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Understanding the changes in diverse molecular pathways underlying the development of breast tumors is critical for im-

proving diagnosis, treatment, and drug development. Here, we used RNA-profiling of canine mammary tumors (CMTs)

coupled with a robust analysis framework to model molecular changes in human breast cancer. Our study leveraged a

key advantage of the canine model, the frequent presence of multiple naturally occurring tumors at diagnosis, thus provid-

ing samples spanning normal tissue and benign and malignant tumors from each patient. We showed human breast cancer

signals, at both expression and mutation level, are evident in CMTs. Profiling multiple tumors per patient enabled by the

CMT model allowed us to resolve statistically robust transcription patterns and biological pathways specific to malignant

tumors versus those arising in benign tumors or shared with normal tissues. We showed that multiple histological samples

per patient is necessary to effectively capture these progression-related signatures, and that carcinoma-specific signatures

are predictive of survival for human breast cancer patients. To catalyze and support similar analyses and use of the

CMT model by other biomedical researchers, we provide FREYA, a robust data processing pipeline and statistical analyses

framework.

[Supplemental material is available for this article.]

Although there has been extensive progress in the field of breast
cancer research, our understanding of the process of tumorigenesis
remains incomplete (Bombonati and Sgroi 2011; Karagiannis et al.
2017; Yates et al. 2017; Harbeck et al. 2019). Studies of tumor pro-
gression in humans generally rely on disparate patient samples,
with inter-individual genetic variability obscuring the molecular
progression signal (Crawford and Oleksiak 2007; Storey et al.
2007; Hughes et al. 2015). In vitro approaches using human cell
lines have been used to control for this sampleheterogeneity; how-
ever, they are not fully reflective of in vivo tumor progression, in-
cluding the effects of the microenvironment and the immune
system (Stein et al. 2004; Gillet et al. 2011). The (in vivo) murine
model of breast cancer has proven very useful in deciphering can-
cer mechanisms; however, it requires experimental modification
of the host via genetic modification (transgenicmice) or the trans-
plantation of foreign tissue (xenografts) (Rangarajan and

Weinberg 2003; Boone et al. 2015), which alters the tumor dynam-
ics (Ben-David et al. 2017).

Canine mammary tumor (CMT) is a promising emerging
model for studying naturally occurring breast tumors
(Klopfleisch et al. 2011; Pinho et al. 2012; Liu et al. 2014). CMTs
and human breast cancer (BRCA) have similar histopathological
profiles, including incidence rates, relationship with age and
body mass index, hormonal influence, and clinical presentation
as shown in many clinical and smaller scale studies (Paoloni and
Khanna 2008; Rowell et al. 2011; Cekanova and Rathore 2014;
Kol et al. 2015; Kristiansen et al. 2016). Canine simple carcinomas
share especially strong similarities with human breast cancer in
terms of both histological and genetic features (Liu et al. 2014).
Additionally, BRCA and CMT share chromosomal abnormalities
such as copy number variations in several key breast cancermarker
genes like MYC and PTEN (Borge et al. 2015). A significant advan-
tage of the caninemodel is the high incidence of multiple natural-
ly occurring tumors in the same patient (Sorenmo et al. 2009),
which are rarely possible to biopsy in humans but common in

Corresponding authors: ogt@cs.princeton.edu,
karins@vet.upenn.edu, chandrat@princeton.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.256388.119.
Freely available online through the Genome Research Open Access option.

© 2021 Graim et al. This article, published in Genome Research, is available un-
der a Creative Commons License (Attribution-NonCommercial 4.0 Internation-
al), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Resource

31:337–347 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/21; www.genome.org Genome Research 337
www.genome.org

mailto:ogt@cs.princeton.edu
mailto:karins@vet.upenn.edu
mailto:chandrat@princeton.edu
http://www.genome.org/cgi/doi/10.1101/gr.256388.119
http://www.genome.org/cgi/doi/10.1101/gr.256388.119
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


canines because they have five pairs ofmammary glands and often
limited clinical monitoring. Thus, it is possible to design studies
that overcome the effect of inter-individual genetic variability by
assayingmultiple naturally occurring tumor samples from a single
patient, something that is rarely possible to biopsy in humans
(Toole et al. 2014). As such, the canine model provides a powerful
complement to both laboratory mice and clinical human studies
in studying breast cancer in vivo. Furthermore, discoveries with
therapeutic potentialmade inCMTs can lead to rapid translational
and clinical studies (LeBlanc et al. 2016).

In this study, we map the molecular signals underlying the
similarities and differences between normal tissue and benign
and malignant tumors. We find that the molecular signals in
CMTs broadly reflect molecular changes in human breast cancer,
including PAM50 molecular subtypes of clinical significance,
and genetic cancer signatures. We then move beyond traditional
normal versus malignant comparisons to leverage the multiple
mammary tumor nature of the canine model, in which dogs can
simultaneously present three types of samples found in canine tu-
mor development: non-neoplastic mammary gland tissues (nor-
mal), benign/premalignant, and malignant. We consider the
three types of CMT samples in each of our patients as progres-
sion-ordered groups, enabling us for the first time to identify dis-
tinct signatures of gene expression reflective of progression from
normal to benign to malignant. These signatures are relevant to
human cancer biology; in TCGA and METABRIC, human breast
cancers with stronger CMT carcinoma progression signature
have significantly worse survival than patients with weaker carci-
noma progression signature. Throughout, our analysis is driven
by a robust statistical framework we developed for the molecular
analysis of CMT -omic data, including a turn-key computational
analytic pipeline, FRamework for Expression analYsis Across spe-
cies (FREYA), tailored to dog and dog–human cancer comparisons
that we make available to all researchers to promote naturally oc-
curring CMTs as a model for human breast cancer. Altogether,
our comprehensive genomic characterization shows that CMTs
are a powerful translational model of BRCA, providing insights

that inform our understanding of tumor development and treat-
ment in both humans and dogs.

Results

To study the development of tumors from normal tissue to carci-
noma, we collected 89 mammary tissue samples (26 normal, 41
benign, 22malignant) from16 dogs of diverse breeds being treated
through the Penn Vet Shelter Canine Mammary Tumor Program
(Methods; Fig. 1). The multiple independent primary tumors typ-
ical of CMT (required in this study design) present a unique win-
dow into tumor progression (Supplemental Fig. S1A). The
presence of multiple independent lesions at different stages in
the same individual (independence determined via systematic
analysis of tumor mutational profiles with phylogenetic analysis)
(Methods; Supplemental Fig. S1B) allows us to identify molecular
signals specific to each stage of tumorigenesis. There are many
types of canine carcinoma and althoughon a semantic level the tu-
bular carcinomamay bemost similar to human cancer, on themo-
lecular level these relationships are largely unexplored. To provide
the broadest analysis of carcinoma-specific signals, we included all
available carcinoma samples (Supplemental Table S1). Using RNA
sequencing, we generated genome-wide gene expression profiles
(∼13,000 genes) and called somatic mutations for each sample.
We developed a robust analytical framework, FREYA, to detect
and interpret the molecular signals in CMTs to facilitate transla-
tional BRCA research (https://freya.flatironinstitute.org) (Fig. 1).

Molecular and cancer subtype similarities between canine

and human tumors

As a first step, we assessed global cancer signals inmalignant CMTs
compared to normal tissue by identifying differentially expressed
genes (FDR<0.05) (Supplemental Table S2). We found that these
genes form fourmajormodules in the genome-scalemammary ep-
ithelial functional network, wherein connections between genes
reflect close interactions and participation in pathways and

Figure 1. Multiple CMTs per patient model enables discovery of carcinoma-specific processes that inform human BRCA. (Left) CMT model. Tissue sam-
ples were collected and annotated for each of the 89 samples from16 canine patients. For study inclusion, each patient was required to provide aminimum
of one sample (represented by colored blocks) from each histological group: normal (green), benign (yellow), andmalignant (red). Many of the dogs have
multiple samples of different tumor histologies. (Right) FREYA framework. We developed the FREYA framework to study tumor development. Using FREYA,
we analyzed multiple primary tumors per patient with RNA and mutation profiling and developed a statistical framework to determine differences in gene
expression between normal, benign, and malignant samples, and we compared CMT molecular signals to human breast cancer.
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processes specific to the tissue (Greene et al. 2015; Fig. 2A). These
clusters are characterized by distinct enrichment signatures indi-
cating diverse dysregulated hallmark cancer processes (Fig. 2A), in-
cluding DNA repair and cell cycle regulation (module 1, including
genes such as BRCA1, BRCA2, and CDKN1A); apoptotic signaling,
response to hormone, immune functions, and response to stress in
the endoplasmic reticulum (module 2, including genes PIK3CA,
FOXA1, andMAPK1); responses to hypoxia that enable tumor for-
mation including angiogenesis and cell migration (module 3, in-
cluding genes GATA3, HIF1A, and VEGFA); and immune
function and hormone signaling (module 4, including ARMC6).
These results indicate that cancer signals in CMT are broadly sim-
ilar to common human cancer signals.

We next examined the representation of signals from human
PAM50 intrinsic molecular BRCA subtypes within CMTs (Parker
et al. 2009). Using a multinomial elastic net regression model we
trained on known human PAM50 subtype samples from TCGA,
CMT samples were predicted to be one of these types (Fig. 2B;
Supplemental Table S1). Correlations between dog and human
samples of the same subtype are significantly higher (P-value
8.65×10−43) compared to different subtypes, showing that dog is
reflective of the human intrinsic subtypes. Following the same
protocols used to define PAM50 subtypes in human, we performed
unsupervised clustering of the CMT tumor samples (Methods;
Supplemental Fig. S2; Supplemental Table S1). Unsupervised

CMT clusters are weakly correlated with their predicted PAM50
subtypes based on the human model (P-value =0.047) and as
well as histology (P-value =0.024). This clustering (Supplemental
Fig. S2A) and PCA analysis (Supplemental Fig. S2B) also both point
to molecular heterogeneity among the canine tumor samples of
similar histology, which is similar but stronger than that observed
in human samples (Sorlie et al. 2003; The Cancer Genome Atlas
Network 2012). As in previous human reports (Sorlie et al. 2003),
unsupervised CMT clustering does not simply recapitulate hor-
mone receptor status (Supplemental Fig. S2C), although cluster
three samples are enriched in Basal tumors and have lowhormone
receptor expression levels. Thus, these naturally occurring CMTs
display cancer dysregulations resembling human cancers at both
a global level of transcriptional changes (Fig. 2A) and at the level
of specific changes characteristic of clinical subtypes of breast can-
cer (Fig. 2B; Supplemental Fig. S2).

Canine mammary tumors harbor human cancer–implicated

mutations

To date, only targeted small-scale sequencing studies have exam-
ined CMT mutations. We extended our analysis of the molecular
signals inCMTby analyzing thewhole-transcriptome somaticmu-
tations (Methods; Fig. 2C) in the CMT tumor samples and com-
pared them to human cancer mutations. For most genes, read

A B

C D

Figure 2. Cancer hallmark processes found in CMT transcriptional programs. (A) Biological processes showing differential gene expression between nor-
mal and carcinoma samples (Supplemental Table S2) were identified by network-based enrichment method at https://humanbase.flatironinstitute.org.
Differentially expressed genes were clustered using a shared nearest neighbor–based community-finding algorithm to identify distinct modules of tightly
connected genes (Krishnan et al. 2016) within the mammary epithelium functional network (Greene et al. 2015). Gene Ontology (GO) enrichment was
performed on eachmodule, and representative significant processes are displayed (for the entire list, see Supplemental Table S3). Circles are genes and the
size of the circle indicates the sum of connections in the graph. Gene expression values (SAM scores) are overlaid. Red indicates increased expression in
carcinoma, and blue indicates decreased expression in carcinoma. COSMIC cancer census genes are indicated in each module (M1–M4). (B) Human
PAM50 intrinsic subtype signals are found in CMTs. Each bar represents the number of samples predicted for each PAM50 subtype, human or canine.
Predictions for CMT samples were based on gene expression programs using a classifier trained on human BRCA samples and PAM50 subtype gene ex-
pression signature data. In human samples, 98% were correctly predicted, reflecting the accuracy of the predictor. (C ) Density plot showing the ge-
nome-wide number of mutations per tumor sample in human (gray) and canine (maroon). (D) OncoPrint showing histology, predicted PAM50
subtype, number of mutations, and histologic subtype (simple/complex) for each sample in the cohort.
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depth was sufficient for mutation calling (Methods; Supplemental
Fig. S3), but some mutations could be missed due to limitations of
RNA-seq-based mutation calling, including low expression levels,
allele-specific expression, and intron-side splice site variants that
exomes would miss.

We observed 1904mutations in 524 genes, of which 226mu-
tations fall in genes belonging to the COSMIC catalog of human
cancer-related genes (∼600 total genes) (Tate et al. 2019). Four of
the top 30 recurrently mutated genes (Supplemental Fig. S4) are
COSMIC genes (B2M, CTNNB1, EML4, FGFR1), and 22 mutations
in these genes are SnpEff predicted high impact mutations (stop-
gain or frameshift), making them candidate driver mutations.
We also observed mutations in many genes involved in human
breast cancer, including TP53, PIK3CA, NOTCH1, GATA3, FLNA,
CDKN1B, and BAP1 (Supplemental Table S4; Tate et al. 2019).
The CMT mutation landscape is similar to that of human breast
cancer, with most tumors harboring fewer than 75 mutations
and a small subset of highly mutated tumors (Fig. 2C;
Supplemental Table S4; Bailey et al. 2018). Among CMTs, predict-
ed Basal tumors have significantly higher somatic SNV burden
compared to all other predicted PAM50 tumor types (P-value <1
×10−16, Spearman’s rho) (Fig 2D), consistent with human breast
cancer. Overall, human cancer genes (COSMIC) are significantly
more likely to be mutated in CMT samples than noncancer genes
(P-value =8.037×10−15), with breast cancer genes specifically en-
riched in CMT samples versus general cancer genes (P-value =
7.81×10−12), indicating strong similarities between BRCA and
CMT at the mutational level.

Extraction of mutational signatures can indicate mutational
processes driving tumorigenesis. We examined the patterns of
base substitutions in the CMTs and found, as expected, more tran-
sitions than transversions across all tumors (Supplemental Fig. S5)
with the exception of patient 11. Six of the seven sequenced tu-
mors from patient 11 have more transversions, suggesting distinct
mutagenesis processes in this patient. Deamination of cytidine by
APOBEC enzymes can lead to C→T transitions; these APOBEC sig-
naturemutations are significantly associatedwith BRCA and corre-
late with increased somatic SNV burden and clinically aggressive
features (Burns et al. 2013; Harris 2015; Takahashi et al. 2020).

Capture and characterization of progression expression patterns

Despite breakthroughs in characterization of breast cancer sub-
types, targeted therapy development, and great strides in patient
outcomes, the precise mechanisms and processes mediating inva-
siveness and malignancy are not yet fully characterized
(Karagiannis et al. 2017; Yates et al. 2017). The presence ofmultiple
histologies per patient in CMTs can confer sensitivity to detect al-
tered pathways specific to malignant tumors that might not be
identified in paired normal/carcinoma comparisons in human.
To leverage this aspect of the canine model and discover tumor
stage–specific dysregulations, we analyzed signatures specific to
each of the three epithelial tissue groups: normal/nonneoplastic
(normal, normal with atypia, duct ectasia, hyperplasia); benign
(simple adenoma and complex adenoma); and carcinoma (simple
carcinoma, in situ carcinoma, carcinoma in a mixed tumor). More
specifically, to identify genes driving the differences between these
histologic types,weperformeddifferential geneexpressionanalysis
(Methods) for each pairwise combination of histologic categories
and identified genes with expression signatures that are signifi-
cantly different (FDR<5%) in at least two of the paired compari-
sons. We then systematically identified genes specific to

histologic types by using both the significance of changes and di-
rection of the expression change (Fig. 3). We refer to these signa-
tures as progression expression patterns (PEPs) (for a full list of
genes, see Supplemental Table S5).

To empirically assess the advantages of the CMT-based study
for detection of tumor-relevant signals, we compared thismultiple
tumor types per patient design to the traditional tumor versus nor-
mal design by subsampling patient samples in our data set. We
then assessed how much signal was lost in each case by assessing
the ability of each subsampled study, with equitable sample sizes,
to identify PEPs discoverable in the full data set. PEPs identified
using three histologies were consistently able to more closely reca-
pitulate the PEPs generated with the full data set than PEPs identi-
fied using just two histological groups but the same number of
samples (Wilcoxon rank-sum P-values 6.8 × 10−15 Tumor PEP and
1.4 ×10−8 Carcinoma PEP) (Methods; Supplemental Fig. S6).
Specifically, for the carcinoma PEP, the simulation using the two
histologies design shows no correlation with the carcinoma PEP
generated with the full data set, underlining the importance of
having three stages of tumor development to discover malig-
nant-specific processes and underscoring the power of the canine
model to detect signals with smaller numbers of samples.

Resolving carcinoma-specific processes versus those altered

at the benign transition

We explored processes and pathways represented in each PEP us-
ing GeneOntology term enrichment analysis. The Tumor PEP rep-
resents genes whose expression is changed concordantly in both
benign tumors and malignant carcinomas, whereas the Carcino-
ma PEP consists of genes whose expression is uniquely altered in
carcinomas, but not significantly altered in benign tumors relative
to normal tissue. Tumor PEP genes are significantly enriched for a
number of known human tumor–associated pathways, including
control of cell cycle transitions, DNA repair pathways, regulation
of MAP kinase activity, regulation of adaptive immune response,
and mammary gland epithelial cell proliferation (Supplemental
Table S3). The Carcinoma PEP (Fig. 3; Supplemental Table S5) is
significantly enriched for known breast cancer processes, includ-
ing negative regulation of apoptosis, regulation of epithelial cell
differentiation, and lipidmetabolic processes (Supplemental Table
S3). Included in the Carcinoma PEP are a number of genes impli-
cated in breast cancer aggression and metastasis, such as PDGFB,
GATA3, and SMO (Donnem et al. 2010; Benvenuto et al. 2016;
Jansson et al. 2018). This suggests that although Tumor PEP genes
are associated with cancer processes, Carcinoma PEP genes are as-
sociated with cancer aggression.

The availability of multiple tumor types in CMTs presents a
unique opportunity to resolve those pathways that are dysregu-
lated between normal tissues and all tumors versus the pathways
specific to the carcinoma transition. To accomplish this, we com-
pared the biological processes enriched in genes identified in the
traditional Normal versus Carcinoma differential expression anal-
ysis (Hanahan and Weinberg 2011)—many hallmark tumor pro-
cesses (Figs. 2A, 4) to those processes found enriched in either
the Tumor or Carcinoma PEPs (Methods; Fig. 4A; Supplemental
Table S3). We found that apoptotic processes were represented in
the normal-carcinoma comparison, genes involved in negative
regulation of internal apoptotic signaling were distinctly represent-
ed in the Carcinoma signature, and genes relating to response of
cells to external death cues were enriched in the Tumor signature.
This could reflect that tumors in general are antagonized by the
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immune system, yet the more aggressive carcinomas are express-
ing genes that are turning off their ability to die in response to in-
ternal apoptotic signaling pathways, thus contributing to
malignancy (French and Tschopp 2002; Fernald and Kurokawa
2013; Ashkenazi 2015; Mantovani et al. 2019). Processes uniquely
enriched in carcinomas also included calcium signaling and ho-
meostasis and regulation of lipid biosynthesis, which may be
linked to managing endoplasmic reticulum and membrane stress-
es that can drive malignancy (Urra et al. 2016). Thus, comparing

multiple canine tumor types effectively distinguishes processes
linked to specific stages of tumor development and identifies path-
ways that are unique to aggressive tumors.

Carcinoma PEP signature is predictive of survival

in human breast cancer

To understand how the Carcinoma PEP (which delineates malig-
nant-specific tumor signals) relates to human tumors, we

Figure 3. Identification of progression expression patterns. Progression expression patterns (PEPs) are identified using differential expression analysis be-
tween histological groups: (top) Tumor PEP, 1023 genes; (bottom) Carcinoma-specific PEP, 136 genes. The diagrams illustrate how each PEP pattern is de-
fined. For example, Tumor PEP includes genes up-regulated in tumors (significantly differentially expressed both between normal and benign samples and
between normal andmalignant samples). The heatmap shows the expression patterns for these genes, with patterns divided into up- and down-regulated
(e.g., Tumor PEP includes 567 genes significantly up-regulated in tumors and 456 genes significantly down-regulated in tumors).

Figure 4. Resolution of cancer hallmark processes by PEPs to discern malignancy-specific processes. Genes differentially expressed between Normal and
Carcinoma samples (as in traditional gene expression analysis) show Tumor or Carcinoma-specific signatures. This experimental design stratifies tumor
processes into those specific to malignant tumors (carcinoma-specific pattern) and those that are perturbed in both benign and malignant tumors (tu-
mor-specific pattern). Five representative example GO terms from each pattern are shown (for a complete list, see Supplemental Table S3).
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investigated whether this group of genes is predictive of clinical sur-
vival inbreast cancer patients. Indeed,we found that inTCGABRCA
and METABRIC samples, levels and direction of expression change
of Carcinoma PEP is predictive of human survival: patients express-
ing the weakest Carcinoma PEP signature have significantly better
outcomes (all data, Peto-Peto P=0.0038 TCGA, and P=0.0058
METABRIC) (Supplemental Fig. S7), and this goes beyond reflecting
PAM50 subtypes. Although PAM50 subtype and Carcinoma PEP
strength correlate (e.g., most Basals have strong Carcinoma PEP sig-
naling), there isa significantdifference insurvivalwithinsubtype. In
the most prevalent subtype, Luminals, there is a survival difference
relative to the Carcinoma PEP scores (Luminal A, TCGA P-value
0.004, METABRIC P-value 0.0048; Luminal B, TCGA P-value 0.004,
METABRICP-value0.0048) (Fig. 5A,B). Thus, theCarcinomaPEP sig-
nature has clinical relevance in human breast cancer, underscoring
theutilityof the caninemodel for capturingmolecular signatures as-
sociated with human breast cancer.

Discussion

In this study we presented a novel statistical approach for studying
the mechanism of tumorigenesis by leveraging the multiple natu-
rally occurring samples per patient features of the caninemamma-
ry tumor model to define processes and pathways that are
dysregulated between normal tissue, benign, and malignant tu-
mors. We characterize the genome-wide landscape of molecular
signals in CMT, both at the transcriptional and mutational level,
demonstrating that many hallmark human breast cancer process-

es, including cell migration, cell cycle checkpoints, and apoptotic
signaling (Fig. 2A; Supplemental Table S3), and molecular sub-
types of human breast cancer are reflected in CMTs. In addition
to showing the molecular similarities between CMT and human
breast cancer and providing a computational framework to facili-
tate using CMT as an effectivemodel for BRCA, our analysis distills
malignant-specific signals from overall tumor-associated signals.
We show that these cancer dysregulations and aggressive biology
captured by the canine carcinoma PEP are relevant to the dysregu-
lations in human breast cancer, with weakest Carcinoma PEP sig-
nature correlating with significantly increased patient survival.
This information is distinct from that captured by predicted
PAM50 subtype status—the Carcinoma PEP is able to stratify sur-
vival within Luminal A patients, presenting an important perspec-
tive on factors thatmake this prevalent breast cancer subtypemore
dangerous. This underscores the potential of the CMT model for
molecular studies of human breast cancer.

A critical challenge to translational studies in model organ-
isms is an effective analysis that integrates the findings with hu-
man biology. To promote comparative oncology studies that
leverage the approach of multiple samples per patient afforded
with CMTs, we developed and are sharing with all biomedical
researchers a novel analytical framework, FREYA. FREYA is a
computational suite that enables any researcher to perform analy-
ses in this manuscript, from data processing to human cancer
comparison to figure generation, using either the provided CMT
data or user-provided data. FREYA is available at https://freya
.flatironinstitute.org.

A C

B

D

E

Figure 5. Dog PEP signature is predictive of survival in human breast cancer. (A,B) Kaplan-Meier plots showing patients with breast cancers bearing stron-
gest Carcinoma PEP signal have worse outcomes in two independent human breast cancer cohorts: (A) TCGA BRCA; (B) METABRIC. (C–E) Dogs, like hu-
mans, have strong hormone receptor expression signaling differences between PAM50 subtypes. Estrogen receptor 1 (ESR1), progesterone receptor (PGR),
and erb-b2 receptor tyrosine kinase 2 (ERBB2) expression within each PAM50 subtype shown: (C) TCGA BRCA; (D) this CMT data; and (E) METABRIC.
Horizontal lines across each graph indicate median receptor expression across the entire cohort.
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Altogether, our study shows the relatedness of human breast
cancer and canine mammary tumors at the molecular level as well
as the utility of the CMT model for discerning signals that are ob-
scured in othermodel systems. Althoughour understanding of hu-
man breast carcinogenesis remains incomplete, understanding the
progression from benign to malignant and identifying its molecu-
lar signature is key both to understand breast carcinogenesis and to
identify targets for cancer prevention and therapy. The molecular
signals in CMT that we identify indicate the canine model offers
unique opportunities to fill gaps in our understanding of human
breast tumorigenesis and provide a comprehensive canine breast
cancer model that captures the major variables—predicted
PAM50 subtypes within CMT have the characteristic hormone re-
ceptor expression (Fig. 5C–E), hallmarks (tumor genetics,microen-
vironment, hormonal effect, and immune function)—and their
interactions. In such, CMT as amodel of human breast cancer pro-
vides a powerful complement to both human clinical and in vitro
studies as well as model organism studies (e.g., in mouse). Insights
fromCMTs can be used to direct futuremechanistic studies in oth-
er model systems, and the CMTmodel offers unique opportunities
for expedited clinical trials of therapies, availability of material for
isolation of breast cancer stem cells, and analyses of tumor evolu-
tion at both the level of mutations and associated transcriptional
programs.

Methods

Ethics statement

Animal work was approved by the University of Pennsylvania
Institutional Animal Care and Use Committee (IACUC), listed as
protocol 804298, principal investigator Karin Sorenmo, and titled
“Molecular Evaluation of Canine Mammary Tumors.”

Experimental design

Dogs have a high incidence of multiple primary tumors, making it
possible to study mammary tumor progression without the effects
of inter-individual genetic variability. We created a pipeline to
map the genomic landscape of CMTs and then compared them
to BRCA. We showed that the multiple-diagnoses-per-patient ex-
perimental design was essential for capturing progression-related
patterns of expression. Our analyses identified pathways and pro-
cesses dysregulated in CMTs parallel to those altered in BRCA. We
showed that CMT mutation profiles recapitulated those seen in
BRCA. CMThas the potential of being a uniquely impactful model
integrating transcriptional and other -omics data in a model or-
ganism that can bridge mechanistic studies in mouse/rat and hu-
man clinical data.

Sample gathering

Tumor samples were collected from naturally occurringmammary
tumors within sexually intact dogs treated through the Penn Vet
Shelter Canine Mammary Tumor Program. All dogs underwent
routine clinical staging (including mapping and measuring of all
tumors as well as thoracic imaging) followed by surgical removal
of the affected glands. All tissues were processed immediately after
removal. Two parallel small incisional sections were collected from
each tumor as well as sections from visually normal mammary tis-
sue; one section was flash frozen in liquid nitrogen and stored in
−80°F freezer and the adjacent section was fixed in formalin for
routine hematoxylin and eosin staining and histopathological
evaluation. For mixed carcinomas, the carcinoma portion of the
tumor was extracted for sequencing. In addition, the whole tumor

was also evaluated histopathologically. A standard published clas-
sification system on canine mammary gland tumors was used to
classify and grade all tumors/tissues by board certified Veterinary
Pathologists (Goldschmidt and Durham) (Goldschmidt et al.
2011).

Sample processing

Tissue samples were cryo-pulverized then homogenized using a ro-
tor-stator in TRIzol (Invitrogen 15596-026). The lysate was further
homogenized using a Qiashredder spin column. mRNA was ex-
tracted using the Qiagen RNeasy Kit. The sequencing libraries
were prepared at the Princeton University Genomics Core Facility
using the PrepX mRNA Library Protocol for the Apollo324 System
(Wafergen). Sequencing was performed using the Illumina HiSeq
2000 platform. This resulted in 5.041 billion mapped reads across
89 samples, with 56 million mapped reads on average per sample.

RNA-seq processing

RNA-seq reads were mapped to the CanFam3.1 genome assembly
(Ensembl release 91) (Zerbino et al. 2018) using the HISAT2 aligner
(Kim et al. 2019), after which assemblies were filtered using FastQC
(https://github.com/s-andrews/FastQC). DEXSeq-Count (Anders
et al. 2012; Reyes et al. 2013) was used to construct read counts
for each gene in this combined transcriptome assembly. The re-
sulting counts matrix was normalized using TMM (Robinson and
Oshlack 2010). We then regressed out the effect of the individual
and row-centered the resulting data to remove breed bias. This
was necessary because of the high heterogeneity between dog
breeds.

Variant calling and identification of somatic mutations

CMTmutations were called following the GATK Best Calling Prac-
tices for RNA-seq pipeline (https://github.com/gatk-workflows/
gatk3-4-rnaseq-germline-snps-indels) (DePristo et al. 2011; Van
der Auwera et al. 2013). We made mutation calls in all genes and
the average read depth of 164-fold coverage (Supplemental Fig.
S3) surpassed the threshold for maximum mutation call confi-
dence as shown by Sun et al. (2017). Read depth was calculated us-
ing BEDTools coverage (BEDTools version v2.29.2) (Quinlan and
Hall 2010).We further filtered the variants by comparing each var-
iable site in the tumor sample to the normal samples from that
same individual and discarded sites where tumor and normal sam-
ples matched. In cases in which normal samples from the same in-
dividual had different genotype calls, we required that tumor
samples differ from all normal tissue samples to call a mutation.
We also excluded genotype calls with quality scores less than 40
and calls generated from less than fourfold coverage. Additionally,
genotype calls annotated with HIGH and INTERMEDIATE func-
tional effect scores (SnpEff) (Cingolani et al. 2012) were retained
and used in downstream analyses. To compare human and CMT
mutation rates, overall mutation counts for each TCGABRCA sam-
ple were downloaded on June 17, 2019, from cBioPortal (https://
www.cbioportal.org/study/summary?id=brca_tcga_pan_can_atlas_
2018). Because of uneven read coverage in RNA-seq data, there are
limitations in RNA-seq mutation calling; for example, indels in
low expressed genes such as tumor suppressors may not be identi-
fied owing to a lack of coverage in the region, so that there is not
enough data to make a high confidence call.

Phylogenetic analysis

An identity-by-descent phylogeny with proportional branch
length (Supplemental Fig. S1) was generated using SNPRelate
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(Manichaikul et al. 2010) and all SNPs called by FREYA. All sam-
ples, including normals, were included in this analysis. Pairwise
similarity scores were calculated for all sample pairs, such that sim-
ilarity of mutations in samples a and b (ma, mb) is

ma >mb

min (|ma|, |mb|) .

Moderate and high impact mutations in named genes, called
as described in Methods section, “Variant calling and identifica-
tion of somatic mutations,” were included in the similarity score
calculation. For each pair of tumors, the similarity score is the frac-
tion of mutations in the lesser mutated sample that are mutated in
both samples, creating a similarity score ranging from 0 to 1.

Canine pairwise differential expression analysis

Pairwise differential expression comparisons were performed be-
tween normal and adenoma, normal and carcinoma, and adeno-
ma and carcinoma samples. Differential expression testing was
performed using edgeR (McCarthy et al. 2012), using a negative bi-
nomial generalized linear model explaining expression based on
histology while controlling for individuals. Samples were normal-
ized using weighted trimmedmean of M-values (TMM) (Robinson
and Oshlack 2010). Genes with more than one count per million
in at least 30 samples were used for this analysis. False discovery
rate control was performed using the Q-value method (Storey
and Tibshirani 2003) on each comparison.

GO enrichment

We identified enriched processes in differentially expressed genes
in the normal-carcinoma comparison (FDR<0.05) (Fig. 2A;
Supplemental Table S3) and in each PEP (Fig. 4; Supplemen-
tal Table S5) using the Functional Module Detection query at
https://humanbase.flatironinstitute.org. Each gene list was clus-
tered using a shared nearest neighbor–based community-finding
algorithm to identify distinct modules of tightly connected genes
(Krishnan et al. 2016) within themammary epithelium functional
network (Greene et al. 2015). GO enrichment was performed on
each module.

Unsupervised CMT clustering

To identify the presence of molecular subtypes within the dog
samples, we performed unsupervised clustering of the samples us-
ing the intrinsic analysis described previously (Sorlie et al. 2003;
Parker et al. 2009) to identify genes with low variability in expres-
sion within paired (tumor/normal) samples from the same patient
but high variability across tumors from different patients. Genes
with a low ratio of within-dog variance versus between-dog vari-
ance, those below one standard deviation of the mean ratio,
were defined as “intrinsic genes” and used in the unsupervised
clustering. Benign and malignant tumors were clustered based
on those 2076 intrinsic genes (Supplemental Fig. S2; Supplemental
Table S1). We note the 10 canine tubular carcinomas are not uni-
form, and in unsupervised clustering they fall into three separate
clusters, reinforcing the importance of sampling diverse histolo-
gies to identify those with shared molecular hallmarks.

Progression expression profile identification

Results of the pairwise differential expression analysis between the
three histologies were used to identify the expression patterns (Fig.
3). Each pattern is characterized as having twoof the three compar-
isons showing differential expression, using a cutoffQ-value below

0.05. Specifically, classification of genes to the appropriate pattern
is determined using the following criteria:

Tumor-specific: A gene differentially expressed in both the nor-
mal-adenoma and the normal-carcinoma comparisons; the
sign of the change is the same for both comparisons.

Carcinoma-specific: A gene differentially expressed in both the
normal-carcinoma and the adenoma-carcinoma comparisons;
the sign of the change is the same for both comparisons.

PAM50 subtypes

To identify the presence of human PAM50 molecular subtypes
within the dog samples (normal, benign, andmalignant), we com-
bined the expression data from 89 dog and the 981 human TCGA
tumor samples with PAM50 annotations, subset to the 42 PAM50
genes present in the dog samples (canine orthologs of some genes
are currently unknown), then removed species batch effects
using SVA (https://bioconductor.org/packages/release/bioc/html/
sva.html). An elastic net (R package glmnet) (Friedman et al.
2010) was trained to predict PAM50 subtype based on the human
data and applied to samples for both species. Of human samples,
98%were correctly predicted (in accordance with the sample label
in the TCGA data set). R version 3.6.1 (R Core Team 2019) was
used. CMT samples were predicted to be all four PAM50 subtypes
and in similar ratios seen in humans. PAM50 subtype correlation
statistic was calculated by calculating the Wilcoxon rank-sum
test P-value for each subtype (e.g., LumAdog samples vs. LumAhu-
man samples compared to LumA dog samples vs. non-LumA hu-
man samples; P-values are as follows: LumA<2.2 ×10−16, HER2
.36, Basal <2.2 ×10−16, LumB<2.2 ×10−16). We then calculated a
joint statistic using the Fisher combined probability test (R package
metap, https://cran.r-project.org/web/packages/metap/index.html).

Simulation

The inclusion of three histologies in this study enabled us to define
PEPs relevant to development of malignant tumors. We used a
simulation to compare the accuracy of three versus two histologies
per patient setup for generating PEP signatures. For this analysis we
subsampled the full data set both for the three histologies per pa-
tient setup and the two histologies per patient setup and ran the
entire PEP derivation from FREYA on each subsampled data set.
Because the two subsampled data sets in each random rerun are
controlled for sample size, if there is a significant difference in
how well they recapitulate the original PEP signature, it is driven
by the difference in histologies.

To generate a data set in which only two histologic categories
are represented (as is typical in normal vs. tumor design), the 16
patients in our study were randomly split into two groups—one
group contains pairs of normal and benign samples and the other
contains normal and carcinoma samples—for a total of 32 sam-
ples. To generate a data set in which three histologic categories
are represented, random subsampling of 10 patients was per-
formed, such that one of each of the three histology groups were
randomly selected (30 samples per simulation total). Using these
two subsample groups, we repeated the steps used to generate
the PEPs and compare the maximum Q-values characterizing the
PEPs from simulations (300 simulations per experimental design).
Q-values from these simulationswere compared to the actual study
in this paper using the respective pattern to calculate Spearman’s
correlation (Supplemental Fig. S6). The three-histology approach
significantly outperformed the paired approach (Wilcoxon rank-
sum test; P-values 6.8 × 10−15 Tumor PEP and 1.4 ×10−8

Carcinoma PEP) when using a comparable number of samples.
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Comparison to human breast cancer (BRCA) data

RSEM normalized, log2-scaled RNA-seq data from two
human breast cancer cohorts, TCGA BRCA (Hoadley et al. 2018)
and METABRIC (Pereira et al. 2016), were obtained from
via cBioPortal (https://cbioportal.org/study/summary?id=brca_
tcga_pan_can_atlas_2018; and https://cbioportal.org/study/
summary?id=brca_metabric). We identified orthologs between
dog and human using BioMart (Kasprzyk 2011); only one-to-one
mappings were used for this analysis. Differential expression of
normal-malignant CMT samples was calculated on the log2 scaled
data using siggenes (https://bioconductor.org/packages/release/
bioc/html/siggenes.html). The list of known cancer-related genes,
oncogenes, and tumor suppressors was taken from COSMIC (Tate
et al. 2019). The representation of alternate haplotypes in hg38,
absent in hg19, do not affect the findings of our study.

Carcinoma PEP signature in human breast cancer

To identify the significance of the PEPs in human breast cancer,
we projected the Carcinoma PEP into TCGA BRCA and
METABRIC data (see above). We first subtracted the median nor-
mal expression levels from the malignant gene expression values
in each dog’s samples and used the sum of positive and negative
differences to designate each PEP gene as positive or negative (in-
creased or decreased expression, respectively). We then generated
signature scores for each human sample, calculating the sum of
all PEP genes for which the gene was in the top of the human ex-
pression value ranges for positive PEP genes and in the bottom
quartile for negative PEP genes. We then divided the signature
scores into four groups of equal size and applied the Peto-Peto
significance test.

We assigned each Carcinoma PEP gene g to the positive or
negative signature set by subtracting the median expression levels
in normal samples (edn) from the median expression levels in ma-
lignant samples (edm), within each dog d. Genes are grouped intoG
+ (up) and G− (down) determined by the ratio of dogs for which
the direction of change in expression from tumor to normal is pos-
itive or negative as follows:

1
|D|

∑
d[D

Iemdg . endg
1
2
g g [ G+

else g [ G−

⎧
⎨

⎩

Given these groups, we then calculate Carcinoma PEP signature
scores for each human sample, such that for each Carcinoma
PEP gene g, the signature is considered present for that patient if
expression levels eg are in either the top or bottom quartiles (Q1,
Q4), depending on the direction of the expression change in
CMT samples

∑

g[G+
Iepg Q3 +

∑

g[G−
Ie pg Q1

such that G+ and G− are Carcinoma PEP genes that follow a posi-
tive or negative direction of change within the dogs. Carcinoma
PEP signature scores were assigned to all human samples in the
TCGA BRCA and METABRIC cohorts and subtype analysis with
Luminal A and Luminal B samples was performed in parallel.

FREYA statistical framework

The FREYA framework (https://freya.flatironinstitute.org) de-
scribed here generates expression and mutation profiles from raw
sequence data, then runs all analyses described in this manuscript
on that data (with the exception of HumanBase functional net-
work module detection [https://humanbase.flatironinstitute.org/],
SNV substitution profiles, and phylogenetic analysis). No installa-

tion is necessary; a button click within the GitHub repository will
automatically build an interactive docker image containing
FREYA. Users have the option of passing unprocessed sequencer
data to FREYA’s DataPrep module or providing their own prepro-
cessed data. Alternatively, we provide a version of FREYA optimized
for a cluster environment. All versions of FREYA can be run with
user-provided data.

Software availability

Computer code underlying this statistical approach is available at
https://freya.flatironinstitute.org and in Supplemental Code. To
help with reproducibility and to encourage use of our statistical
framework, we provide version information for each tool as well
as parameters settings in the README and in the automated pipe-
line script.

Data access

All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE136197.
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