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Abstract
Background Sarcopenia, the age-related, progressive loss of
skeletal muscle mass, strength, and function, is a considerable
socioeconomic burden by increasing risks of falls, fractures,
and frailty. Moreover, sarcopenic patients are often obese and
therapeutic options are very limited.
Methods Here, we assessed the efficacy of espindolol on
muscle mass in 19-month-old male Wistar Han rats (weight,
555±18 g), including safety issues. Rats were randomized to

treatment with 3 mg/kg/day espindolol (n =8) or placebo
(n =14) for 31 days.
Results Placebo-treated rats progressively lost body weight
(−15.5±7.2 g), lean mass (−1.5±4.2 g), and fat mass
(−15.6±2.7 g), while espindolol treatment increased body
weight (+8.0±6.1 g, p <0.05), particularly lean mass
(+43.4±3.5 g, p <0.001), and reduced fat mass further
(−38.6±3.4 g, p <0.001). Anabolic/catabolic signaling was
assessed in gastrocnemius muscle. Espindolol decreased pro-
teasome and caspase-3 proteolytic activities by approximately
50 % (all p <0.05). Western blotting showed a reduced ex-
pression of key catabolic regulators, including NFκB,
MuRF1, and LC-3 (all p <0.01). The 50- and 26-kDa forms
of myostatin were downregulated fivefold and 20-fold, re-
spectively (both p <0.001). Moreover, 4E-BP-1 was reduced
fivefold (p <0.01), while phospho-PI3Kwas upregulated five-
fold (p <0.001), although Akt expression and phosphorylation
were lower compared to placebo (all p <0.05). No regulation
of p38 and expression of ERK1/2 were observed, while phos-
phorylation of p38 was reduced (−54 %, p <0.001) and
ERK1/2 was increased (115 and 83 %, respectively, both
p <0.01). Espindolol did not affect cardiac function
(echocardiography) or clinical plasma parameters.
Conclusion Espindolol reversed the effects of aging/
sarcopenia, particularly loss of muscle mass and increased
fat mass. Thus, espindolol is an attractive candidate drug for
the treatment of sarcopenia patients.

Keywords Sarcopenia . Anabolic catabolic transforming
agent (ACTA) . Espindolol .Musclemass . Fat mass

1 Introduction

Sarcopenia is a condition associated with loss of skeletal
muscle mass and strength associated with aging [1]. A loss
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of 5 % of muscle mass per decade of life from the fourth
decade onwards, potentially increasing after the age of
65 years, has been described [2, 3]. From a histological
perspective, sarcopenia is characterized as a decrease in the
number and size of muscle fibers. The prevalence of
sarcopenia for those over 64 years of age has been shown to
be 22.6 % in women and 26.8 % in men, rising to 31.0 and
52.9 %, respectively, in those over 80 years of age [4]. Thus, it
can be estimated that over 3% of the world’s population will be
affected by sarcopenia by 2015. However, the exact mechanism
causing sarcopenia in only a subpopulation of elderly is unclear.

Moreover, most people suffering from sarcopenia show
signs of physical frailty and a slowing of movement [5, 6].
Furthermore, physical frailty is one of the commonest reasons
why most old people have to give up independent living.
Frailty also increases the prevalence of balance disorders,
falls, fractures, and pain and, therefore, significantly reduces
the quality of life [7, 8]. The sequelae that follow sarcopenia
were responsible for approximately $18.5 billion in direct
healthcare costs in the USA for the year 2000 alone [9]. With
an overall aging population in theWestern world, this figure is
likely to rise further. Thus, it represents a major economic,
social, and public health issue [10], but there are still no
treatment options registered, which makes the development
of novel medications imperative to reduce the great health and
economic burden of sarcopenia. Current therapy strategies
aim at preventing sarcopenia by exercise regiments, some-
times in combination with nutritional support [11] or the use
of hormonal replacement therapy [12].

In this study, the novel small-molecule anabolic catabolic
transforming agent (ACTA), espindolol, was used to treat
19-month-old rats over a period of 31 days. Espindolol is
a nonspecific β-1 and β-2 adrenergic receptor blocker
with intrinsic sympathomimetic activity (ISA) on the β-2
adrenergic receptor. In addition to its β-blocking and ISA
activity, espindolol is a highly potent antagonist of 5-
HT1A receptors and binds to 5-HT1A receptors in the
brain [13]. In the context of sarcopenia, we hypothesized
that espindolol treatment would lead to a reduction of
catabolic/atrophic signaling caused by blocking the chronic
activation of the β-1 adrenergic receptor, while inducing
anabolic signaling by the ISA effect on the β-2 adrenergic
receptor. We also analyzed cardiac function to ensure that
espindolol had no negative effects on the heart.

2 Methods

2.1 Animals

Male Wistar Han rats (Charles River), aged 19 months, were
kept under standard laboratory conditions in an SPF facility.
Rats were randomized to treatment with placebo (sterilized

water; n =14) or 3 mg/kg/day espindolol (dissolved in steril-
ized water; n =8) and treated for 31 days. Animals were
housed in groups of three. Espindolol or placebo was admin-
istered per gavage (0.1 mL/100 g) once daily for 31 days. All
phenotyping data were recorded before the start of treatment
and at the end of the study. All procedures were approved by
local animal ethics committees, and all personnel were blinded
to treatment allocation.

2.2 Body composition

Body composition (fat and lean bodymass) was analyzedwith
an NMR spectroscopy device EchoMRI-700TM (Echo Med-
ical Systems, Houston, TX, USA) once weekly as previously
described [14].

2.3 Quality of life indicators

Animals were housed individually, and spontaneous move-
ment was recorded by an infrared monitoring system
(Supermex, Muromachi, Tokyo, Japan) over a 24-h period
as previously described [15]. Individual food and water intake
was monitored during that period.

2.4 Echocardiography

Echocardiography using the high-resolution Vevo770 system
(Visual Sonics, Toronto, Canada) was performed as previous-
ly described [16]. Briefly, rats were anesthetized with 1.5 %
isoflurane, laid in a supine position on a heated surface to
maintain body temperature, and hair was removed from the
left chest. Recordings were made in B-mode and M-mode to
calculate functional parameters and measure cardiac function
and dimensions.

2.5 Clinical chemistry parameters in plasma

At the end of the study, plasma levels of uric acid, urea,
cholesterol (total, high-density lipoprotein (HDL), and low-
density lipoprotein (LDL)), triglycerides, albumin, glutamic
oxaloacetic transaminase (GOT), glutamic pyruvic transaminase
(GPT), creatinine kinase, creatinine, potassium, and sodium
were measured by a validated laboratory (Labor28, Berlin,
Germany).

2.6 Proteasome activity

Proteasome activity was analyzed as previously described
[17]. Briefly, the gastrocnemius muscle was homogenized in
ice-cold lysis buffer (10 mMTris pH 7,5, 1 mM EDTA, 2 mM
ATP, 20 % glycerin, and 4 mM dithiothreitol [DTT]), sonicat-
ed, and centrifuged at 13,000×g for 15min. Forty micrograms
protein was incubated with the fluorogenic substrates
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(benzyloxycarbonyl-Leu-Leu-Glu-7-amido-4-methylcoumarin
[Z-LLE-AMC] for trypsin-like activity, succinyl-Leu-Leu-Val-
Tyr-7-amido-4-methylcoumarin [LLVY-AMC] for
chymotrypsin-like activity or benzoyl-Val-Gly-Arg-7-
amidocoumarin [Bz-VGR-AMC] for peptidyl-glutamyl
protein-hydrolyzing activity, Biomol, Hamburg, Germany).
The change in fluorescence intensity was measured at 37 °C
in 5 min intervals for 30 min. The activity, expressed as
nanomoles per milligram protein per minute, was calculated
by free AMC as working standard.

2.7 Caspase activity

Caspase-3 activity was analyzed as previously described
[18]. Briefly, the gastrocnemius muscle was homoge-
nized in ice-cold lysis buffer. The homogenate was fro-
zen on dry ice/ethanol and heated to 37 °C for three
cycles. After centrifugation (20,000×g for 30 min),
100 μg protein was used for caspase-3 activity measure-
ment. The samples were preincubated in assay buffer
(100 mM HEPES pH 7.5, 10 % sucrose, 0.1 % CHAPS,
2 % DMSO, and 10 mM DTT) with or without 50 μM
caspase-3 inhibitor Ac-DEVD-CHO at 37 °C for 30 min.
The caspase-3 specific fluorogenic substrate (50 μM)
Ac-DEVD-AMC was added, and the change in fluores-
cence intensity was recorded. Assay conditions were
identical to the proteasome assay.

2.8 Western blotting

Protein lysates were prepared from the gastrocnemius muscle
according to standard protocols. Tissue from 13 placebo-
treated and eight espindolol-treated (3 mg/kg/day) rats were
used and 25 μg protein lysate was loaded per lane. We used
primary antibodies against FOXO3a (2497), pFOXO3a
(9466), MuRF-1 (4305), Akt (9272), pAkt (Ser473; 4051),
pAkt (Thr308; 9275), 4E-BP1 (53H11; 9644), p4E-BP1 (Thr
37/47; 9459), p4E-BP1 (Ser65; 9451), and pPI3K p85
(Tyr458)/p55 (Tyr 199; 4228), all from Cell Signaling, Bev-
erly, MA, USA; myostatin (AF788; R&D Systems, Minneap-
olis, MN, USA), LC-3 (NEB100-2220; Novus Biologicals,
Littleton, CO, USA), and GAPDH (G9545; Sigma-Aldrich,
St. Louis, MO, USA), as well as appropriate secondary anti-
bodies. Immunoblots were developed using chemilumines-
cent detection with CDP-Star Reagent (NewEngland BioLabs
Inc., Ipswich, MA, USA). Signal intensities were quantified
with ImageJ software.

2.9 Statistics

Data were analyzed using GraphPad PRISM 5.0 (GraphPad
Software, Inc., La Jolla, CA, USA). Results are shown as the
mean±SEM. All data were tested for normal distribution

using the D’Agostino and Pearson omnibus normality test.
Between-group comparisonwas performed for data showing a
normal distribution using Student’s t test; data showing a
skewed distribution were analyzed using the Mann–Whitney
U test. A paired test was used for comparison of baseline and
end of study data. All statistical tests were two sided, and
a p value <0.05 was considered significant.

3 Results

3.1 Body weight and body composition

Baseline body weight and body composition (fat and lean
mass) were similar in both groups (all p >0.2; Supplemental
Table 1). At the end of the study, bodyweight was increased in
espindolol-treated animals, while it decreased in the placebo
group (p <0.05; Fig. 1a, b). However, the observed effect on
overall body weight was small, a gain of 1.5±1.2 %
(espindolol) vs a loss of 1.8±0.9 % (placebo, p <0.05;
Fig. 1c). In contrast, the change in body composition was
profound, lean body mass progressively increased in the
espindolol group, while a small, but progressive loss of lean
mass was observed in the placebo group (p <0.001; Fig. 1d,
e). Both groups lost fat mass during the study, with a more
pronounced loss of fat mass in the espindolol-treated group
(p <0.001; Fig. 1g, h). Lean body mass increased by 12.7±
0.9 % in the espindolol group vs baseline (p <0.001), while
the placebo group lost 0.3±1.0 % (Fig. 1f). Fat mass de-
creased by 29.0±1.8 % in the espindolol group vs 13.0±
3.0 % in the placebo group (p <0.01 vs placebo; Fig. 1i).

A similar increase in lean mass was also observed in
individual skeletal muscles after necropsy. The weight of the
tibialis, gastrocnemius, and extensor digitorum longus (EDL)
was higher (all p <0.05), while the soleus weight was un-
changed (Tables 1 and 2). To assure that the increased muscle
weight was not due to edema, the tibialis was dried at 60 °C
for 48 h. Dry mass was significantly higher in the treated
group compared to placebo (p <0.05; Table 2), whereas
the percentage of dry mass and water content was un-
changed between the groups (Table 2). The effects seem
to be muscle specific as the weight of the liver, the heart,
and the kidney was similar in both groups (Table 1).
However, a nonsignificant reduction of epididymal fat
was seen in espindolol-treated rats (white adipose tissue;
Table 1), which is in accordance with the changes in
overall body fat mass.

3.2 Activity and food intake

Baseline food intake, water consumption, and activity were
similar in both groups (Supplemental Table 1). Treatment with
espindolol increased food intake compared to baseline and
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placebo (both p <0.05; Fig. 2a–c), but had no significant
effect on water consumption (Fig. 2d–f). Placebo-treated
rats showed no significant differences in food intake and
water consumption compared to baseline (Fig. 2a–f).
Spontaneous locomotor activity was somewhat decreased
in both groups, independent of treatment allocation
(Fig. 2g–i).

3.3 Cardiac function and clinical blood parameters

Cardiac function and clinical blood parameters were assessed
to ensure tolerability of espindolol therapy. Baseline echocar-
diography showed no differences between the two groups (all
p >0.2; Supplemental Table 2). Treatment with espindolol had
no detectable hypertrophic effect on the heart (Table 1) during

Fig. 1 Effect of espindolol
treatment on body weight and
body composition. Absolute
change in body weight (a , b),
lean body mass (d , e), and fat
mass (g , h) and relative change
(c , f , i , respectively) during the
study. While placebo-treated rats
lost weight, lean mass, and fat
mass, espindolol-treated animals
gained weight, increased lean
mass, and lost more fat mass.
Black bar placebo, gray bars
3 mg/kg/day espindolol.
*p <0.05, **p<0.01,
***p <0.001. Placebo: n =14,
espindolol: n =8

Table 1 Tissue and organ weight at the end of the study

Gastrocnemius [mg] Soleus [mg] EDL [mg] Liver [g] Kidney, left [g] Heart [mg] WAT [g]

Placebo 2,283±78 181±11 200±9 13.68±0.74 1.34±0.06 1,315±45 6.5±0.7

3 mg/kg/day espindolol 2,914±133** 173±9 236±5* 13.98±0.76 1.48±0.06 1,383±56 4.8±0.7

WAT white adipose tissue

*p <0.05, **p<0.01
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the study period as cardiac function and heart geometry did
not differ between the espindolol-treated group and the place-
bo group (Table 3). Lipids, albumin, liver enzymes, creatinine
kinase, creatinine, electrolytes, urea, potassium, and sodium
were similar in both groups, with the exception of a signifi-
cantly lower triglyceride content in the plasma of espindolol-
treated rats (Table 4).

3.4 Catabolic signaling is downregulated in the gastrocnemius
muscle

The negative regulator of muscle growth, myostatin, was
downregulated in both the preform and the mature protein

(both p <0.01; Fig. 3a, b). The marker for autophagy, LC-3,
was downregulated in both forms as well (both p <0.0001;
Fig. 3c, d), while the LC-1/LC-II ratio was increased in the
espindolol group (p <0.05; Fig. 3e). Espindolol treatment did
not reduce the expression of FoxO3 (p =0.15) and NFκB
significantly (p <0.01) in muscle (Fig. 3f, g), which drive
the expression of key E3 ligases of the ubiquitin proteasome
pathway. Indeed, MuRF-1 (p <0.01) was downregulated
(Fig. 3h), while the effect onMAFbx expression did not reach
significance (Fig. 3i). As a result, a reduced proteasomal
protein degradation activity was observed (all p <0.05;
Fig. 3j–l). Moreover, a reduction of caspase-3 activity was
observed (p <0.05; Fig. 3m).

Table 2 Wet and dry weight of the tibialis

Tibialis wet [mg] Tibialis dry [mg] Water content [mg] Dry mass [%] Water content [%]

Placebo 818±33 227±9 591±27 27.9±0.8 72.1±0.8

3 mg/kg/day espindolol 1,015±40** 276±13* 739±28** 27.1±0.5 72.9±0.5

Weight increase by treatment is due to a true gain in mass and not caused by edema

*p <0.05, **p<0.01

Fig. 2 Spontaneous activity (a),
food intake (b), and water intake
(c) over 24 h on day 28. Activity
was not affected by treatment,
while food and water intake were
increased by espindolol. Black
bar placebo, gray bars: 3 mg/kg/
day espindolol. *p <0.05,
**p <0.01. Placebo n =14,
espindolol n=8
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3.5 Anabolic signaling in the gastrocnemius muscle

The effect of espindolol treatment on anabolic signaling is
somewhat less clear.While the phosphorylation and activation
of PI3K was increased fivefold (p <0.001; Fig. 4a), its down-
stream target Akt showed a reduced overall expression as well
as decreased phosphorylation and activation (all p <0.05;
Fig. 4b–d). The expression of the negative regulator of protein
synthesis, 4E-EP1, was reduced fivefold (p <0.01; Fig. 4e).
4E-BP1 is inactivated by phosphorylation and, while the
Ser65 site was similarly phosphorylated (Fig. 4f), the Thr37
and Thr47 sites were less phosphorylated compared to
placebo-treated animals (p <0.001; Fig. 4g). The muscle-
specific transcription factor MyoD, which is involved in the

expression of sarcomeric proteins, was not regulated by
espindolol (Fig. 4h). The expression of p38 mitogen-
activated protein kinase (MAPK) and p42/44 extracellular
signal-regulated kinase (ERK1/2) was not significantly differ-
ent in espindolol-treated animals (Fig. 5a, c, e). However, the
phosphorylation and activation of p38 MAPK was decreased
(p <0.001; Fig. 5b), while it was increased for ERK1/2 (both
p <0.01; Fig. 5d, f).

4 Discussion

Sarcopenia is a multifactorial disease that is characterized by
an age-related extensive remodeling of skeletal muscle and a
loss of muscle fibers, which contributes to loss of muscle
strength and, ultimately, frailty [19]. Sarcopenia does not
necessarily lead to a net loss of body weight because lipids
are deposited within the muscle fibers [12] and fat tissue,
especially intra-abdominal fat is increased [20].

The main finding of our study is that espindolol given at a
daily dose of 3 mg/kg/day to 19-month-old rats increased
muscle mass, while decreasing fat mass at the same time,
hence reversing the effects of sarcopenia/aging. So far, the
treatment of sarcopenia has been challenging and is mostly
concentrated on prevention by exercise with or without nutri-
tional support and the use of anabolic medication, like testos-
terone, estrogens, growth hormone, and angiotensin-
converting enzyme inhibition [21, 22].

Myostatin has been implicated in several wasting condi-
tions including sarcopenia and cachexia [23, 24]. In contrast, a
recent study reported no change in myostatin expression and
its interacting proteins in sarcopenic elderly men compared to
young men [25]. However, inhibition of myostatin has been
shown to improve muscle mass in aging mice [26] and in mice
with cancer cachexia [27]. Treatment of aged rats with
espindolol reduced the expression of myostatin in skeletal
muscle, which may have contributed to the increase in muscle
mass observed in this study. This may have been mediated by
the ISA effect on the β-2 adrenoreceptor, as its activation by
formoterol has been shown to reduce myostatin expression
[28]. Also, further catabolic mechanisms were inhibited by
espindolol. Proteasomal protein degradation was reduced,
which was consistent with a reduced expression of the E3
ubiquitin ligases MAFbx and MuRF-1, as well as FoxO3 and
NFκB. An upregulation of MAFbx and MuRF-1has been
described in muscle of old rats [29] and elderly women [30].
A crucial involvement of the ubiquitin proteasome system in
the loss of muscle mass has been described [11]. In our study,
the activity of caspase-3, an inducer of apoptosis, was lower in
treated rats. An upregulation of caspase activity and apoptosis
was described in old rats [31] and in a single human study,
comparing biopsies from young and elderly persons [32]. The
marker of autophagy, LC-3, was also downregulated by

Table 4 Clinical blood parameters were similar in both groups at the end
of the study

Placebo (n =14) 3 mg/kg/day
espindolol (n =8)

Total cholesterol [mg/dL] 82.6±4.8 84.8±6.1

HDL [mg/dL] 55.5±2.9 59.3±3.8

LDL [mg/dL] 7.4±0.9 7.1±0.9

Triglycerides [mg/dL] 94.3±10.4 59.4±4.7*

Albumin [g/L] 9.6±0.2 10.1±0.2

GOT 135.4±18.3 148.0±17.6

GPT 59.2±12.3 69.0±8.9

Creatinine kinase [U/L] 983±233 1,502±439

Creatinine [mg/dL] 0.32±0.01 0.32±0.01

Potassium [mmol/L] 6.4±0.5 5.8±0.4

Sodium [mmol/L] 185.7±6.6 173.4±3.8

Urea [mg/dL] 29.9±1.6 32.6±0.7

*p <0.05

Table 3 Cardiac dimensions and function were similar at the end of the
study, indicating that espindolol is a well-tolerated drug

Placebo (n =14) 3 mg/kg/day
espindolol (n =8)

LVEF [%] 82±1 82±1

LVFS [%] 47±1 50±2

LVEDD [mm] 8.2±0.2 8.2±0.2

LVESD [mm] 4.3±0.2 4.1±0.2

LVEDV [μL) 433±11 443±11

LVESV [μL] 78±3 81±5

LVSV [μL] 355±11 363±11

HR [bpm] 339±4 348±10

CO [mL/min] 209±38 237±41

Septum thickness d [mm] 1.46±0.06 1.55±0.08

Septum thickness s [mm] 3.01±0.11 3.18±0.12
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espindolol, as its expression is partly driven by FoxO3 [33].
Overall, espindolol targeted several wasting mechanisms si-
multaneously, which allowed a rapid gain of muscle mass of
12.7±0.9 % in just 4 weeks. At the same time, rats lost fat
mass. This might have reduced the expression of pro-
inflammatory cytokines, which have been shown to be
expressed and released from visceral fat [34]. These cytokines
can cause a low-level chronic inflammation including oxida-
tive stress, which in turn contributes to the activation of
protein degradation in muscle and the development of insulin
resistance [35].

The gain of muscle mass was observed in the fast twitch
EDL and the mixed fiber type muscle gastrocnemius and
tibialis, but not in the slow twitch soleus. Even without a
detailed histological analysis, this suggests a possible buildup
of fast twitch type II or mixed fibers by espindolol. In
sarcopenia, type II fibers are lost or transformed into slow

twitch type I fibers, resulting in a loss of muscle power
necessary for everyday living [19].

While a robust induction of PI3K phosphorylation by
espindolol was seen, its downstream target Akt was reduced
and less phosphorylated. Low levels of phospho-Akt suggest
a reduced protein expression/translation because they would
lead to a reduced phosphorylation of mTOR and mTORs’
subsequent target 4E-BP1. 4E-BP1 is a negative regulator of
protein expression and is inactivated by phosphorylation [36].
Interestingly, espindolol reduced the expression of 4E-BP1 by
fivefold, which may reduce its inhibitory action of protein
synthesis. Also, the ratio of 4E-BP-1 phosphorylation was
increased for the Ser65 site, again suggesting a more permis-
sive state for translation. Moreover, ERK1/2 MAPK phos-
phorylation was increased by espindolol. ERK1/2 are impor-
tant regulators of gene transcription via activation of nuclear
transcription factors and have been associated with

Fig. 3 Catabolic signaling in the gastrocnemius muscle. Expression is
shown as relative to the mean of placebo. Expression of the atrophy
driving transcription factors FoxO3a (a) and NFκB (b) were lower in
espindolol-treated rats, resulting in a reduced expression of the E3 ubiq-
uitin ligases MuRF-1 (c) and MAFbx (d). This led to a reduced activity
of the proteasome (e–g). Moreover, the activity of caspase-3 was lowered

by treatment (h). Both the preform (i) and themature form (j) of myostatin
were strongly reduced, as well as the autophagy marker LC-3 (k , l). Black
bar placebo, gray bars 3 mg/kg/day espindolol. PGPH peptidyl-glutamyl
protein-hydrolyzing. *p<0.05, **p<0.01, ***p<0.001. All proteins: pla-
cebo n=13, espindolol n=8
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Fig. 4 Anabolic signaling in the gastrocnemius muscle. Expression is
shown as relative to the mean of placebo. Increased phosphorylation of
PI3K (a) by espindolol did not result in higher phosphorylation of Akt
(b–d ). However, the inhibitor of protein synthesis 4E-BP1 was

downregulated (e–g) and MyoD was unchanged (h). Black bar placebo,
gray bars: 3 mg/kg/day espindolol. *p<0.05, **p <0.01, ***p <0.001.
All proteins: placebo n =13, espindolol n =8

Fig. 5 Expression and phosphorylation of p38 MAPK and p42/44
ERK1/2. Expression is shown as relative to the mean of placebo.
Espindolol reduced activation of p38 MAPK (a , b), while it increased

activation of p42 (c , d) and p44 (e , f). Black bar placebo, gray bars
3 mg/kg/day espindolol. **p <0.01, ***p<0.001. All proteins: placebo
n =13, espindolol n =8
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adaptations in skeletal muscle during exercise training [37].
Therefore, upregulation of ERK1/2 phosphorylation by
espindolol is likely enhancing muscle-specific gene expres-
sion. While the p38 MAPK has been implicated in the pro-
motion of early myogenesis and seems to be important for
myotube formation [38], it decreases the expression of
muscle-specific genes by inhibition of MRF4 in terminal
myogenic differentiation [39]. An upregulation of p38 phos-
phorylation was described in branchial muscles of aged rats,
suggesting reduced muscle-specific gene expression [40].
Espindolol treatment reduced p38 phosphorylation, which
likely contributed to the increased muscle mass seen in our
study.

The present study also addressed drug safety issues. While
an increase of skeletal muscle mass is obviously the aim of
any sarcopenia study, hypertrophy of the heart must be
prevented. Cardiac hypertrophy very often progresses to di-
lated cardiomyopathy and congestive heart failure at a later
stage [41]. Heart rate reduction is considered an important
feature ofβ-blockers in cardiovascular indications [42]. How-
ever, in sarcopenia, this is primarily an unwanted attribute, as
the heart rate is not elevated per se. Importantly, treatment
with espindolol had no effect on heart rate, which is likely due
to the ISA effect of espindolol. A weaker response on heart
rate reduction has been described for several β-blockers with
ISA, and this is considered to be a disadvantage post infarction
or in patients with heart failure [42]. Moreover, differences in
heart rate regulation by β-blockers, ranging from lowering to
increasing the heart rate, have been described in a pig migraine
model [43]. In our model, espindolol also had no effect on
heart weight, cardiac dimensions, or cardiac function and,
therefore, appears well tolerated from a cardiological stand-
point. Furthermore, no effect on metabolic markers such as
cholesterol, liver enzymes, electrolytes, creatinine, urea, and
albumin was seen by espindolol treatment, suggesting that
espindolol is a well-tolerated drug to prevent or treat
sarcopenia.

The main limitations of this study are the missing histology
and muscle strength measurements, which leaves us to only
speculate on fiber type composition/switching of the skeletal
muscle. However, the gain in muscle mass, as assessed by
total lean body mass, muscle wet weight, and muscle dry
weight, does point to a strong anabolic effect of espindolol
and implicates a possibly improvedmuscle function. Based on
the rat data shown here, espindolol can be considered a well-
tolerated and effective option to prevent or treat age-related
sarcopenia and clinical trials using espindolol seem merited.
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