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a b s t r a c t

Governments worldwide have adopted different public health measures in order to slow down
the spread of COVID-19. As a result, the electricity demand has been impacted by the changes in
human activity. Many of the Latin America and the Caribbean (LAC) countries have adopted different
approaches to control the COVID-19 pandemic, including severe shutdown of most social and economic
activities. This paper analyzes how this pandemic has influenced, from its appearance until the fall of
2020, the demand of ten LAC countries (Peru, Bolivia, Costa Rica, Brazil, Guatemala, Mexico, Dominican
Republic, Argentina, Chile and Uruguay). The approach is based on the concepts of size and shape
impacts, which have been proposed in order to decompose the problem for a better understanding
of the impact. The size impact accounts for the observed variations on the daily demand, whereas
the shape impact focuses on the variations observed on the standardized hourly demand profiles for
each day. To calculate both impacts, the observed demand is compared to the expected one if the
COVID-19 crisis had not happened. To obtain reliable estimations in the scenario without COVID-
19, machine learning techniques have been used. Peru and Bolivia are the two countries where the
pandemic has had the greatest impact during 2020, with a size impact in April 2020 of around -30%.
At the opposite extreme would be Chile and Uruguay, with a maximum monthly size impact of -6%.
The other considered countries have maximum monthly impacts in the range of -11% to -17%.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

In December 2019 the severe acute respiratory syndrome
oronavirus 2 (SARS-CoV-2) was detected in Wuhan (China).
ust a few months later, it was spread to create the COVID-19
andemic, the worst global public health crisis since the 1918 flu
andemic [1]. In June 2021, the total number of COVID-19 cases
n the world is counted in the hundreds of millions, with direct
eaths attributable to COVID-19 in over three million cases [2].
With the arrival of SARS-CoV-2, governments worldwide have

dopted different public health measures in order to slow down
he spread of the virus. These measures range from social dis-
ancing recommendations to stay-at-home orders by means of
nforced partial or complete lockdowns, non-essential business
losures, etc. Under this unusual situation, the electricity demand
as been significantly impacted by the changes in human activity
rought on by the COVID-19 pandemic.
The impact of COVID-19 pandemic on the electricity demand

as been previously reported in academic literature, where nu-
erous studies can be found analyzing a wide range of countries

∗ Corresponding author.
E-mail address: eugenio.sanchez@comillas.edu (E.F. Sánchez-Úbeda).
ttps://doi.org/10.1016/j.segan.2022.100610
352-4677/© 2022 Elsevier Ltd. All rights reserved.
applying different methodologies. This literature has been grow-
ing since the pandemic arrived, hence, an in-depth comparison of
the available references has been performed with focus on several
factors: regions of study, type of electricity demand analyzed,
methodology used and observed impact of demand measured.

The methodology followed to evaluate the impact of COVID-19
pandemic on the demand is diverse, however, it can be classified
into two main approaches: On the one hand, Table 1 shows the
articles that perform a direct comparison of the actual demand
during the year 2020 with the consumption of year 2019 or with
an average consumption of previous years. On the other hand,
Table 2 shows the papers that follow a model-based approach,
where the actual demand during the year 2020 is compared with
an estimate of the demand in the event that COVID-19 would not
have arrived. For this approach an statistical model is trained with
pre-COVID-19 data to model factors such as trend, seasonality,
holidays and the effect of temperature in the demand.

Regarding the type of demand analyzed, most papers analyze
daily or hourly electricity demand, except some analyzing weekly
consumptions. Depending on the study, aggregated demand at a
National level is analyzed whereas others dive into the differences
between residential and industrial consumptions. In general, the

https://doi.org/10.1016/j.segan.2022.100610
http://www.elsevier.com/locate/segan
http://www.elsevier.com/locate/segan
http://crossmark.crossref.org/dialog/?doi=10.1016/j.segan.2022.100610&domain=pdf
mailto:eugenio.sanchez@comillas.edu
https://doi.org/10.1016/j.segan.2022.100610
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Table 1
Summary of literature review for approaches mainly based on direct comparison.
Ref. Regions Type of demand Methodology Observed impact on demand

[3] Spain, Italy,
Belgium, UK,
Netherlands,
Sweden

Hourly electricity
consumption.
Daily load profiles.

Comparison against reference week (the
one with similar daily average
temperature) form 2019.
Analyzed the second week in April 2020.

Hourly demand: Reduction in Spain
(-25%), Italy (−17.7%),
Belgium (−15.6%), United Kingdom
(−14.2%), Netherlands (−11.6%).
Increased in Sweden (2.1%).
Load profiles: working days of 2020
similar to weekends of 2019.

[4] Spain Daily electricity
demand.

Comparison against average of
2015–2019 in same period.
Analyzed from March 14th to April 30th
2020.

Percentage of reduction in electricity
demand. 13% reduction on average. 25%
maximum reduction.

[5] Italy, France,
Spain, Germany,
Sweden,
Switzerland

Hourly demand
time series.
Daily load profiles.

Comparison to same period in 2019.
Analyzed beginning of March 2020 until
June 2020.

Hourly demand: demand reduced in
Italy (−20.9%), in France (−18.9%), Spain
(−16.9%), UK (−15.2%), Belgium
(−13.3%), The Netherlands (−12.0%).
Load profiles: working days of 2020
similar to weekends of 2019. Working
day profiles shifted in time.

[6] Romania Monthly electricity
consumption.
Differences in
domestic,
household and
non-household
consumption.

Comparison with same period in 2019
for analyzing impact.
Analyzed March to December 2020.
*Model-Based for Relation between GDP
and demand by statistical model.
Time series and multi-linear regression
models for GDP vs Demand.

Domestic: Average demand reduction in
March (−2.75%) and −14.25% reduction
in April.
Household: Demand increase to a total
maximum of 8.33% in December 2020.
Non-household: Average demand
reduction of -4% in March and −21.3%
reduction in April.

[7] Spain Smart Meter data
Differences in
residential and
non-residential.

Comparison with same period in 2019
for analyzing impact.
*Model-based for first days. Short-term
forecasting model for first days.

Residential sector: 13% increase for
residential sector.
Non-residential sector: -35% demand
reduction.

[8] Warsaw (Poland) Hourly
consumption for
residential users
Daily load profiles.

Direct comparison with same period in
2018 for analyzing impact.
Analyzed 5 week from March 16th to
April 18th 2020.

Hourly demand: 16% increase compared
to analogous period in 2018.
Load profiles: Changes in the shape of
the daily profile Increase in energy
consumption during the daytime.

[9] Italy Hourly
consumption data.

Direct comparison with same period in
2018 and 2019.
Analyzed 5 week from March to April.

Reduction of consumption up to -37%.

[10] Canada (Ontario) Hourly
consumption data.

Direct comparison with same period in
2019.
Analyzed April 2020.

−14% reduction in the monthly
electricity demand, with the highest
daily reduction of -25%.
impact is measured as the difference between the observed de-
mand and the reference demand in percentage with respect to
the reference demand. The results show a wide variety of impacts,
mainly ranging from 2% to 25% average demand reduction. How-
ever, not all impacts show reductions in consumption. Studies
such as [6,7,16], which analyze demand on different sectors,
show that significant increases up to 13% have been observed on
residential areas. In addition, studies such as [5,19] have analyzed
daily load profiles, identifying time shifts in the morning con-
sumption during weekdays. Moreover, weekday profiles during
confinement resembled weekend profiles.

Regarding the regions analyzed, while most studies have been
erformed for countries in Europe, North America, and Asia, very
ew studies address the impact on Latin American countries.

The Latin America and the Caribbean countries (LAC) have
dopted different approaches to control the COVID-19 pandemic,
ut many of them have imposed the severe shutdown of most
ocial and economic activities during the first months of the
andemic. A sample of ten countries has been selected to carry
ut the study, based on the availability of the required data for
he application of the proposed methodology. The existence of
istorical demand with hourly detail with a sufficient depth and
uality has been a critical factor to adjust the proposed explana-
ory models used to estimate the reference demand. The LAC
2

sample consists of the following countries: Peru, Bolivia, Costa
Rica, Brazil, Guatemala, Mexico, Dominican Republic, Argentina,
Chile and Uruguay. To the best of our knowledge, this is the
first study that quantifies the impact of COVID-19 pandemic on
electricity demand for a representative set of Latin American
countries.

This paper analyzes how the COVID-19 pandemic has influ-
enced the selected LAC countries, from its appearance until the
fall of 2020. A model-based approach for estimating the impact
is used, instead of a straightforward comparison with the average
of previous years. Furthermore, our methodology is based on the
computation of the size and the shape impacts, which decompose
the problem for a better understanding of the impact. The size
impact accounts for the observed variations on the daily demand
time series, whereas the shape impact focuses on the variations
observed on the standardized hourly demand profiles for each
day.

The paper is organized as follows. Section 2 describes the
proposed methodology to carry out the study. In Section 3 the
data preparation is described. Additional details about the pro-
posed size and shape impacts are described in Sections 4 and 5,
respectively. The results are shown in Section 6, further discussed
in Section 7. Finally, conclusions are summarized in Section 8.
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Table 2
Summary of literature review for approaches based on models for comparison.
Ref. Regions Type of demand Methodology Observed impact on demand

[11] UK Daily electricity
demand.
All 2020 analyzed.

Linear regression with temperatures:
population weighted Heating Degree
Days (HDD) and Cooling Degree Days
(CDD). Separate regressions for
weekdays, weekends and holidays.
Model trained with years 2017–2019.
Use of temperature scenarios for
uncertainty.

Percentage of reduction during
restrictions: −11.7 ± 1.2%.

[12] India (5 different
regions)

Log series of
energy
consumption data.

Obtain relationship between indian
energy consumption and number of
cumulative confirmed COVID-19 cases.
Auto-regressive time series models.

As lockdown measures are relaxed,
energy consumption in India is inclined
to increase to levels before the
lockdown.
Regions with higher income levels are
quicker to recover their energy
consumption to levels before the
lockdown.

[13] Brazil (4 regions) Weekly
consumption data.

Identify significant trend changes in
weekly data using joinpoint Regression

Percentage change between time
interval (Weekly Percentage Change)
Between -7% and -20% consumption
drop depending on the zone.

[14] Jordan (3 main
areas)

Half-hourly, daily
and monthly
consumption of
commercial,
household,
demand and
factories.

Comparison with same period in years
2016 to 2019 for analyzing impact.
Trend removal of monthly demand.

Average demand reduced by -40% with
respect to 2019 in city center.

[15] Poland Hourly data
demand data.

Difference between energy consumed in
subsequent weeks and the expected
values of consumption.
Linear regression based on weekly
values of consumption in the 4 weeks
before lockdown.

Energy consumption drop between -15%
to 23% during the first lockdown.

[16] US ( California,
Florida, New York)

Hourly electricity
demand.

Weather correction method with Cooling
Degree Days (CDD) and Heating Degree
Days(HDD).

10% increase in electricity demand is
likely to have occurred due to COVID-19
for the city of Grainesville.

[17] Kuwait Daily electricity
demand.

Linear regression model with
temperatures, weekdays and holidays.
Train with last 4 years. Test with 2020.
Analyze 3 months from March to May
2020.

The stay at home phase (13–21 March)
recorded a −2.2% reduction.
The partial curfew (March 22nd –10
May) and full lockdown (11–30 May)
phases showed −13.7% and −17.6%
respectively.

[18] China Daily electricity
demand.

Auto-regressive time series and Artificial
Neurlal Networks with explanatory
variables such as GDP and population
increase and epidemic variables.

Identified effects of different variables
on demand:
A 1% increase in population infected
induces a −0.58% demand reduction.

[19] Germany, France,
Italy, Spain and
Poland

Hourly electricity
demand.
Daily load profiles.

High dimensional time series
change-point models to the electricity
log-load of each country.
Analyzed 2 months from March to April
2020.

Hourly demand: Significant demand
reduction (not specified).
Load profiles: Identifies shifts in the
morning load peak on the daily demand
profiles.

[20] Austria, Germany,
Spain France, Italy
UK, USA (Florida &
New York)

Daily electricity
demand.

Dynamic harmonic regression with
Fourier terms for complex seasonality,
quadratic temperature, and calendar
effects.
Analyzed 5 months from March to
August 2020.

Most countries experienced a reduction
between -3% and -12%, except Florida,
which showed no significant impact.

[21] Canada Hourly electricity
demand.

Linear regression with weekdays,
holidays, Heating Degree Days (HDD)
and Cooling Degree Days (CDD).
Analyzed March 2020 until June 2020.

Demand variation form -4% to -10%.

[22] US Weekly averaged
electricity demand.

Polynomial regression and a two-step
augmented regression prediction model
were used for forecasting energy
demand during the test period.
Analyze late March to June 7th.

Overall reduction in electricity demand
around -7%.
2. Methodological approach

In this section the proposed methodology to analyze the main
mpacts of COVID-19 pandemic on the electricity demand of a
3

specific country is described. Two different impacts are consid-
ered. The size impact, that accounts for the observed variations on
the daily demand time series, and the shape impact, that focuses
on the variations observed on the hourly demand profiles for each
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Fig. 1. Proposed methodology to calculate the size and shape impacts of COVID-19 on demand.
ay. The use of these two impact components is based on the
act that the hourly demand can be decomposed using a simple
ultiplicative decomposition:

d,h = wd,hDd, (1)

where Dd =
∑

h Dd,h is the daily demand at day d and wd,h is
the proportion of Dd observed at hour h. Thus, the vector wd =(
wd,1, . . . , wd,h, . . . , wd,24

)T represents the standardized hourly
demand profile for day d. Note that the profile’s coefficients are
calculated straightforward as the ratio of the hourly demand Dd,h
divided by the daily demand Dd.

Therefore, instead of analyzing directly the impact of COVID-
19 on hourly demand, the proposed approach is based on decou-
pling the effect in two factors. The first factor, the size impact,
focuses on quantifying how the daily demand Dd has changed due
to the alterations in human activity brought on by the COVID-19
pandemic. On the other hand, the shape impact accounts for the
pandemic-induced changes in the standardized hourly demand
profile wd for each day. Thus, both the size and the shape impacts
will show different aspects of the same issue, allowing a better
understanding by decoupling the problem.

The proposed methodology to calculate both impacts relies on
a simple idea: compare the observed demand to the expected
one if the COVID-19 crisis had not happened. In this way, size
and shape impact indicators can be defined from the differences
between the observed demand and the reference one. The key
point of this approach is how to obtain a reliable estimation of
the daily demand Dd and the standardized demand profile wd in
the scenario without COVID-19. In this paper these estimations
are obtained applying well-known machine learning techniques.
In particular, the proposed methodology consists of the following
main steps (see Fig. 1):

• Step 1: Data preparation for implementing the approach.
• Step 2: Creation of the reference models from the available

data prior to 2020 (before COVID-19 crisis).
• Step 3: Extrapolation of the fitted reference models to 2020

to obtain the references for the daily demand and the stan-
dardized demand profile.
4

• Step 4: Comparison of the real data to the references and
calculation of impact indicators.

3. Data preparation

To implement the methodology proposed for estimating the
impact of COVID-19 pandemic on the LAC’s electricity demand,
a complete dataset of different variables has been collected. In
addition to the hourly demand data, daily temperatures as well
as holidays and special events have been collected. Note that the
temperature is the main weather driver of the demand, whereas
including public holidays as inputs in the forecasting demand
models is especially useful in order to improve their accuracy (see
e.g. [23]). Therefore, a special effort has been undertaken to obtain
a valuable dataset of input variables for explaining the demand.

3.1. Demands

Hourly demand data has been obtained from the web sites
of the system operators of each country. This hourly demand is
used to calculate the daily demand and the standardized demand
profiles using Eq. (1), required to estimate the proposed size and
shape impacts.

Fig. 2 shows the daily demand time series collected for the LAC
countries. Note that the number of recovered years is different
for each country, according to the availability of data. A simple
visual inspection allows detecting the high impact of the COVID-
19 pandemic in some countries such as Peru, Bolivia or Costa
Rica. On the other hand, Fig. 3 shows the standardized demand
profiles for the two first consecutive weeks of February 2020.
Note that the profiles are quite stable for each country, with
visible differences in shape during the weekends. It is also easy
to see the clear differences between the country profiles. For
example, in Guatemala the standardized demand spreads out in a
larger range of values that in Peru, with a significant peak at 6:00
p.m.
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Fig. 2. Daily demand for the LAC countries.
Fig. 3. Standardized demand profiles for the LAC countries (weeks from 3/2/2020 to 16/2/2020). The Saturdays and Sundays hours are marked in red. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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.2. Temperatures

As aforementioned, it is well known that the temperature
s one of the main drivers of electricity demand (see e.g. [25–
7]). For example, Fig. 4 shows how the daily demand of Mexico
hanges with the average daily temperature. During summer
he electricity demand reaches its maximum values due to high
emperatures. In particular, during summer 2018, two heat waves
early June and late July) were responsible of several weeks with
ery high electricity demand due to the use of air conditioning
or cooling.

For each country, the average daily temperature (TAVG), mea-
ured in different weather stations distributed throughout the
ountry, has been collected from NOAA (National Oceanic and
tmospheric Administration, www.noaa.gov). For example, Fig. 5
hows the 37 weather stations in Argentina for which there is
5

uality data for TAVG since 2004 (with less than 250 days without
easurement).
The proposed model to estimate the reference demand for

ach country requires a unique temperature, representative of
hose temperatures in the region that have larger influence in the
emand. Thus, in order to create this reference temperature for
ach country, we first clustered similar weather stations using hi-
rarchical clustering. Then, the reference temperature is obtained
s a weighted average of the TAVG of a subset of weather sta-
ions, selected by hand taking into account both the information
rovided by the dendrogram and the spatial distribution of the
ain cities and the stations. It should be noted that in order to
etter select the reference temperature, methods such as those
escribed in [26] would provide better results in terms of error.
owever, in this study we have decided to exploit the spatial
nformation available about the location of the weather stations

http://www.noaa.gov
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Fig. 4. Example of variations in the daily demand of Mexico due to temperature. Top: real demand, the magenta circles mark holidays. Bottom: Reference temperature
(black) and smoothed reference temperature (blue).. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 5. Selected 37 weather stations for Argentina. Left: Location (longitude and latitude). Right: average daily temperature for each weather station.
Source: Extracted from [24] (Fig. 5, p. 11).
© 2021 Inter-American Development Bank (BID). Reprinted with permission of BID.
and the relevant cities of the country to select a reasonable set of
TAVG to be averaged.

Fig. 6 shows the dendrogram obtained for the candidate 37
eather stations of Argentina. Taking into account the location
f the three main cities where most of the population is concen-
rated (Buenos Aires, Córdoba and Rosario), the high correlation
etween weather stations and their spatial location, we finally
ecided to calculate the reference temperature for Argentina as
he mean of TAVG_WS01 and TAVG_WS30. Table 3 shows, for
ach country, the selected stations and the weights used in the
verage to obtain the final reference temperature. Fig. 7 shows
he relationship between the daily demand and the reference
emperature for each country. As it can be seen, depending on the
6

range of temperature values, this relationship is very different.
For example, it is clearly non-linear for Argentina, Chile and
Uruguay.

Finally, note that in our pre-processing step of temperatures,
missing values have been filled by using a hierarchical regression
imputation process, based on the approach presented in [28].
First, single missing values are filled by linear interpolation with
the days before and after of the same TAVG time series. Second,
the remaining missing values are filled by means of a multiple lin-
ear regression using as inputs the temperatures of other weather
stations where there are values for the days to be filled.
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Fig. 6. Selection of the reference temperature for Argentina. Left: Dendrogram of the 37 weather stations of Fig. 5. The dissimilarity threshold has been set to 0.15,
resulting five clusters (colored). Right: Main weather stations for Argentina (TAVG_WS01 y TAVG_WS30).
Source: Extracted from [24] (Fig. 7, p. 13).
© 2021 Inter-American Development Bank (BID). Reprinted with permission of BID.

Fig. 7. Relationship, for each country, between the daily reference temperature and the real electricity demand. Data from 2020 has been removed to avoid the
COVID-19 period.

7
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Table 3
Selected weather stations for each country. The STATION_NAME is the name of the weather station according to
NOAA.
COUNTRY ID WEIGHT STATION_NAME

RDominicana TAVG_WS01 0.5 MARIA MONTEZ INTERNATIONAL DR
RDominicana TAVG_WS03 0.5 PUNTA CANA INTERNATIONAL DR

CostaRica TAVG_WS01 0.5 JUAN SANTAMARIA INTERNATIONAL CS
CostaRica TAVG_WS02 0.5 LIBERIA CS

Bolivia TAVG_WS06 0.33 EL ALTO INTERNATIONAL BL
Bolivia TAVG_WS07 0.33 EL TROMPILLO BL
Bolivia TAVG_WS24 0.33 VIRU VIRU INTERNATIONAL BL

Guatemala TAVG_WS01 1 SN._CRISTOBAL_LAS_CASAS_CHIS_MX

Argentina TAVG_WS01 0.5 AEROPARQUE JORGE NEWBERY AR
Argentina TAVG_WS30 0.5 MINISTRO PISTARINI AR

Brazil TAVG_WS05 0.24 CAMPINAS AEROPORTO BR
Brazil TAVG_WS12 0.24 GALEAO ANTONIO CARLOS JOBIM BR
Brazil TAVG_WS18 0.23 MACEIO AEROPORTO BR
Brazil TAVG_WS28 0.29 SAO PAULO AEROPORT BR

Uruguay TAVG_WS01 0.25 CARRASCO INTERNATIONAL UY
Uruguay TAVG_WS08 0.25 PRESIDENTE GENERAL DON OSCAR UY
Uruguay TAVG_WS09 0.25 ROCHA UY
Uruguay TAVG_WS10 0.25 SALTO UY

Peru TAVG_WS21 1 PISCO INTERNATIONAL PE

Mexico TAVG_WS10 0.5 CUERNAVACA MX
Mexico TAVG_WS25 0.5 MONCLOVA MX

Chile TAVG_WS01 0.83 ANTOFAGASTA CI
Chile TAVG_WS03 0.17 ARTURO MERINO BENITEZ INTERNATIONAL CI
d
t
i
r
t
m
b

3.3. Holidays and special events

It is well-known that electricity demand time series show
egular weekly patterns, usually modified when a public holiday
r a special event occurs (see e.g., public holidays marked in
ig. 4). Therefore, it is of utmost importance to correctly model
he calendar effects to obtain an accurate reference model [23].

Special events that have been considered in this study are
hose rare events that make the demand lower than what could
e expected according to temperature, public holidays, and calen-
ar. In particular, four types of special days have been considered
nd specific dummy variables have been created and labeled for
ach realization:

1. Significant national and regional holidays.
2. Relevant natural disasters that have influenced the de-

mand, such as catastrophes associated with tropical storms,
hurricanes, floods, earthquakes, etc.

3. Important atypical social events that have influenced the
demand, such as strikes, protests, riots, etc.

4. Other fortuitous events with a clear impact on demand,
such as power outages.

This information has been obtained from different sources. For
ublic holidays, the holiday calendars for each country have been
onsulted. The approach for obtaining the information has been
ifferent for natural disasters or atypical social events, based on
he fitted regression model. For each country, the residuals from
he daily demand model were analyzed, identifying those days
here the residual was negative and significatively large. Once
hese atypical periods were detected, a web search was carried
ut to determine the occurrence of a significant event on those
ates that could have affected the electricity consumption of the
articular country. Fig. 8 shows two examples, a power outage
ffecting one day and a strike impacting the electricity demand
uring two weeks.

. Proposed methodology for size impact

The size impact accounts for the observed variations on the
aily demand due to COVID-19. As aforementioned, to calculate
8

this impact during 2020, a good estimate of the daily demand that
should have existed without COVID-19 is required. In this sec-
tion, the models designed to obtain this daily reference demand
are described, as well as the particular size impact indicators
proposed to quantify the observed variations.

4.1. Reference models

The reference model for each country has been created from
the available data described in Section 3. In particular, a mul-
tiple regression model has been used to estimate the daily de-
mand from the available exogenous variables (temperature, cal-
endar, holidays, and special events). This model cannot capture
the COVID-19 effects because it is fitted using data before the
pandemic, providing the required reference to determine the
COVID-19 effect.

The proposed reference model has the same main terms for
all the LAC countries. It has been designed to capture the most
relevant features of the demand time series properly:

Dd = D̂d + εd = Td + Sd + Hd + Rd + εd, (2)

where Dd is the actual demand at day d, D̂d is the reference
emand and εd is the error term. The reference demand is ob-
ained as a sum of four terms: Td is the trend component, Sd
s the annual seasonal component, Hd is the term related to
egular weekdays, holidays and special events effects, and Rd is
he component related to the reference temperature effect. These
odel components are built using a set of basic variables that can
e grouped according to their nature (see Table 4):

• TIME, a continuous variable used to model the linear trend.
This variable interacts, when required, with a categorical
variable PIECE specifying different ranges of years in the
training set to model non-linear trends. To obtain the ref-
erence demand for 2020, the last linear section of the trend
component of the regression model has been extrapolated.

• MONTH, month of the year, included as a categorical vari-
able.
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Fig. 8. Examples of unusual demands, identified by analyzing the residuals of the fitted model. Top: In Argentina, an electricity blackout that lasted several hours
meant a 33% decrease in the demand expected for June 19th, 2019. Bottom: In Brazil, a truckers’ strike severely altered the demand for electricity between May
23rd and June 2nd, 2018, with a decrease of 81% over expected.
Source: Extracted from [24] (Fig. 13, p. 20).
© 2021 Inter-American Development Bank (BID). Reprinted with permission of BID.
Table 4
Specification, using Wilkinson notation, and number of coefficients estimated for the proposed reference models for
quantifying the size impact of COVID-19.
Country Model specification (Wilkinson notation) Number of Coeffs.

Peru DEMAND ∼1 + TIME*PIECE + RTAVG^2 *MONTH + DAYTYPE 88
Bolivia DEMAND ∼1 + TIME + RTAVG^2 *MONTH + DAYTYPE 106
CostaRica DEMAND ∼1 + TIME*PIECE + RTAVG^2 *MONTH + DAYTYPE 78
Brazil DEMAND ∼1 + TIME + RTAVG^2 *MONTH + DAYTYPE 89
Guatemala DEMAND ∼1 + TIME*PIECE + RTAVG^2 *MONTH + DAYTYPE 83
Mexico DEMAND ∼1 + TIME + RTAVG^2 *MONTH + DAYTYPE 77
RDominicana DEMAND ∼1 + TIME*PIECE + RTAVG^2 *MONTH + DAYTYPE 132
Argentina DEMAND ∼1 + TIME*PIECE + RTAVG^2 *MONTH + DAYTYPE 92
Chile DEMAND ∼1 + TIME + RTAVG^2 *MONTH + DAYTYPE 82
Uruguay DEMAND ∼1 + TIME + RTAVG^2 *MONTH + DAYTYPE 78
• RTAVG, the average reference temperature for that country.
All models use the interaction between MONTH and the
quadratic RTAVG to properly model the response of the
demand to the temperature.

• DAYTYPE, a categorical variable used to label each day with
a particular type. Most of the days are considered regular
and labeled with the day of the week. However, the sig-
nificant national and regional holidays have been labeled
with the name of the holiday. Furthermore, we have used
this variable also to label relevant natural disasters such as
storms, hurricanes, floods, earthquakes, important atypical
social events such as strikes or riots, and other fortuitous
events with a clear impact on demand, such as power out-
ages, observed from time to time in one of the demand
series studied.

Once the reference model has been fitted using ordinary least
quares, it can be extrapolated to 2020 to obtain the reference
emand for each day. Fig. 9 shows the estimated demand for
9

Peru, both during the training period and the extrapolation to
2020. The analysis of this figure allows us to determine that the
effect of the COVID-19 pandemic on electricity demand in Peru
started on March 16th, 2020, with a very significant decrease in
consumption.

4.2. Impact indicators

Once the reference daily demand for each country has been
estimated using the proposed reference model, it is possible to
compare the observed daily demand with the reference daily
demand to quantify the impact of the COVID-19 pandemic on the
electricity demand.

A set of simple impact indicators have been defined to facili-
tate the interpretation of the effect observed daily and to be able
to have a robust measure of what happened. In particular, the
size impact indicators are based on the daily residuals, i.e., the

differences between the observed demand and the estimated
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Fig. 9. Daily electricity demand for Peru.
one. These indicators are expressed as a percentage of variation
with respect to the reference demand estimated by means of the
regression model. Specifically, three size impact indicators have
been defined:

• Daily size impact index:

DId(%) =
100

(
Dd − D̂d

)
D̂d

. (3)

• Weekly size impact index:

WIw(%) =
100

∑
d∈w

(
Dd − D̂d

)∑
d∈w D̂d

. (4)

• Monthly size impact index:

MIm(%) =
100

∑
d∈m

(
Dd − D̂d

)∑
d∈m D̂d

. (5)

In the previous expressions Dd is the daily demand on day d,
and D̂d is the reference daily demand, estimated by the model.
The subscripts w and m indicate the week and the month, re-
spectively.

These indicators allow not only to quantify the impact ob-
served in a given country but also to compare the impact in
different countries as they are expressed as percentage values
referred to demand. In addition, they also allow, for example, to
determine in which month or months the impact has been more
significant.
10
Fig. 10 shows the impact indicators estimated for Peru, the
country with the most impacted electricity demand of the ten
countries analyzed. The daily size impact index provides highly
detailed information, complemented by the actual and estimated
weekly and monthly demands, as well as the monthly and weekly
impact indicators calculated in the period considered. As can be
seen, April 2020 is the most affected month, with a 32% decrease
in demand. On a weekly basis, the most significant impact is
observed in the fourth week of April, with an impact of -34%.
From that moment on, a gradual recovery in demand is observed,
but even so, in August 2020 the demand still had not recovered
the levels it would have had if the pandemic had not existed.

5. Proposed methodology for shape impact

The shape impact accounts for the observed variations on the
demand profile due to COVID-19. Following a similar approach to
the size impact, a good estimate of the hourly demand profile that
should have existed without COVID-19 is required to calculate the
impact during 2020. In this section, the models designed to obtain
this hourly reference are described, as well as the particular shape
impact indicators proposed.

5.1. Reference models

In order to study the impact on the shape of the consump-
tion, the normalized hourly demand time series for each country
is segmented into daily demand profiles, where each profile is
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Fig. 10. Impact of COVID-19 on the demand in Peru during 2020. Thanks to the estimated reference demand, it can be stated that the demand suffered a very sharp
ecrease as of March 16th, 2020, reaching the maximum impact in the month of April, with an impact of -32%, the highest of all the countries studied. In August
020, the demand had not yet recovered the expected values according to the reference demand.
ource: Extracted from [24] (Fig. 15, p. 23).
2021 Inter-American Development Bank (BID). Reprinted with permission of BID.
omposed of the 24 coefficients given by the percentage of the
emand of the day consumed in each hour. Therefore, a multivari-
te dataset is obtained with one sample per day and 24 demand
ariables, one for each hour. The objective is, therefore, to analyze
he time evolution of the 24 hourly demands simultaneously.

In order to analyze the daily demand profiles it is common
n the literature to represent the set of historical profiles reliably
ith a small number of reference profiles that need to be iden-
ified [27]. Therefore, the first step in the proposed methodology
onsists in applying a kmeans clustering algorithm to all historical
aily profiles up to 2020 to obtain representative profiles of pre-
OVID consumption. For each country, the number of clusters is
elected by accounting for the quantization error.
Fig. 11 shows the representative profiles of normalized de-

and obtained with the clustering model for each country. It
an be observed that the number of clusters needed to model
he demand profiles in each country is different. A common
ehavior stands out: a low demand in the early morning hours
hat increases throughout the morning. Then, a slight decrease
n the late afternoon to then have a peak consumption at night
nd finally go back down at the end of the day. Nevertheless,
he representative profiles obtained can vary significantly from
ne country to another. For example, comparing Guatemala with
hile, it can be seen that the difference between the maximum
nd minimum consumption of the day is much more pronounced
n Guatemala.
11
Table 5
Number of representative profiles obtained and the Cross-Validation accuracy of
the tree for each country.
Country Number of

clusters
Tree k-fold
CV - Accuracy

RDominicana 4 0.59
Costa Rica 5 0.82
Bolivia 4 0.85
Guatemala 6 0.87
Argentina 6 0.70
Brazil 7 0.84
Uruguay 6 0.63
Peru 6 0.87
Mexico 8 0.90
Chile 6 0.84

The next step is to develop a prediction model that estimates
the representative profile that should be activated each day of
2020. A decision tree is trained for estimating the historical
representative profiles associated to each day of the training
period (before 2020) using the weekday, the month and a holiday
variable as explanatory variables.

For training the different decision trees, it is critical the se-
lection of the length of the tree to avoid overfitting. 10-fold
Cross-Validation has been used to select the optimum length for
each country. Table 5 shows the number of representative profiles
obtained and the Cross-Validation accuracy of the tree.
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Fig. 11. Representative profiles of normalized demand obtained with the kmeans clustering model for each country.
Fig. 12. Illustration of the performance of the decision tree used to model the activation of the representative daily demand profiles for Brazil. The heatmaps
represent in each cell the cluster activated for each day. Rows are days of the week and columns represent weeks.
Fig. 12 shows an illustrative example of the methodology for
razil. On top, the representative profile associated to each day in
he training period is represented. Below, the tree estimated rep-
esentative profile is shown. As can be seen, the tree’s predictions
eflect the seasonal dynamics in the activation of the patterns and
he estimate for 2020 can be used as a reference to compare it
ith the actual observed profiles.

.2. Impact indicators

The representative profile forecasted by the decision tree for
020 is an estimate of the profile that would be expected in a
ituation where COVID-19 had not existed and, therefore, can
e used as a reference to compare it with the actual profiles
bserved in 2020.
Therefore, the profile estimated by the model can be compared

ith the actual profile observed. First, the differences between
he two profiles are calculated, which allows to measure how the
hape of demand has changed on that day.
12
Fig. 13 shows the calculation of the profile differences and the
two main proposed indicators that allows to visualize the impact:
the heat map of the differences and the shape impact index.

The heatmap of the differences illustrates how differences
between the estimated and the real profiles evolves over time. It
is a matrix where each column is a day and each row is an hour.
The color of each cell in the array depends on the value of the
observed hourly difference. Hours whose observed normalized
demand is less than the expected value are shown in blue. In
yellow–red, the hours whose observed normalized demand is
greater than the expected value. It is observed that, in the first
months, there are no major differences between the observed and
expected profile. However, since the beginning of confinements,
the differences change significantly. In the case of Brazil, there is
a reduction in demand during the central hours of the day and an
increase in the early morning and at night, starting at 7 p.m. It is
also observed that the impact is much more pronounced during
the beginning of confinement and is lessened as the months go
by.
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Fig. 13. Illustration of the calculation of the differences between the actual and estimated profile and calculation of the impact for Brazil. In the top-left figure, the
estimated profile (blue) and the actual profile (orange) are shown for one day. The top-right bar chart is displayed with the difference between the estimated and
the actual value. The middle figure represents the heat map of the differences in time. At the bottom, the daily shape impact index calculated. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Finally, to quantify the impact for a specific day, the proposed
shape impact index is defined as follows

• Daily shape impact index:

DIwd (%) =

∑
h∈d

|ŵd,h − wd,h|. (6)

Therefore, for each day, its impact index is the average of the
ifferences in absolute value of that day. Conceptually, this can
e interpreted as the average percentage change in an hour from
aily demand.
In addition, a weekly index is obtained that helps visualizing

he time evolution.
• Weekly shape impact index:

Iww(%) =

∑
d,h∈w

|ŵd,h − wd,h|. (7)

Analyzing the temporal evolution of the impact index allows
s to quantify how relevant the impact was during confinement
nd whether the differences have been reduced over the months.

. Results

Following the proposed decomposition approach, in this sec-
ion the main results on the impact of the COVID-19 pandemic
n the demand for the ten LAC countries studied are described.
13
.1. Size impact results

This section contains the main results on the impact of the
OVID-19 pandemic on the daily demand for the ten LAC coun-
ries studied. During 2020, according to the methodology used,
OVID-19 has impacted on the daily demand of all the countries
onsidered, but in a very different way. In the vast majority of
ountries the impact on daily demand begins to be observed in
id-March 2020, less in the case of Mexico, where the effect
egins to be significant on April 1st, 2020.
Fig. 14 shows the temporary evolution of daily demand in

020 for each country. For the LAC countries analyzed, a general
ecrease in daily demand is observed in 2020 with respect to
he reference demand. The months most affected were April
nd May, with an average decrease in demand of approximately
0%. The difference between the real demand and the estimated
ne, i.e. the daily size impact index, is shown in Fig. 15. It can
e observed that the greatest differences occurred in the first
onths of the onset of the pandemic, with Peru and Bolivia being

he most affected.
Table 6 summarizes the impact obtained for each LAC country.

mportant differences are observed in the maximum impacts,
ith Peru and Bolivia being the two countries where the reduc-
ion in demand during the onset of the COVID-19 pandemic has
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Fig. 14. Daily comparison for 2020 between the real demand (in black) and the reference demand estimated by the model. The reference demand is shown before
the start of the effect of the pandemic (in blue) and during the pandemic (in orange). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
been greater, in contrast to Chile and Uruguay, countries with a
lower size impact. According to the maximum monthly impact in
Table 6, the LAC countries can be grouped into three main groups.
The countries clearly most affected are Peru and Bolivia, with an
impact in April 2020 of around −30%. At the opposite extreme
would be Chile and Uruguay, with an approximate maximum
impact of −6%. The rest of the countries have maximum impacts
between −11% and -17%. Table 7 shows the monthly detail of the
impact of COVID-19 during the first months of 2020.

6.2. Shape impact results

This section shows the results of the methodology for estimat-
ing shape impact for each country. Firstly, a comparison is done
similar to other studies and is followed by a comparison of the
proposed shape impact methods.

Following the methodology in [3] or [5], the demand profiles
observed in 2020 are compared with the demand profiles ob-
served in former years. In this study, the first four weeks from
the start of confinement measures in each country are analyzed.
14
Fig. 16 shows for each type of day (Working days, Saturdays,
and Sundays), the average of the actual 2020 profiles in the four
weeks from the beginning of the confinements (orange curve) and
compared with the average of the real profiles in those same four
weeks in previous years (blue curve).

It is observed that, in general, the greatest changes are ob-
served on working days, while on weekends, especially Sundays,
no great differences are observed worth noting that confinement
has produced, in general, a horizontal shift of the consumption
profile in the early hours of the morning. That is, the beginning
of the rise in demand has been displaced a few hours during
the confinement. It is also interesting to highlight the case of
the Dominican Republic, where the consumption profile is very
different compared to the expected one.

In addition, Fig. 17 shows the detail of the differences between
the average profiles in the first 4 weeks of COVID-19 and those
same weeks in past years for the working days of each country.
These graphs reflect the essence of the impact that containment
measures have had in each country on the standardized demand

profile.
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Fig. 15. Differences between the reference demand estimated by the model and the real daily demand (see Fig. 14). Two periods are shown, before the start of the
effect of the pandemic (in blue) and during the pandemic (in orange). The mean of the daily residuals during the COVID-19 period are shown. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 6
Summary of the impact of COVID-19 during 2020 on the daily demand for each LAC country.
Country Start of

COVID-19
impact

Month of
maximum
size impact

Maximum
monthly
size impact

Week of
maximum
size impact

Maximum
weekly
size impact

Peru 16-Ma r-20 Apr-2020 −32.00% 4th Apr −34.00%
Bolivia 16-Mar-20 Apr-2020 −27.60% 3th Apr −29.40%
RDominicana 16-Mar-20 Apr-2020 −16.80% 4th Mar −21.90%
Mexico 01-Apr-20 May-20 −14.30% 3rd May −17.00%
Argentina 16-Mar-20 Apr-2020 −13.30% 4th Mar −15.20%
Costa Rica 16-Ma r-20 May-20 −12.50% 2nd May −13.50%
Brazil 23-Ma r-20 Apr-2020 −11.40% 3rd Apr −12.80%
Guatemala 16-Mar-20 May-20 −10.90% 4th Mar −14.70%
Chile 23-Mar-20 July-20 −6.30% 5th Jun −6.50%
Uruguay 16-Mar-20 Apr-2020 −5.80% 5th Mar −8.10%
While the former comparison is easy to interpret, it does not
how the temporal dynamics of the changes in the shape of
he demand. Therefore, the proposed shape impact methods are
ompared ahead.
15
Fig. 18 shows the heatmap of the differences obtained for each
country. The following conclusions can be drawn.

Before the start of confinements due to COVID-19, it is seen
that, in general, the heatmap has a greenish color, indicating that
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Table 7
Monthly summary of the impact of COVID-19 during the first months of 2020. For each country, the observed monthly demand, the reference demand estimated
with the regression model and the monthly size impact are shown.
Month Real demand (GWh)

Peru Bolivia CostaRica Brazil Guatemala Mexico RDomincana Argentina Chile Uruguay

mar-20 4054.4 814.4 984.0 49049.4 913.1 25854.3 1462.9 11139.4 6766.9 909.2
Apr-20 3089.2 598.2 887.5 40939.2 836.9 23496.7 1430.1 8534.1 6186.6 772.0
may-20 3393.5 618.6 877.5 41338.5 871.1 25459.7 1596.3 9613.8 6413.4 878.2
jun-20 3798.6 663.7 890.2 41165.8 842.5 27205.3 1728.8 10776.7 6418.6 971.4
jul −20 4181.9 698.2 901.1 43882.9 896.3 29320.9 1794.8 12179.5 2698.2 1088.8
Aug-20 2351.1 710.8 901.4 44989.9 926.7 6632.5 1776.6 10725.5 970.4
sep-20 708.2 438.8 1571.4 93.5 1684.3 207.8
oct-20 861.6

Month Estimated demand (GWh)

Peru Bolivia CostaRica Brazil Guatemala Mexico RDomincana Argentina Chile Uruguay

mar-20 4752.3 872.4 1012.0 50189.5 976.3 26724.2 1660.6 11454.2 6807.7 928.9
Apr-20 4546.2 826.1 971.5 46204.8 933.4 26813.8 1719.6 9849.4 6314.3 819.6
may-20 4676.6 805.0 1002.4 45548.6 977.7 29722.5 1839.5 10688.8 6659.6 905.1
jun-20 4528.0 782.2 948.9 43933.2 927.3 30046.8 1817.7 11527.4 6689.6 987.9
jul −20 4621.1 807.2 964.8 45164.6 973.1 30791.0 1894.9 12394.9 2879.5 1089.8
Aug-20 2535.2 815.0 965.0 45259.2 963.9 6988.5 1890.0 11203.9 993.6
sep-20 765.9 464.3 1580.6 96.8 1764.4 194.4
oct-20 917.8

Month Monthly size impact index (%)

Peru Bolivia CostaRica Brazil Guatemala Mexico RDomincana Argentina Chile Uruguay

mar-20 −14.7 −6.6 −2.8 −2.3 −6.5 −3.3 −11.9 −2.7 −0.6 −2.1
Apr-20 −32.0 −27.6 −8.6 −11.4 −10.3 −12.4 −16.8 −13.4 −2.0 −5.8
may-20 −27.4 −23.1 −12.5 −9.2 −10.9 −14.3 −13.2 −10.1 −3.7 −3.0
jun-20 −16.1 −15.2 −6.2 −6.3 −9.1 −9.5 −4.9 −6.5 −4.1 −1.7
jul −20 −9.5 −13.5 −6.6 −2.8 −7.9 −4.8 −5.3 −1.7 −6.3 −0.1
Aug-20 −7.3 −12.8 −6.6 −0.6 −3.9 −5.1 −6.0 −4.3 −2.3
sep-20 −7.5 −5.5 −0.6 −3.4 −4.5 6.9
oct-20 −6.1
the differences between the expected pattern and the actual pro-
file are not very large. However, when COVID-19 begins, areas in
dark blue (indicating a significant decrease in actual normalized
demand versus expected at those times) and areas with yellows
(indicating a significant increase in actual normalized demand
versus expected at those times) begin to appear.

In addition, it can be seen how each country’s reaction to
OVID-19 has had a very different impact on demand. In coun-
ries such as Brazil, the Dominican Republic, Bolivia, Mexico or
hile, significant decreases in demand were detected in the cen-
ral hours of the day, and increases in the early morning and af-
ernoon hours from 7 p.m. However, countries such as Guatemala
nd Bolivia had an evolution with more dynamic changes over
he months. Guatemala, for example, had a significant decrease
n hours 4 p.m. to 7 p.m. at the beginning, but the decline in the
atter can be seen gradually changing over the months ending in
decrease in demand in hours 9 p.m. to 11 p.m.
Fig. 19 shows the shape impact index on the daily profiles

ggregated on a weekly basis. In this way, it is possible to quantify
he weeks that had greater differences with respect to what was
xpected, and, in addition, it allows to see if a stability has been
chieved in the way of consuming electricity. It is observed that
he first weeks since the start of the measures are the ones that
ave had the highest impact rate. In countries like Peru, Brazil and
olivia the impact was very significant in the first few months,
owever, it has returned to pre-COVID levels. On the other hand,
ther countries, such as Chile, have not recovered.

. Discussion

COVID-19 has significantly affected electricity consumption
nder lockdown all over the world. For example, in the United
tates, average load reductions in the range of 8% to 10% have
een reported by the New York Independent System Opera-
or [29] and up to 5% by the California Independent System Oper-

tor [30]. The International Energy Agency (see [31]) reported an

16
electricity demand drop to Sunday levels under lockdown across
Europe and India and a reduction in China that reached 11% in
February 2020. In Europe, most of the countries have experienced
a negative cumulative impact of between 4% and 13% within the
four months following the start of the crisis (see [20]). In Spain,
from March 14th to April 30th, there has been a 13.49% reduction
in electricity consumption compared to the previous five years
(2019–2015), see [4].

The monthly size impacts estimated in this research for the
LAC countries are coherent with the previously reported effects
in different regions over the world, except for Peru and Bolivia,
where the impact during the onset of the COVID-19 pandemic
was notably more significant.

Countries declared quarantine measures at different times and
with varying levels of enforcement. The Peruvian government an-
nounced a general quarantine on March 16th, the effects of which
were visible a week later (see Fig. 15). In Bolivia, a quarantine was
declared on March 22th, with a significant impact vis-à-vis the
baseline scenario once the measures were taken and enforced.
In Chile, measures were taken locally, affecting only some re-
gions of the country and increasing in intensity over time as the
pandemic expanded. In that case, we can observe a progressive
increase of electricity demand shifting on the Shape Impact Index.
Conversely, in Uruguay, where no measures were imposed in the
period analyzed in this study, there are no significant changes in
the Shape Impact Index compared to the estimated counterfactual
demand, both before and after the pandemic’s start.

Countries with large electro-intensive industries were affected
more significantly by the adopted sanitary measures, as shown
in Figs. 15 and 19. This is the case of Peru and Bolivia, where
the mining sector accounts for 67.9% and 78.2% respectively of
their exports. However, even though Chile has similar mining
exports (54.4% in 2019), the change in electricity consumption
was not as abrupt as in Bolivia or Peru, according to the Economic
Complexity Observatory [32]. This is probably a consequence of
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Fig. 16. Analysis of profiles during the first four weeks from the start of confinement measures in each country. The average of the actual profiles in those 4 weeks
of 2020 by type of day (orange curve) is compared with the average of the actual profiles in those 4 weeks of previous years by type of day (blue curve). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
its gradual adoption of sanitary measures. When focusing on
Costa Rica, with a service sector covering 76% of its GDP according
to the Central bank of Costa Rica [33], a much more modest
impact is seen in comparison to the baseline scenario (see Fig. 15).

Consequently, a general trend is distinguished in all these
countries that links the composition of the country’s economy
and the rhythm in which the measures were imposed to the size
and shape of the impact on electricity demand.
17
8. Conclusions

The objective of this study has been the quantitative analysis
of the impact of the COVID-19 pandemic on the demand for
electricity in a group of ten countries in Latin America and the
Caribbean. In particular, it has analyzed how the pandemic has
influenced from its appearance until the fall of 2020.

To carry out this study, a particular methodology has been
used. The proposed approach, instead of analyzing directly the
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Fig. 17. Differences between the average profiles in the first 4 weeks of COVID-19 and those same weeks in past years for each country’s weekdays.
mpact of COVID-19 on hourly demand, considers decoupling
he effect in two terms. The size impact accounts for the ob-
erved variations on the daily demand time series, quantifying
he changes due to the alterations in human activity brought
n by the COVID-19 pandemic. The shape impact accounts for
he pandemic-induced changes in the standardized daily demand
rofile, i.e. on the variations observed on the demand profiles
or each day. Thus, both the size and the shape impacts show
ifferent aspects of the same concern, allowing a better under-
tanding by decoupling the problem. To calculate both impacts,
he observed demand is compared to the expected one if the
18
COVID-19 crisis had not happened. In this way, size and shape
impact indicators have be defined from the differences between
the observed demand and the reference one. To obtain a reli-
able estimation of the daily demand as well as the standardized
demand profile in the scenario without COVID-19, well-known
machine learning techniques have been used.

In all the countries studied, the daily demand for electricity
has experienced a reduction to a greater or lesser extent during
2020 compared to the values that would be reasonable to expect
if the COVID-19 pandemic had not occurred. To quantify the
observed impact for each LAC country, a multivariate regression
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Fig. 18. Heat maps of the differences for each country during 2020. The vertical red line marks the start of confinement in each country. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
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odel has been created to explain the daily behavior of the
emand based on input variables such as temperature or festivity.
his model, adjusted with data prior to the onset of the pandemic,
as allowed to generate an estimate of the expected daily de-
and for 2020, used as a reference to measure the decrease in
bserved demand. Peru and Bolivia are the two countries where
he pandemic has had the greatest impact during 2020, with an
mpact in April 2020 of around −30%. At the opposite extreme
ould be Chile and Uruguay, with a maximum monthly impact
f approximately −6%. The rest of the countries have maximum
onthly impacts between −11% and −17%.
On the other hand, the results of the analysis of the daily

emand profiles have allowed to study the impact of COVID-19
 o

19
n electricity consumption habits. To this end, an explanatory
odel has been created for each country that allows obtaining
n estimate of the expected demand profile for the whole of
020 if there had been no COVID-19. Comparing the expected
rofiles with the actual profiles, significant changes have been
bserved in the way electricity is consumed. Mainly, a shift in
he profile has been observed in the morning hours, between 7
nd 12, indicating that the start of electricity consumption in the
ountries has been delayed. In addition, this reduction in demand
n the morning produces an increase in demand in the afternoon
r evening hours.
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Fig. 19. Evolution of the weekly Shape Impact Index for each country.
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