large (149.1u64.9u), indicating that the

electric dipole moments tend to align with the hydrophobic

moments either in a parallel or antiparallel arrangement.

Figure 1b depicts a schematic example of a transmembrane all

alpha protein, 3V3C (chloroplast ATP synthase), typically showing

the H and D vectors perpendicular to the membrane plane.

Protein Assemblies with an Indetermined Number of
Monomers

Actin polymerization. Ever since the publication of the first

actin structure [20], there has been a wealth of increasingly refined

structures of this protein, as well as its association with other

proteins. Recently, actin polymers either associated with myosin

molecules or with cofilin, have been crystallized (PDBid: 1M8Q

[21] and 3J0S [22] respectively), allowing a more detailed view of

the configuration of the actin monomers within the polymer. We

have used these structures to study actin polymerization in terms of

the H and D vectors, and the angles that they form in the

assembled species. These values are shown in Table S1, for both

monomeric actin (G-actin) and polymeric actin (F-actin). In this

table, data has been divided into several series, following the

notation given in the original sources [21–22].

From Table S1, we computed average values for D, H and the

angles that they form (written as D‘H in the rest of the article) for

the individual actin monomers within the F-actin structures: ,

D.= 24.360.2 debyes; ,H.= 142.464.8 rhu; ,D‘H.

= 88.3u61.4u. Unfortunately, it is not possible to make a good

comparison of these figures with values obtained from free G-actin

in solution. Structures of G-actin that either come as free G-actin

(1J6Z, 3HBT) or bound to other proteins, lack important segments

of their sequences. For example, some structures lack the

negatively charged DEDE sequence of the N-terminus. In spite

of the possible variability of these magnitudes in these structures,

some averages were attempted for comparison with the above

averages: ,D.= 25.365.9 debyes; ,H.= 156.4614.8 rhu and

,D‘H.= 72.3u619.3u. From these figures it can be seen that

within the polymer, monomers have their D and H moments

almost perpendicular to each other with little dispersion, whereas

in free G-actins D and H vectors show a great variety in their

relative orientations. The variability in the D‘H angle was

particularly striking because values ranging from 35u to 140u
were found for different structures. Another cause for dispersion in

those values is that the interaction of the G-actin with its particular

associate may provoke different changes in the structure of the G-

actin.

When polymerizing, the moduli of both H and D vectors

increase as new monomers incorporate onto the polymer, as

expected given their tendency to align. There seems to be an initial

decrease of D upon dimerization, followed by increasing values

(Figure 2A). According to the results shown in Table S1, when an

actin dimer is formed, their H vectors form an angle that ranges

from about 40u to 70u. As a new monomer is added to the

polymer, the average angle between its D vector and that of the

assembled polymer tend to decrease to a plateau value around 30u,
as seen in Figure 2B.

The angles corresponding to the H vectors show a similar

decreasing tendency from an average angle around 130u down to

around 90u, as shown in Figure 2B. Figure 3a shows the cone of H
vectors, as new actin monomers are added to the polymer. In

Figure 3b it is possible to appreciate the slowly rotating pattern

shown by the D vectors as the polymerization proceeds.

Amyloid formation of Aß9–40 peptides. A recent study by

Kim and Hecht [23] revealed how peptides Aß9–40

(DAEFRHDSGY EVHHQKLVFF AEDVGSNKGA
IIGLMVGGVV; PDBid: 2LMN) form aggregated structures

and how these structures are modified by some mutations. These

peptides have the shape of a pin [23,24] and have a tendency to

associate in a quasi-lateral manner, forming long arrays of pins.

Sets of these arrays tend to associate among themselves in an

antiparallel relative orientation, as shown in Figure 4.

We analyzed the behavior of the hydrophobic and electric

dipole moments of these structures and results are summarized in

Table S2 using the coordinates of the 2LMN crystal. These

coordinates correspond to an array of six peptides (2LMN1),

together with another array of six peptides (2LMN2) disposed in

an antiparallel arrangement, similar to that observed in Figure 4.

Several features are worth mentioning from Table S2. It is

important to observe that the association of subunits from ‘‘a’’ to

‘‘f’’ of the array 2LMN1 is such that the H vectors tend to align

themselves in a quasi-parallel manner to each other. The same can

be observed for the association of array 2LMN2 (‘‘g’’ to ‘‘l’’). The

association of both arrays is done in such a way that their

hydrophobic moments lay quasi-perpendicular (about 108u) to

each other, yielding a larger total hydrophobic moment, as

expected.

Under the electric point of view, the association of the peptides

within an array is not favorable since the electric dipole moments

are arranged parallel to each other. This fact may be taken as an

example of the pre-eminence of hydrophobic effect overcoming

the electric force. Nevertheless, it must be noted that the way in

which both arrays 2LMN1 and 2LMN2 are associated to form

2LMN is favorable under the electrical point of view, since the

total dipole moment is smaller than those of the two arrays,

without challenging the hydrophobic association between them.

The angle formed by the dipole moments of each array is about

145u, indicating a quasi-antiparallel arrangement.

The advantage in choosing this structure for analysis lays in the

fact that Kim and Hecht [23] produced a structure in which

Glutamine 15 was mutated into Leucine, that is, to a more

hydrophobic species. The same analysis with the mutated

complexes yielded a significantly different result from the wild

type.

Since the mutation does not involve changes in electric charges,

electric dipoles did not show significant changes in intensity or

orientation. The hydrophobic moments intensities of the individ-

ual pin-like peptides did not change significantly from those values

observed in the native species either. Consequently, the hydro-

phobic moments of the individual arrays of peptides are essentially

the same as in the wild type peptides. However, the difference lies

Vector Description of Protein Association

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e110352



in the relative orientation of these hydrophobic moments: The

relative angle between hydrophobic moments in the wild type was

found around 108u, while in the Q15L mutant it was around 128u.
This separation of both moments implies a better antiparallel

alignment between both vectors and a smaller total hydrophobic

moment of the whole complex. Figure 4 shows the hydrophobic

moments of both arrays for the wild type and the Q15L mutant.

Superoxide Dismutase (SOD1). Superoxide Dismutase

responsible for Familial Amyotrophic Lateral Sclerosis is another

example of a degenerative disease-related self-assembling process.

The function of this protein is Cu2+ and Zn2+-dependent.

Seetharaman et al. [25] describe the influence of the absence of

these metal ions as well as the G93A mutation in its assembling

capacity.

Analyzing the crystal structure of SOD1 (PDBid: 2C9V), it was

found that native monomers associate as a dimer by opposing both

their electric dipole (163u) and hydrophobic moments (162u). The

association leaves a component of the total hydrophobic moment

perpendicular to the z–y plane of the compound (green in

Figure 5a), as well as a dipole moment (red in Figure 5a, b).

In this condition SOD1 does not seem to aggregate or does not

do it in a virulent way. However, the absence of metal ions

produces a slight deviation of the hydrophobic moment vector plus

the appearance of a strong component of the dipole moment

perpendicular to both the y-x and z-x planes of the dimer

(magenta in Figure 5a, b), suggesting an increase of the lateral

electric attractiveness towards other monomers.

Figure 2. Actin polymerization. Variation of the moduli of the hydrophobic, (H, green) and electric dipole, (D, red) moment vectors as new
monomers are added to the polymer. A) Variation of the moduli of both D (left vertical axis) and H (right vertical axis) with number of monomers
within the polymer, n. The initial dimer formation suggests a decrease in the value of D as compared to those of the monomers. B) Variation of the
angles formed by the hydrophobic, H‘H and dipole moments, D‘D, formed by the polymer and the new monomer. Note that in both cases the value
of the angles decrease to steady state values. In the hydrophobic case this is a little above 20u, whereas in the dipole case, it lies between 80u and 90u,
implying virtually no electric interaction. D values in debyes. H values in rhu (see methods). Error bars are from averages using the different series
mentioned in the text.
doi:10.1371/journal.pone.0110352.g002

Figure 3. Actin polymerization. First four actin monomers from PDBid: 1M8Q, numbered from 0 to 3, following the notation given in [21]. a) View
along the polymer axis: arrows are D vectors (colors of the arrows correspond with their actin subunits). Note the rotating pattern of these vectors as
more monomers are added. b) Side view of the polymer. Hydrophobic moments keep a relatively small angle around the elongation axis.
doi:10.1371/journal.pone.0110352.g003

Vector Description of Protein Association

PLOS ONE | www.plosone.org 4 October 2014 | Volume 9 | Issue 10 | e110352



Mutation G93A (PDBid: 3GZO) slightly increases the modulus

of H but not its direction. The dipole moment vector D, changes

direction with conspicuous components in both frontal and lateral

directions, implying a strong interaction with other dimers. Both

mutation plus metal ions suppression (PDBid: 3GZP), do not show

a significant effect on H, but D produces significant changes in

both horizontal and vertical components, suggesting a strong

enhancement of its aggregability in these directions.

Human Immunodeficiency Virus-1 (HIV-1) capsid. Zhao

et al. [26] have recently published the coordinates of a HIV-1

capsid assembly (PDBid: 3J4F). The structure is a helically growing

microtubule of 12 units per turn. Figure 6a shows the front and

side views of the first turn where the 12 units of the turn plus the

first unit of the next turn can be seen. The basic building unit of

this compound is a hexamer whose subunits are arranged in the

shape of a star. These hexamers assemble laterally, presumably

through interactions of their respective hydrophobic moments (see

Figure 6b). It is worth it to observe here the subtle combination of

electric and hydrophobic effects: as new elements are added to the

compound the hydrophobic interaction becomes less effective (H

vectors less aligned) while at the same time this is balanced by an

increase of electric attraction since angles D‘D go from parallel

(31.1u) to antiparallel orientation (152.9u, see Table S3).

The H and D vectors moments of each of the six monomers in

each hexamer, are aligned relatively parallel to each other and in a

quasi-perpendicular direction to the plane of the hexamer

(Figure 6b). The result is that the total H vector of the hexamer

deviates some 18u–20u from its axis. On the other hand, the

relative orientations of the D vectors are not strictly parallel but

form angles of about 45u relative to each other, making their

interaction not as unfavorable as if the were perfectly parallel. This

also results in a total D vector in the hexamer not aligned with axis

showing a deviation angle of about 15u.
Once the hexamers are incorporated into the turn, the H

vectors lean over one side of the turn, projecting their components

near the axis. As the tubule grows adding new turns, the total H
vector increases in the direction of the axis of the tubule. On the

other hand, the components of the H vectors in the plane of the

turn cancel out. The way in which the individual D vectors of the

hexamers are oriented makes the total modulus D smaller than

those of the individual hexamers, which is an indication of

stability, although with a net increase as the tubule grows (see

Table S3).

Protein Assemblies of Limited Numbers of Monomers
Most quaternary assemblages (homo-oligomers) of proteins are

formed with a determined number of monomers in order to be

biologically functional. Contrary to the cases shown in the former

section, these structures do not grow indefinetively, but form

structures of a certain complexity in stable configurations. The

number of cases provided by the Protein Data Bank is increasingly

large, so only some examples of systems of different sizes and

shapes are described here as an application of this vector analysis.
Brome Mosaic Virus. Many virus capsids share the com-

mon feature of being closed spherical structures. In such cases the

constituent monomers arrange in such a symmetric way that both

the hydrophobic and electric dipole moments of the assembly are

very small or zero, providing sound stability to the complex.

The structure of Brome Mosaic Virus (PDBid: 1JS9) is formed

by 12 pentamers in a quasi-spherical configuration [27]. The

‘‘basket’’ disposition of the five H and D vectors of each pentamer

allows on one hand, to symmetrically radiate their components in

the plane of the pentamer, presumably facilitating the interaction

with neighbor pentamers. On the other hand, components of both

D and H in the plane perpendicular to the pentamer oriented

towards the centre of the structure cancel out with those oriented

in the opposite side of the sphere, as shown in Figure 7. This is

possible due to the precise symmetry of this complex, contrary to

what was seen in the case of the Human immunodeficiency virus-1

(HIV-1) capsid (PDBid: 3J4F), where the assembly of the basic

hexamer was not ‘‘closed’’ due to some variability in the

orientation of the H vectors. In the present case all the pentameric

subunits point exactly to the centre of the sphere, providing

spherical symmetry.

Figure 4. Amyloid association. Representation of two groups of six amyloid Aß1–40 peptides, each obtained from PDBid: 2LMN [26]. a) Profile view
of the two sets (2LMN1 and 2LMN2, see text). The two dark blue arrows represent the sum of the individual H vectors of the respective set. The two
dark green arrows represent the sum of the individual H vectors of the mutated sets (Q15L). In this view, the total hydrophobic moment is near zero
in both native and mutated species. b) The same complexes rotated 90u towards the reader. In this position, the hydrophobic moments of both sets
of native (2LMN, blue) and mutated (Q15L, green) add to those represented vertically by both the purple and light green arrows in the direction of
growth. For clarity, dipole moments have not been drawn since they are very small and directed almost vertically, making the total D in the same
direction as H.
doi:10.1371/journal.pone.0110352.g004
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Octahedral Cage protein. A very promising field in

Biotechnology is the design and assembling of closed protein

cages. One of these assemblies is that designed by King et al. [28],

the Octahedral Cage protein O333 (PDBid: 3VCD). This cage is a

24-mer formed as a trimer of octamers and each octamer is, in its

turn a dimer of tetramers. They are shown in Figure 8.

We have computed the H and D vectors for each monomer, for

each octamer and for the whole assembly. In Figure 8 we have

superimposed the vectors corresponding to the three octamers and

the whole assembly. Several points need to be described. First, for

each of the three octamers, vectors H and D lay antiparallel

practically in the same direction (,171u), with the D vectors

oriented towards the interior of the cage. Most remarkable in the

whole complex, is the fact that all H and D vectors lie almost in

the same equatorial plane to the whole complex. The D vectors

are oriented at 120u with each other. This determines that the

resulting D vector is practically zero as compared to those of the

octamers. The H vectors are oriented ,118u between them,

providing a quasi-zero total hydrophobic vector like the case of the

dipole moment. The whole ensemble thus presents 120u rotation

symmetry viewed from the perpendicular to the plane of the

vectors. There is a clear tendency of both H and D vectors

towards small or very small values as compared to those of their

components.

Figure 5. SOD1 assembly. Two views of the SOD1 dimer: a) front plane; b) rotated 90u towards the viewer. Red (D) and green (H): native dimer,
PDBid: 2C9V. Magenta (D) and purple (H): depletion of metal ions (PDBid: 3ECU). Orange (D) and dark blue (H): G93A mutation (PDBid: 3GZO). Yellow
(D) and pale blue (H): both depletion of metal ions plus G93A mutation (PDBid: 3GZP). For clarity, in b) hydrophobic vectors have not been drawn.
doi:10.1371/journal.pone.0110352.g005

Vector Description of Protein Association

PLOS ONE | www.plosone.org 6 October 2014 | Volume 9 | Issue 10 | e110352



It should also be noted that in each octamer the H vector is the

sum of the quasi-aligned H vectors of the monomers whereas the

D vector results from the poorly aligned D vectors of the

monomers.

Another example of a designed protein cage is that of Cu-

adduct of human Ferritin (PDBid: 4DYX) by Huard et al. [30] (see

description in Supporting Information).

Ebola virus matrix protein VP40 N-terminal

domain. This membrane-associated complex (PDBid: 1H2C)

is the structural constituent of the Ebola virion [29], facilitating

virus budding and it comprises a ring of eight monomers, each

interacting with RNA. The peculiarity of this assembly is that it is

built in such a way that the projections of the H and D vectors on

the axis of the ring, point alternatively in opposite directions,

leaving a residual component on the axis of the ring. The

components of the H vectors on the plane of the ring radiate

outwards with no net resultant in this plane. The alternating

(antiparallel) disposition of the individual electric dipole moments

confers sound stability to this complex (Figure 9).
Additional examples

More examples can be found in Supporting Information:

Brucella Immunogenic BP264 PDBid:id HVZ (Figure S1)

Haem-c-Cu nitrite reductase PDBid:id 4AX3 (Figure S2)

Nucleotide Complex of PyrR PDB id: 1NON (Figure S3)

Figure 6. HIV capsid tubule assembly. a) Front and side views of one turn of HIV capsid (PDBid: 3J4F). Blue and red arrows represent the
individual hydrophobic and dipole moments of each of the 12 hexamers in each turn of the microtubule. Green and yellow arrows are for the first
hexamer of the next turn. In the side view (right), the slight leaning of the vectors toward the axis on the ensemble can be appreciated. b) Front and
side views of one of the hexamers. Components of the H and D vectors of each of the six monomers within the hexamer are not symmetrical and are
the cause of the deviation of both H and D vectors of the hexamer in respect to its own axis. As new hexamers are incorporated into the complex,
the resulting Htot vector describes a helical trajectory around the axis of the tubule.
doi:10.1371/journal.pone.0110352.g006

Vector Description of Protein Association

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e110352



Mammalian glutamate dehydrogenase, PDB id: 1NR7 (Figure S4)

Cu-adduct of human Ferritin, PDB id: 4DYX (Figure S5)

Biphenil-cleaving extradiol dioxygenase, PDB id: 1HAN (Figure

S6)

Fungal prion, PDB id: 2RNM (Figure S7)

Tubulin-Kinesin Microtubule, PDB id: 3J2U (Figure S8)

Discussion

In spite of not counting on a quantitative theory for the

hydrophobic moment as simple and manageable as that for

electric dipoles and thus being less intuitive, some important

conclusions can be obtained when applied to the study of large

structures. It is important to note is that the methods and results

presented here are not intended to describe the peculiarities and

details of the interactions of proteins when they associate, such as

binding sites, kinetics, association rates, etc. Each association has

its own idiosyncrasy and whatever these peculiarities may be they

appear to obey the basic rules suggested in this paper.

When hydrophobic moments are observed in a membrane from

their constituent phospholipids, we expect them to form parallel

alignments because of the alignment of the phospholipids and like

hydrophobic moments of transmembrane proteins along with their

phospholipid neighbors. When interpreting our results obtained in

the aggregation of amyloid peptides, we see a striking analogy with

the interaction of phospholipids within a membrane. The peptide

amyloids beta loops described by Kim and Hecht [23] tend to

associate and arrange in an analogous way as phospholipids do in

a membrane: they tend to align their hydrophobic moments

forming long arrays. Moreover, in the same way that it is not

possible to have a single membrane monolayer in an aqueous

solution, amyloid Aß9–40 peptide arrays and others cannot stay

free in aqueous solutions and consequently they must join other

arrays in an antiparallel orientation to each other, to form stable

aggregates [23,24,30,31] as seen in Figure 4. This simplest

interpretation of the hydrophobic moment basically tells us that

the hydrophobic centroids tend to attract each other while

repelling hydrophilic centroids. It should be noted here that in

these structures the electric dipole moments of the individual Aß9–

40 peptide loops also tend to align with each other and in principle,

as mentioned above, this means a repulsive interaction. At this

point we cannot measure the electric and hydrophobic relative

strengths, however we can conclude that the hydrophobic

interactions of these species must overwhelm their opposing

electric interactions. Similar conclusions can be drawn from

amyloid peptides described by Eisenberg and Jucker [30] where no

charged amino acids are involved. These authors studied the

assembly of peptide NNQNTF (PDBid: 3HYD [30]) and others.

Side-by-side association by aligning the hydrophobic moment

vectors of two of the peptides can be appreciated in Figure 10a,

where a disposition of the hydrophobic moments is totally

reminiscent of that of phospholipids in a membrane.

Similar results can be observed for the association of peptide

YTIAALLSPYS by Fitzpatrick et al. [31], when analyzing steric-

zipper protofilaments. Starting with their protofilaments these

authors were able to crystallize doublets, triplets and quadruplets

arranged in planes in which the hydrophobic moments adopt a

rather more complex pattern. Figure 10b shows one element of

the stack in the doublet arrangement. In this case the individual

hydrophobic moment vectors combine in alternating dispositions

of parallel and antiparallel alignments, ready to accept a new

doublet in the stack. Something similar can be said of their triplet

and quadruplet associations.

SOD1 is a more complex protein and its self-assembly is driven

by both hydrophobic and electric forces. The basic dimer is

formed by hydrophobic effect, as seen in Results. The native

protein (as a dimer) does not seem to oligomerize in significant

amounts ‘in vivo’. However, either by suppression of its associated

Figure 7. Whole Brome Mosaic Virus capsid. One of the lateral
pentamers has been drawn as a ribbon and colored. Blue and red
arrows represent the individual H and D vectors respectively of each of
the five components constituting the pentamer. Projections of the five
individual Hi vectors on the plane of the pentamer cancel each other
out, whereas projections on the pentamer axis leave a net H vector
radiating away from the centre of the capsid (long horizontal green
arrow). Analogously, there is a net D vector pointing to the centre.
doi:10.1371/journal.pone.0110352.g007 Figure 8. Protein cage from PDBid: 3VCD, as viewed perpen-

dicularly to the plane defined by the electric dipole moment
vectors (red arrows) and the hydrophobic moment vectors
(blue arrows) of the three octamers. In this plane the total H and
the total D are negligible due to the almost perfect 120u rotation
symmetry.
doi:10.1371/journal.pone.0110352.g008
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Ca2+ or Zn2+ ions or by mutations such as G93A, or by both, a

significant horizontal component (perpendicular to the plane of

the dimer) of the electric dipole moment comes out, suggesting a

strong electric attraction towards other dimers. In Figure 11 we

propose a way for these dimers to interact by alternating the

polarity of the arrays.

This configuration is in agreement with that of ‘‘ß-cross’’

proposed by Seetharaman et al. [25].

Actin assembly is another example where electric interactions

modulate the association since it is the external charges that

provoke disruption of the arrangement of the electric dipole

moments in the filament. The addition of a monomer to the actin

filament is done in such a way that the H vector of the added

monomer tends to align with that of the already formed filament

(Figure 3), forming a narrow cone of hydrophobic moment vectors

around the total H moment of the filament. The assembly is

favored by the electric dipole moments disposition, since each D of

the new monomer lies almost antiparallel to the preceding one.

This is made possible because H and D of the total individual

monomers are quasi-perpendicular to each other. Here, contrary

to the amyloid association case, the electric interaction seems to

play a cooperative role with the hydrophobic interaction.

Changing the external electric conditions can disrupt this

cooperativity and reverse the polymerization process. Under the

adequate external conditions, actin filaments tend to associate

side-by-side, induced by the tendency of their total H vectors to

align side-by-side.

It is worth noting here that, independently of which particular

series is chosen for analyzing the actin assembly in this study, the

initial association of two monomers suggests a decrease of the

modulus of the dipole moment, D. Since this dimer association

corresponds to a particularly stable electric configuration, can it

support the idea that the actin nucleation–elongation process starts

with a nucleus of two dimers? Nevertheless, in spite of following

both, amyloid association and actin polymerization, a nucleation-

elongation mechanism of growth kinetics [32,33], they show very

different characteristics in their final structure due to the relative

orientation of their H and D vectors.

A more complex polymerization process is that observed in the

HIV-1 capsid when forming microtubules [26]. Although the

mechanism is more elaborate, the result is similar to the above

cases in terms of the net behavior of the hydrophobic moments.

The strong H vectors associated to the basic hexamer units would

provoke the formation of a layer of hexamers similar to

phospholipids or amyloid layers, should this H vector be perfectly

aligned with the hexamer axis. But slight folding differences

among the components of the hexamer provoke their total H
vectors to lay off the direction of the axis and then causing both a

bend of the association and helicity in the growth. Figure 6 shows

a spatial alignment of the components of the hexamer that serves

as unit for growth of Human Immunodeficiency Virus-1 (HIV-1)

capsid (PDBid: 3J4F). It is easy to observe different small folds in

the six elements that may result in different H and D vectors.

The result of this interaction is the precise combination of the

relative orientation of the H and D vectors. As remarked in the

Results section, seen from one side, the D vector on a hexamer

seems almost perpendicular to the axis of the complex (less than

15u), whereas the H vector shows an appreciable deviation of

about 20u. When two hexamers make the initial interaction to

form the tubule, they tend to align their H vectors as expected. If

only the hydrophobic interaction counted, a long straight line of

hexamers would form. This oligomer would interact with another

similar oligomer oriented in the opposite direction as seen in

membranes or in amyloid formations. But the electric interaction

also counts and seen from the axis of the tubule, the individual D
vectors of the hexamers do not directly point to the axis but show a

lateral component. These lateral components are crucial for the

bending of the array of hexamers since the D vectors decrease

their interaction energy as they adopt a more crossed over

configuration. In other words, the bending of the array of

hexamers is due to the tendency of the dipole moment vectors to

close a circle, for which D R 0. In addition to this, the variability

of orientations of the H vectors (see Figure 12) does not allow the

turn to close into a perfect circle, causing the appearance of a

spiral thread and consequently further growth of the complex into

a tubule.

Figure 9. Ebola virus capsid assembly. Front (a) and side (b) views of the eight monomers that compose the Ebola virus matrix protein VP40.
Blue arrows represent the individual H vectors of the ensemble. Red arrows are the individual D vectors. The green arrow in the centre is the net H
vector. The net D vector is virtually zero.
doi:10.1371/journal.pone.0110352.g009
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Contrary to the case of open assembling systems, systems with

limited number of monomers generally tend to decrease both their

resultant H and D vectors. This fact provides a clue to deduce that

in all spherically symmetric cases, H and D are actually zero or

near zero. In spheroid systems like protein cages and virus capsid

there seems to be a strong electric attraction among the monomers

that is reinforced by the tendency to cancel the total hydrophobic

moment of the system. In protein cages, the system has been

designed in such a way that individual H vectors of the trimers are

placed in a plane at about 120u of each other. Actually, many

other cases (not reported here) render quite small total values of H

and D as compared to those of their constituents which may be

derived from small deviations from perfect symmetry and that may

be used for other interactions. Such is the case of 1H2C, as shown

in Results.

Other non-spherical systems (i.e. PDBid: 4HVZ) may also

acquire a configuration in which H = 0 and D = 0, as long as a

given structure can be complexed with another similar with

opposing vectors.

A particularly interesting case is that of Ebola virus matrix

protein VP40 (PDBid: 1H2C). The monomers in this octamer

alternate their orientation and so do their respective H and D
vectors. Such disposition of the individual electric dipole moments

confers a very sound stability to this complex (D= 0). The residual

H vector in the axis suggests the addition of new rings in the

direction of the axis in a similar manner as the case of amyloid

peptides.

The data reported here suggests that it is the final tendency of

the resultant hydrophobic moment that mainly determines the

character of the association. For open associating systems, the

addition of new elements on the complex increases the modulus of

the resulting H vector. Conversely, in those non-growing cases

with a limited number of monomers, the moduli of the resulting H
vectors end up with values either zero or residual values as

compared to those of their constituent monomers. Electric forces

may play an important modulating role like in actin polymeriza-

tion or may be the driving force for assembling as in the case of

SOD1. The decrease of D upon assembly in most closed

Figure 10. Assembly of amyloid peptides. a) A view of four parallel NNQNTF peptides [30] and their respective H vectors. These simple
peptides associate side-by-side in arrays in opposite directions. b) Assembly of the doublet of cross-ß peptides (YTIAALLSPYS) [31], PDBid: 2M5K.
Dark blue arrows represent the individual hydrophobic moments of each component of the doublet. Notice that the doublet is formed by two lobes
of four peptides each. The components of the hydrophobic moments in the plane of the doublet cancel each other out leaving a negligible
perpendicular component (not shown). Similar results are found in the triplet and quadruplet configurations. This association is somewhat more
elaborate than that shown in a) since the distribution of H vectors combines opposite directions alternatively.
doi:10.1371/journal.pone.0110352.g010

Vector Description of Protein Association

PLOS ONE | www.plosone.org 10 October 2014 | Volume 9 | Issue 10 | e110352



oligomerization cases certainly seems to be the rule, providing or

reinforcing stability. In general, the data suggests that H may be

cancelled in some particular direction, in which case no growth is

expected, whereas it may keep increasing in the direction of

growth. At this point it is clear that hydrophobic effects drive most

protein association processes.

Table 1 describes the average dispersion of angles formed by

the individual hydrophobic and electric dipole moments of

compounds used in this study, around their total Htot or Dtot.

Both open and closed systems have been listed. It can be observed

that hydrophobic moments tend to align since the angles they form

appear relatively small (35.8u 65.8u). On the other hand, electric

dipole moments adopt more disperse values (55.1u 610.2u). D‘H

angles may adopt all possible values (89.5u 614.7u).
An overall interpretation of the hydrophobic moment as defined

in this article implies a two-step behavior in the assembly of

proteins. First, in a given interaction between proteins, hydropho-

bic moments tend to align with a given efficiency depending on

one hand on favorable or opposing electric interactions, and/or on

more or less steric constraints on the other hand. Second, a

tendency for the total hydrophobic moment of an assembled

system to be counterbalanced with the total hydrophobic moment

of another analogous assembled system, as is the situation in

bilayer membranes, amyloid associations. When there is no such

counterbalance, the system remains ready for more interaction

and growth, as is the case of transmembrane proteins and actin

polymers. It is common that two assembled systems can

counterbalance each other in one or two directions but not in a

third direction, provoking continuous growth in that particular

direction, as in the case of amyloid growth.

Conclusions

Given the membrane model for the alignment of H vectors, the

tendency of hydrophobic vectors to align may be the main driving

force that makes proteins associate to forms dimers, then trimers,

etc. This is a consequence of the tendency of hydrophobic

centroids to gather together. A general behavior pattern of H and

D vectors emerges in this study, in which in open associations the

intervening H vectors of the components tend to align, with a

concomitant increase of Htotal as new elements get incorporated

into the assembly. Conversely, in closed systems Htotal tend to

decrease with respect to the individual hydrophobic vectors of the

components, thus limiting the final number of components the

system may acquire. In the end the total hydrophobic and dipole

moments both tend to cancel out in situations of total equilibrium.

The electric force may, in some cases, act as a modulating factor,

facilitating the reversibility of some assembling processes in open

systems, or providing stability in closed systems. These results do

not seem to depend on the size of the proteins or complexes

involved. This last point suggests that this analysis can be applied

to any protein or assembly in the cell.

The model presented in this study does not intend to describe

the fine individual anchoring details and mechanisms that govern

all protein interactions. As previously mentioned, hydrogen bonds

and other interactions are not being taken into account. This study

doesn’t deal with the fact that proteins lay in specific ionic

environments, which may have a direct influence in their

characteristics for interaction. It is known that there are many

requirements that must be met for two or more proteins to

interact. What this work suggests is that whatever the specific

mechanisms needed to assemble molecular machines that act in

the cell may be, they comply with the specific electrical and

Figure 11. Postulated antiparallel arrangement of arrays of SOD1, as proposed in the text, in which two pairs of dimers form two
different arrays. Red arrows represent electric dipole moments and blue arrows represent hydrophobic moments. Pale yellow arrows indicate the
polarity of each linear association. This arrangement is both electrically and hydrophobically favorable for for a continuous growth: the individual D
vectors lay at almost 90u of each other thus minimizing their interaction energy, whereas the H vectors align laterally. This disposition is in agreement
with that given in [25].
doi:10.1371/journal.pone.0110352.g011

Vector Description of Protein Association

PLOS ONE | www.plosone.org 11 October 2014 | Volume 9 | Issue 10 | e110352



hydrophobic principles presented in this article. The hydrophobic

moments of proteins tend to align when they assemble within steric

constrains. This work suggests that most associations are

hydrophobically determined. Other assembly processes important

for health and biotechnology are currently being studied using this

methodology. The final goal is to predict the associative behavior

of any protein or peptide. This will help design mutants to improve

Figure 12. Structural heterogeneity of monomers in HIV capsid hexamers. Superposition of the six monomers that comprise the first
hexamer of PDBid 3J4F. The variability in both moduli and direction of all six D (red) and H (blue) moments can be observed.
doi:10.1371/journal.pone.0110352.g012

Table 1. Summary of angles of hydrophobic and electric dipole moments in compounds studied in this article.

Name Hn
‘Hw Dn

‘Dw H‘D

1JS9 45.5 45.4 56.2

3J4F (hexamer) 15.761.8 34.462.4 133.562.5

3VCD (unit) 40.261.4 25.260.1 140.163.4

1H2C* 37.6 103.4 N/A

4HVZ* 50.9 35.9 32.4

4AX3 41.2 31.6 38.5

1NON 67.3 146.5 N/A

1NR7* 24.6 82.9 N/A

1HAN 76.5 89.8 N/A

2RNM 13.763.6 20.666.6 94.665.9

3J2U 10.460.6 64.962.4 56.266.4

1M8Q 28.963.4 82.569.6 88.461.4

2LMN (unit) 12.762.2 31.1611.5 70.8612.5

Note: Hn
‘Hw is the average angle (when applicable) formed by the hydrophobic moments of the whole compound (w) and those of the single elements (n). Same as for

Dn
‘Dw. (*) These compounds have some hydrophobic moments in opposite directions. Those larger than 90u have been subtracted from 180u, in order to show the

relative small deviations from 180u. N/A: non applicable or not available.
doi:10.1371/journal.pone.0110352.t001
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protein cages for biotechnology and help gain insight into the

molecular basis of diseases caused by protein aggregation.

Methods

Oligomers and transmembrane proteins
A random set of 40 transmembrane proteins, both a– or ß–

types, was used to compute their hydrophobic and electric dipole

moments. Table S4 lists the PDB codes of these proteins chosen at

random and their characteristics relevant to this study.

A number of protein associations such as actin polymers,

amyloid aggregations or other associations, were obtained either

from references in the literature or directly from the authors. The

assemblies chosen in this study are the most representatives and

conspicuous for the description of the model. Other systems are

described in Supporting Information.

SwissPDViewer files were used for 3D visualization of all

assemblies described in this article. Adding two alanines in the

original PDB files in which Ca and N atoms depict the origin of

the vector and the C and O depict the end of the vector

graphically represent H and D vectors. PDB files showing the

protein coordinates and their H and D vectors, are available from

the authors on request.

Pseudo Electric Dipole Moments
The classical definition of the electric dipole moment vector of a

distribution of electric charges, is D=gqj.rj. rj are vector

positions of charges qj, with respect to a chosen origin. Magnitudes

in bold face represent vector quantities. Magnitudes in plain face

design scalar quantities, such as the moduli of vectors.

These definitions depend on the origin of coordinates chosen

unless the total charge (or total hydrophobicity) of a protein is zero.

Given the fact that most proteins are not neutral (either electrically

nor hydrophobically), we opted for other definitions, more

practical for our purposes, by using the electric and hydrophobic

centroids, defined in an analogous way as the centre of mass. In

this way a pseudo-electric dipole moment vector D, is defined as

D= (cn–cp).q+. In this expression cn and cp are the position vectors

of the negative and positive centroids respectively, cn =gqj.rj. and

q+ is the total positive charge of the protein. In all figures depicting

D vectors, the origin lies in positive centroid and the arrow points

to the negative centroid. This definition coincides with the classical

definition above, when the total charge of the protein is zero. The

advantage of this definition is that it does not depend on the origin

of coordinates and therefore it is an intrinsic parameter of the

protein [16]. In what follows and for simplicity, this pseudo-

electric dipole moment will be abbreviated as electric dipole

moment or simply, dipole moment. Electric dipole moments are

expressed in debyes.

Hydrophobic Moments
Hydrophobic moments can be defined in a manner similar to

the electric dipole moments, that is, H=ghj.rj, where hj have

been chosen to be the normalized values of the Eisenberg

hydrophobicity scale for each amino acid [35]. This scale was

chosen as the most widely used hydrophobicity scale. Some tests

were carried out with other hydrophobicity scales and although

different quantitative results were obtained, the qualitative

tendencies of H vectors were the same. For the description of

the hydrophobic character of the protein, we chose a definition of

the hydrophobic moment that concerns only the ‘‘positive’’

hydrophobicity of the protein. The pseudo-hydrophobic moment

of a protein is then defined as H= (c––c+).h+. c+ and c– are the

positive (hydrophobic) and negative (hydrophilic) centroids of the

protein and h+ is the total hydrophobicity of the protein, h+ =ghj.

Again, bold face is used for vector magnitudes. Since hydrophobic

moments are computed using the normalized Eisenberg hydro-

phobicity scale of values, hydrophobic moments are described in

arbitrary units here called ‘‘rhu’’ (relative hydrophobic units) solely

for the purpose of comparison. As in the case of dipole moments,

the hydrophobic moments are depicted in this article with their

origin in the hydrophobic centroids pointing towards the

hydrophilic centroids. Our definition of a hydrophobic moment

differs from that used by Eisenberg, which referrers to singular

amino acids [34,35,36], intended to describe structural aspects

within a protein. Our simpler definition is more suitable to

describe the interaction of proteins. Another reason for using these

definitions of pseudo moments (both electric and hydrophobic) is

that they are more intuitive than the classical ones.

Supporting Information

Figure S1 Brucella Immunogenic BP26. This is an example

of an assembly in which both total H and D vectors are zero

without it being a quasi-sphere. The channel-like membrane

ensemble of proteins Brucella Immunogenic BP26 (PDBid: 4HVZ)

described by Kim et al., cancels its total hydrophobic and dipolar

moments out. The symetric disposition of the eight monomers in

one half of the assembly (colored left half in a)) renders projections

of the hydrophobic moments on the axis of the assembly as well on

the plane perpendicular to the axis. In the latter case, all these

components total zero, whereas components over the axis add to a

vector over the axis of the ensemble. According to the membrane

model, this would provide the octamer with a high propensity to

stick to another octamer oriented in the opposite direction (grey in

a)). Arrows show the individual hydrophobic moments of the

octamer on the left (in color). D vectors which have not been

depicted for clarity, follow a pattern similar to H vectors. Kim D,

Park J, Kim SJ, Soh YM, Kim HM et al. (2013) Brucella

Immunogenic BP26 Forms a Channel-like Structure. J Mol Biol

425: 1119–1126.

(TIF)

Figure S2 Haem-c-Cu Nitrite Reductase. This trimer

(PDBid: 4AX3), described by Antonyuk et al. is interesting

because it shows relatively large H (dark blue arrows) and D (red

arrows) components in the direction of its axis (a), whereas the

components of both H and D on the plane defined by the trimer

(b) total zero, as in the former case. However, the complex is not

known to assemble with other trimers, so the large resulting

hydrophobic and dipole moments may be associated with other

functions of the complex. Antonyuk S, Han C, Eady RR, Hasnain

SS. (2013) Structures of protein–protein complexes involved in

electron transfer. Nature 496: 123–127.

(TIF)

Figure S3 Nucleotide Complex of PyrR. This is the Pyr

Attenuation Protein from Bacilus caldolyticus (PDBid: 1NON).

This tetramer regulates the expression of genes and operons of

pyrimidine nucleotide biosynthesis (pyr genes) in many bacteria.

When active this protein acts as a dimer. In its unliganded state

and the nucleotide-bound form, B. caldolyticus PyrR is a tetramer.

In dimer form, there is a substantial decrease in the moduli of D

(red arrows) and an increase in H (blue arrows) upon association.

In tetramer form, both resultant H and D moduli decrease. The

relative symetry of this complex, (like most similar structures)

results in H and D vectors of moduli values of the same order of

magnitude or smaller than the individual vectors of each

monomer. Chandler P, Halbig KM, Miller JK, Fields CJ, Bonner
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HKS et al. (2005) Structure of the Nucleotide Complex of PyrR,

the pyr Attenuation Protein from Bacillus caldolyticus. Suggests

Dual Regulation by Pyrimidine and Purine Nucleotides. J

Bacteriol 1773–1782.

(TIF)

Figure S4 Mammalian Glutamate Dehydrogenase. This

complex (PDFid: 1NR7) is constituted by the assembly of six

identical monomers and catalyzes the oxidative deamination of L-

glutamate to 2-oxoglutarate. An interesting characteristic of this

complex lies in the fact that the spatial distribution of its individual

hydrophobic and dipole moments is not symmetrical but has a

lopsided look as viewed from both the front plane (a) and from one

side (b). The result is a net lateral component of the hydrophobic

moment. a) dark blue arrows: hydrophobic moments of the

monomers. b) purple arrows: electric dipole moments of the

monomers. In both, black arrows are the resultant H vector; red

arrow are the resultant D vector. According to Banerjee et al.

these hexamers, when not interacting with their ligands, tend to

aggregate in long polymers. c) representation of polymerisation

mechanism of hexamers as H vectors have a parallel alignment,

and D vectors tend to adopt a relative quasi perpendicular

disposition with each other, as observed in [24]. Banerjee S,

Schmidt T, Fang J, Stanley CA, Smith TJ. (2003) Structural

Studies on ADP Activation of Mammalian Glutamate Dehydro-

genase and the Evolution of Regulation. Biochemistry 42: 3446–

3456.

(TIF)

Figure S5 Cu-adduct of human Ferritin. Another example

of protein cages, is that obtained by the group of Tezcan, using

reverse metal-template interface redesign (rMeTIR). These

authors describe a copper-induced ferritin cage (PDBid: 4DYX)

formed by 24 subunits by combining the adecuate mutations. In

this case, each subunit is a quasi-paralel arrangement of alpha

helices in which the hydrophobic moments are directed paralel to

the helices, whereas the dipole moments form an angle of about

120u with H. This allows a tangencial disposition of the H vectors

within the spheroid, with the D vectors directed towards the

center. Note that each pair of helices (in color) have their

hydrophobic centroids as close as possible to each other, given the

steric limitations. Again, the resultant of H and D is zero. Huard

DJE, Kane KM, Tezcan FA. (2013) Re-engineering protein

interfaces yields copper-inducible ferritin cage assembly. Nat

Chem Biol 9: 169–176.

(TIF)

Figure S6 Biphenil-cleaving Extradiol Dioxygenase.
According to Han et al., this assembly (PDBid: 1HAN) is a dimer

of tetramers disposed back-to-back, and its function is the

biodegradation of aromatic pollutants. The structure looks like a

hollow cylinder. In spite of its symmetric look. the dimers are not

identical as far as their H and D vectors are concerned. As seen

from the plane perpendicular to its axis (a), the components of

both H and D cancel each other out leaving no resultant.

However, along the axis of the cylinder (b), the components of the

individual H vectors of one of the tetramers do show larger

projection on the axis, yielding a net hydrophobic component.

This case is an example of being Dtot = 0, but gHi .. Htot . Hi.

According to Han et al., this complex degradates contaminating

biophenols. The fact that H is not zero may be the reason why

these contaminants are attracted to the hollow of the cilynder to be

dregraded there. Han S, Eltis LD, Timmis KN, Muchmore SW,

Bolin JT. (1995) Crystal Structure of the Biphenyl-Cleaving

Extradiol Dioxygenase from a PCB-Degrading Peudomonad.

Science 270: 976–980.

(TIF)

Figure S7 Fungal Prion. Basic association of five peptides of

fungal prions (PDBid: 2RNM) according to Smaoui et al. These

authors propose different levels of association that resemble those

described in [23,24,31]. a) Note the individual quasi-parallel green

arrows that correspond to the individual hydrophobic moments of

each basic peptide; blue vertical arrow is the H vector of the whole

set. Red arrows correspond to the D vectors, essentially

perpendicular to the H vectors. b) Same set vertically rotated

90u. According to Smaoui et al. these structures associate laterally

forming a three element polygon. In this case both total H and D
vectors would tend to anihilate in the most stable configuration.

Smaoui M, Poitevin F, Delarue M, Koehl P, Orland H et al.

(2013) Computational Assembly of Polymorphic Amyloid Fibrils

Reveals Stable Aggregates. Biophys J 104: 683–693.

(TIF)

Figure S8 Tubulin-Kinesin Microtubule. Front (a) and

lateral (b) views of the first turn of the tubulin-kinesin microtule

(PDBid: 3J2U) according to Asenjo et al. Each turn is composed of

15 elements and each element is formed by two tubulin dimers

linked through a kinesin molecule. Red arrows are the electric

dipole moments of each element in the first turn and blue arrows

are the individual H vectors. a) It is important to note the circular

symmetry in the arrangement of the D vectors, making the

component of Dtot in this plane almost zero. By contrast,

individual H vectors seem to point in a single direction in this

plane. Both Htot and Dtot (large arrows in a) and b)) show

components out of the plane. Dtot lies on the axis of the tubule and

Htot shows an off-axis component. It is likely that this assymetry

may be the origin of the tendency to grow elliptically. The first 15

elements are depicted in green. The element colored in blue is the

first of the next turn. For clarity, only a few individual D and H
vectors are display in b). Asenjo A, Chaterjee C, Tan D, Depaoli

V, Rice W et al. (2013) Structural model for tubulin recognition

and deformation by kinesin-13 microtubule depolymerases. Cell

Rep. 3: 759–768.
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