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Abstract

Motivation: Cells process information, in part, through transcription factor (TF) networks, which

control the rates at which individual genes produce their products. A TF network map is a graph

that indicates which TFs bind and directly regulate each gene. Previous work has described net-

work mapping algorithms that rely exclusively on gene expression data and ‘integrative’ algo-

rithms that exploit a wide range of data sources including chromatin immunoprecipitation

sequencing (ChIP-seq) of many TFs, genome-wide chromatin marks, and binding specificities for

many TFs determined in vitro. However, such resources are available only for a few major model

systems and cannot be easily replicated for new organisms or cell types.

Results: We present NetProphet 2.0, a ‘data light’ algorithm for TF network mapping, and show

that it is more accurate at identifying direct targets of TFs than other, similarly data light algorithms.

In particular, it improves on the accuracy of NetProphet 1.0, which used only gene expression data,

by exploiting three principles. First, combining multiple approaches to network mapping from

expression data can improve accuracy relative to the constituent approaches. Second, TFs with

similar DNA binding domains bind similar sets of target genes. Third, even a noisy, preliminary

network map can be used to infer DNA binding specificities from promoter sequences and these

inferred specificities can be used to further improve the accuracy of the network map.

Availability and implementation: Source code and comprehensive documentation are freely avail-

able at https://github.com/yiming-kang/NetProphet_2.0.

Contact: brent@wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A TF network map is a directed graph comprising nodes that repre-

sent genes and the proteins they encode and edges that link the TFs

to their direct, functional targets. Developing effective methods for

mapping TF networks genome-wide is a long-standing goal in gen-

omics (Harbison et al., 2004; Hu et al., 2007) and computational

biology (Faith et al., 2007; Margolin et al., 2006); see (Brent, 2016)

for a recent review. TF network maps encode basic knowledge about

the biochemical functions of molecules, much like metabolic

network maps. They are thus a key part the encyclopedic knowledge

that enables research and development. In addition, a TF network

map is an essential input to at least two downstream applications.

The first is TF activity inference. A TF network map links TFs with

the target genes that they have the potential to bind and regulate,

given the right circumstances, external signals, or developmental

context. TF activity inference uses such a map to quantitatively

model how much influence each TF is exerting on each target in a

given context (Boorsma et al., 2008; Boulesteix and Strimmer,
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2005; Kao et al., 2004; Tran et al., 2005). Unlike ordinary regres-

sion of target RNA levels against TF RNA levels, this approach

treats TF activity levels as latent variables that are not necessarily

proportional to TF RNA levels. A second application is transcrip-

tome engineering, in which the goal is to modify the transcriptional

regulatory network of a cell in a way that drives it into an expression

state associated with some desirable behavior (Michael et al., 2016).

The most common application of transcriptome engineering to date

has been aimed at driving mammalian cells of one type (e.g. stem

cells) into the transcriptional state associated with another cell type

(e.g. liver cells) (Cahan et al., 2014; D’Alessio et al., 2015;

Heinaniemi et al., 2013; Rackham et al., 2016).

Previous approaches to TF network mapping can be loosely cate-

gorized into those that rely exclusively on gene expression data (‘ex-

pression only’) and those that integrate a wide range of data types,

including chromatin immunoprecipitation sequencing (ChIP-seq) of

many TFs, genome-wide chromatin marks, and binding specificities

for many TFs determined in vitro (‘integrative’). The data required

for integrative approaches are available only for major model sys-

tems, principally Saccharomyces cerevisiae (yeast), Drosophila mel-

anogaster (fly) (Marbach et al., 2012b) and the mammalian cell

lines that have been the focus of the ENCODE project (Brent,

2016). Such resources are unlikely to become available soon for

most other organisms and cell types. Even for fly and mammalian

cell lines only a small fraction of the TFs encoded in the genome

have been successfully subjected to ChIP-seq. Furthermore, most of

the genes whose regulatory regions are bound by a TF show no evi-

dence of being functionally regulated by that TF (Cusanovich et al.,

2014; Gitter et al., 2009).

Gene expression data, by contrast, can be obtained from low

cost, reliable and easily scalable experiments. Expression-only

approaches to network inference have had notable successes on bac-

terial networks (Faith et al., 2007; Ghanbari et al., 2015; Greenfield

et al., 2010; Haury et al., 2012; Huynh-Thu et al., 2010; Lam et al.,

2016). More recently the NetProphet algorithm, which directly

compares expression profiles from TF-knockout strains and wild-

type strains, has been shown to give good results on single-cell eu-

karyotes (Brent, 2016; Haynes et al., 2013). There is evidence to

suggest that when NetProphet is applied to yeast (Saccharomyces

cerevisiae) it identifies bound genes more accurately than existing

yeast ChIP-chip data (Haynes et al., 2013). Unlike ChIP-chip,

however, all of the targets NetProphet identifies for a TF are func-

tionally regulated by that TF. However, the accuracy of this ap-

proach on animal networks, which are much more complex than

that of yeast, has never been demonstrated.

Here, we report on a second-generation ‘data light’ TF-network

mapping algorithm called NetProphet 2.0. Our approach requires

only data that can be generated from low-cost, reliable and easily

scalable experimental methods. NetProphet 2.0 relies on three fun-

damental ideas. First, combining several expression-based network

algorithms that use different types of models can yield better results

than using either one alone—the ‘wisdom of the crowds’ idea

(Marbach et al., 2012a). Second, TFs with similar DNA binding do-

mains (in terms of amino acid sequence) tend to bind similar sets of

target genes. Third, even an imperfect network map can be used to

infer models of each TF’s DNA binding preferences from the

promoter sequences of its putative targets and these models can be

used to further refine the network. We describe the modules of

NetProphet 2.0, show that each module contributes to its overall ac-

curacy on both yeast and fly, and show that its overall accuracy im-

proves on that of earlier data light methods, which rely only on gene

expression data.

2 Results

2.1 Overview of analysis steps in NetProphet 2.0
NetProphet 2.0 comprises six computational modules (Fig. 1), five

of which take advantage of information obtained from gene expres-

sion profiling or genome sequencing. The output of each module is a

map, represented as a score matrix with rows corresponding to TFs

and columns corresponding to all genes, each of which is a potential

target. The score vector (row) for a TF represents the strength of evi-

dence that the TF regulates each potential target gene. A discrete

graph structure can always be constructed by including only edges

whose scores exceed a chosen threshold.

Module A (Fig. 1a) is NetProphet 1.0, as previously described

(Haynes et al., 2013). It constructs a map from gene expression pro-

files and performs best when the data include expression profiles of

single TF perturbation strains. Module B (Fig. 1b) constructs an in-

dependent network map from the same gene expression data by

using a machine learning algorithm called Bayesian Additive

Fig. 1. Overview of the NetProphet 2.0 pipeline. Database icons: input data sources. Rectangles: computational modules. Circles: network maps
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Regression Trees (BART) (Chipman et al., 2010). For each gene,

Module B trains a separate BART model to predict the RNA level of

that gene as a function of the RNA levels of all TFs. It then simulates

the effect of varying each TF’s RNA level on the predicted RNA

level of the target, holding the levels of all other TFs constant. Each

TF’s level is varied between its minimum and maximum observed

levels. The difference between the two predicted target gene expres-

sion levels is used as the score of the TF-target pair. Intuitively, the

more a gene is predicted to change as a result of changing the level

of a TF, the more likely it is to be a direct target of that TF.

Although Module B (BART) and Module A (NetProphet 1.0) use

the same gene expression data, they do so in very different ways.

NetProphet 1.0 relies primarily on the direct comparison of a gene’s

expression after genetic perturbation of a TF to its expression in un-

perturbed, wild-type cells. Secondarily, it uses sparse linear regres-

sion of each gene’s RNA level against the RNA levels of the TFs.

BART does not explicitly compare expression of a gene before and

after an experimental TF perturbation. Instead, it uses a non-linear,

non-parametric regression model based on random forests to predict

the effects of a TF perturbation on the expression of a gene.

Module C (Fig. 1c) capitalizes on the fact that TFs with similar

DNA binding domains (DBDs) tend to bind similar sets of target

genes (Weirauch et al., 2014). It replaces the score matrix row for

each TF by a weighted average of rows for other TFs with similar

DBDs. Each row is weighted according to how similar the DBD of

its TF is to the DBD of the row being replaced (see Methods &

Supplementary Fig. S1). The predicted amino acid sequence of the

DBD can be obtained from automated annotation of the genome se-

quence. The outputs of modules A and B are independently passed

through Module C. They are then combined into a single score ma-

trix by Module D (Fig. 1d), which uses quantile normalization to

make the score distributions of the two networks comparable (see

Methods).

Modules E and F (Fig. 1e, f) make use of the target genes’ pro-

moter sequences to further refine the network map. Module E infers

the DNA-binding specificity (motif) of each TF by identifying motifs

whose presence in a promoter best distinguishes high scoring (likely)

target genes from low scoring (unlikely) target genes (see Methods).

Module F scans the inferred motif for each TF over the promoters of

all genes and computes a score reflecting the strength of evidence

that the TF binds the promoter. If no significant motif is found for a

TF then its score vector remains unchanged after Module F. The re-

sulting score matrix is then combined with the input score matrix by

using module D again. In a final step, the combined matrix is passed

through module C again.

In the following sections, we evaluate the contribution of each

successive module to the overall accuracy of NetProphet 2.0.

Finally, we compare the accuracy of the complete system to that of

some previous systems for mapping TF networks from gene expres-

sion data.

2.2 Input data and benchmarking standards
We collected input data and benchmarking data for both yeast and

fly. The gene expression data we used as inputs came from two sour-

ces. The first is a recently published yeast dataset, which contains

1487 samples including 265 TF knockout strains and 1219 knockouts

of non-TF-encoding genes (Kemmeren et al., 2014). The second is a

fly dataset, which contains 200 samples including 23 TF knockdown

lines and 84 knockdowns of non-TF-encoding genes (Bonke et al.,

2013). To evaluate the accuracy of the inferred network maps, we

compared them to both ChIP-based binding data and motif-based

binding potential. However, we do not assume that either of these

networks is the correct network we are aiming to learn. Indeed, we

know that most genes whose promoters are bound by a TF according

to ChIP data show no evidence of being functionally regulated by that

TF (Cusanovich et al., 2014; Gitter et al., 2009). However, a TF’s dir-

ect, functional targets are likely to be a subset of the genes whose pro-

moters are bound by that TF. In other words, binding is necessary,

but not sufficient, for direct regulation. Because our predicted targets

are based on evidence of functional regulation from gene expression

data, those predicted targets that are also bound by the TF are likely

to be its direct, functional targets.

For each species, we constructed two benchmark networks whose

edges connect TFs to the genes whose promoters they bind (but do

not necessarily regulate). The first is based on ChIP-chip/seq data,

which assesses the physical binding locations of the TFs. For yeast, we

compiled ChIP data from TNET (Babu et al., 2004) and

YEASTRACT (Abdulrehman et al., 2011), which contains �30 000

interactions for 184 TFs. For fly, we compiled ChIP data from FlyNet

(Marbach et al., 2012b) and seven other ChIP-chip/seq studies, which

together contain�180 000 interactions for 82 TFs. The second bench-

mark is a motif network constructed by scoring the promoters using

position weight matrix (PWM) models of the DNA binding specificity

of each TF. These models are derived from protein binding microarray

(PBM) data collected in UNIPROBE database (Gordân et al., 2011;

Robasky and Bulyk, 2011), which are completely independent of both

gene expression and ChIP experiments. PWM models are available

for 150 yeast TFs and 98 fruit fly TFs.

2.3 Exploiting similarity between DNA binding domains

improves accuracy
Previously, we showed that NetProphet 1.0 (Module A) performed

well on yeast by using an older gene expression dataset (Hu et al.,

2007). Here, our first step is to determine its accuracy on a new

yeast dataset and on the fruit fly. We evaluated the percentage of the

top ranked edges that were supported by the ChIP network (Fig. 2A,

C) or by the known-PWM network (Fig. 2B, D). In all cases, the pre-

dicted networks scored much better than randomly generated net-

works (gray shading), except for the PWM evaluation of the fly

network when the number of predicted targets exceeded �25 per TF

encoded in the genome (24 225 total). The Kemmeren yeast dataset

yielded better results than those previously obtained using the

smaller Hu dataset (Supplementary Fig. S2). Module C (weighted

averaging) improved the evaluations against ChIP data except that it

was neutral for large fly networks (Fig. 2). It slightly hurt the PWM

evaluation of the smaller yeast networks, but it was otherwise

neutral.

2.4 NetProphet 1.0 works on the fly network
Comparing the results for yeast and fly, it is apparent that the fly

networks received slightly more support than the yeast network

from ChIP data but less support from PWM data. In fact, the

PWM support for fly networks with more than 25 edges per TF

encoded in the genome does not significantly exceed the support

for random networks. That is probably because the number of fly

expression profiles in which a single TF has been knocked down

represents 10-fold fewer TFs than for yeast (23 versus 265) and the

number of expression profiles from non-TF knockdowns is also

much smaller (84 versus 1219). The number of known fly PWMs

against which to evaluate is also smaller (98 versus 150). Another

difference is that the yeast ChIP network was supported by PWM

evidence at the same rate as the similar-sized networks predicted
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by NetProphet 1.0. The fly ChIP network, by contrast, was sup-

ported at a much higher rate than similar-sized networks predicted

by NetProphet 1.0. That may be the result of the smaller expres-

sion dataset for fly and because the fly ChIP data are more recent

than the yeast data, so the ChIP methodology may have matured in

the interim.

2.5 Combining with Bayesian Additive Regression

Trees improves accuracy
Module B uses Bayesian Additive Regression Trees (BART), which

provides an alternative approach to making use of the gene expression

data. As weighted averaging (Module C) improved the accuracy of

the NetProphet 1.0 output, we applied it to the BART output (Fig. 1,

Network 2), which it also improved (Supplementary Fig. S3). Finally,

we tried combining the two resulting networks (Fig. 1, Network 3).

The effects of processing through these modules on accuracy are

shown in Figure 3. NetProphet 1.0 with weighted averaging (Modules

A & C, green) generally performed better than BART with weighted

averaging (Modules B & C, cyan), except that BART significantly

outperformed in PWM support on yeast (Fig. 3B). Remarkably, com-

bining the two networks (Modules A-D) performed as well as the bet-

ter of the two on the yeast ChIP and PWM metrics (Fig. 3A, B) and

significantly better than either network on fly (Fig. 3C, D). This is

consistent with the previously reported ‘Wisdom of Crowds’ effect in

TF network mapping (Marbach et al., 2012a).

2.6 Inferring TF binding preferences from promoter

sequence improves accuracy
We hypothesized that knowing the DNA binding specificities of the

TFs would enable us to improve on the accuracy of the maps output

by Modules A–D. To test that hypothesis, we scanned the known

yeast and fly PWMs across the promoter sequences of all genes in

the genome, producing a binding potential score for each TF at each

promoter (see Methods). This score matrix was then combined with

the score matrix output by Modules A–D (Fig. 1, Network 3) by

using Module D again. The resulting maps were evaluated as before

(Fig. 4, purple dashed lines). For the evaluation by PWM support,

using known PWMs constitutes ‘peeking’ at the evaluation standard,

so it would have been worrisome if performance had not improved.

For the evaluation by ChIP support, using known PWMs provided a

small but consistent accuracy improvement, except for mid-sized fly

networks, where it had no effect. The fact that this helped the yeast

results more than the fly results is not surprising, since the promoter

regions in yeast are much smaller and a much higher fraction of

yeast TFs have known PWMs (46.9% versus 10.1%).

The known PWMs used above were obtained from protein bind-

ing microarray experiments. However, we hypothesized that we

could infer PWMs using only gene expression and genome sequence

data, thereby avoiding the need for additional experiments. Thus,

we applied the FIRE motif inference algorithm (Elemento et al.,

2007) to the score vector of each TF after Modules A–D. FIRE at-

tempts to find a motif whose presence in a promoter best discrimin-

ates between high and low scoring target genes. We then used the

inferred motifs to score the promoter of each gene just as we had

with the known PWMs. These scores were combined with the out-

put of Modules A-D, except that the scores for TFs for which FIRE

could not identify a high confidence motif were left unchanged. The

resulting accuracy improvement (Fig. 4, blue line) was approxi-

mately half of that obtained from the known motifs. Importantly,

this approach does not require any additional experiments, making

it suitable for application to non-model systems.

Next, we directly compared the motifs inferred by Module E to

the known motifs. For each TF with a known PWM, we calculated

Fig. 3. (A) Accuracy of NetProphet 1.0 on yeast after weighted averaging

(Modules A & C, green line), BART after weighted averaging (Modules B & C,

cyan line) and the combination of the two (Modules A–D, orange line).

Horizontal axis: number of top ranked edges included in the network per TF

encoded in the genome. Vertical axis: Percentage of included edges that are

supported by ChIP data. Dotted line: Expected accuracy of random networks.

Gray area: 95% confidence interval for random networks. (B) Same as A for

PWM support. The point labeled ‘ChIP network’ indicates the number of ChIP-

supported edges and the fraction of those edges that also have PWM support.

(C) Same as A for the fly data. (D) Same as B for the fly data, except that the

vertical axis shows support by conserved PWM hits only

Fig. 2. (A) Accuracy of NetProphet 1.0 on yeast before weighted averaging

(black line) or after weighted averaging (green line). Horizontal axis: number

of top ranked edges included in the network per TF encoded in the genome.

E.g. since there are 320 TFs in the yeast genome, ‘10’ on the horizontal axis

corresponds to a network with 3200 edges. Vertical axis: percentage of edges

supported by ChIP data. Dotted line: expected accuracy of random networks.

Gray area: 95% confidence interval for randomly selected networks. (B) Same

as A for PWM support. The point labeled ‘ChIP network’ indicates the number

of ChIP-supported edges and the fraction of those edges that also have PWM

support. (C) Same as A for the fly data. (D) Same as B for the fly data, except

that the vertical axis shows support by conserved PWM hits only
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the Spearman correlation between the scores assigned to each pro-

moter by the inferred and known PWMs (Fig. 5, blue bars). As a

randomized baseline distribution, we calculated the median of the

correlations between each inferred PWM and all other known

PWMs (Fig. 5, orange bars). For yeast, 37.9% of the inferred PWMs

correlated with the corresponding known PWMs at levels signifi-

cantly above the baseline distribution. In the fly data, the baseline

distribution showed much higher correlations than in the yeast data.

This is probably because 42% of all known fly PWMs belong to the

Homeodomain family, whose members share a preference for bind-

ing motifs containing ATTA (Hughes, 2011). Additionally, there

were only 2 fly TFs whose inferred PWM scores had a correlation of

>0.5 with their known PWM score (as compared to 25 in yeast).

This may reflect the larger size of the fly promoters, the smaller

amount of gene expression data available for fly, and/or a greater

tendency for gene regulation in the fly to be determined by combina-

torial logic, rather than by independently active binding sites.

Although few of the inferred fly PWMs showed a statistically signifi-

cant degree of similarity with their known counterparts, the use of

the PWM inference module results in a small but noticeable increase

in overall accuracy.

2.7 NetProphet 2.0 improves on previous network

mapping methods
For several years, algorithms for mapping TF networks from gene ex-

pression data were compared in a series of community evaluation pro-

jects known as DREAM [Dialog on Reverse-Engineering Assessment

and Methods; (Marbach et al., 2012a)]. In a previous publication, we

compared NetProphet 1.0 to several of the best performing algorithms

from DREAM on a set of yeast expression profiles (Haynes et al.,

2013). The comparison algorithms were Inferelator (Greenfield et al.,

2010) and GENIE3 (Huynh-Thu et al., 2010). Here, we compare

NetProphet 2.0 to those same algorithms plus two others: CLR (Faith

et al., 2007) and TIGRESS (Haury et al., 2012), on a new set of yeast

expression profiles and a set of fly expression profiles. We also com-

pare to Aracne (Margolin et al., 2006) on the fly data; in our hands,

Aracne could not be run on the 1487 yeast samples. We also compare

to using the squared Spearman correlation coefficient between the ex-

pression of each TF and each target gene as the TF-target score, the

method used in the FlyNet paper (Marbach et al., 2012b).

To evaluate NetProphet and the six other algorithms, we ran

them all on the same sets of expression profiles used throughout this

paper and selected the top scoring interactions from the output of

each algorithm. The number of top scoring interactions selected was

ten per TF encoded in the genome—i.e. 3200 for yeast and 9690 for

fly. It is important to note that NetProphet 2.0 requires an anno-

tated genome sequence as input, whereas the other algorithms use

only the gene expression data. Therefore, we are not evaluating al-

gorithms designed for exactly the same tasks. However, they can all

be viewed as special cases of algorithms designed to infer direct,

functional TF networks from data that can be produced by low-

cost, reliable, scalable methods.

The results of the comparison showed that NetProphet 2.0 was

more accurate than the other algorithms as evaluated by the yeast

ChIP benchmark and by the fly ChIP and PWM benchmarks

(Fig. 6). GENIE3 was slightly more accurate than NetProphet 2.0

on the yeast PWM benchmark. When comparing predictions to

known interactions that are supported by both ChIP and PWM

data, NetProphet 2.0 was substantially more accurate than all of the

comparison algorithms. This is significant because ChIP hits that co-

incide with PWM hits are more likely to be functional than those

Fig. 5. Relationships between inferred and known PWMs. Blue bars: distribu-

tion of rank order correlations between binding potential scores assigned to

each promoter by inferred PWMs and known PWMs. Orange bars: distribu-

tion of the medians of rank order correlations between each inferred PWM

and the known PWMs for all other TFs. (A) Yeast. (B) Fruit fly

Fig. 6. Comparison between NetProphet 2.0 and other leading expression-

based mapping algorithms. (A) Yeast. (B) Fruit fly

Fig. 4. (A) Accuracy of Modules A–D [Combination of NetProphet 1.0 and

BART after weighted averaging (orange line)], Modules A–D with known

yeast PWM motifs (dashed purple line) and Modules A–F (NetProphet 2.0).

Horizontal axis: number of top ranked edges included in the network per TF

encoded in the genome. Vertical axis: Percentage of included edges that are

supported by ChIP data. Dotted line: Expected accuracy of random networks.

Gray area: 95% confidence interval for random networks. (B) Same as A for

PWM support. The point labeled ‘ChIP network’ indicates the number of ChIP-

supported edges and the fraction of those edges that also have PWM support.

(C) Same as A for the fly data. (D) Same as B for the fly data, except that the

vertical axis shows support by conserved PWM hits only
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that do not (Cusanovich et al., 2014; Van Nostrand and Kim,

2013).

3 Materials and methods

3.1 Download and preparation of datasets
See Supplementary Material.

3.2 Evaluation
3.2.1 ChIP support

We used the ChIP benchmarks to assess the mapping accuracy of

our algorithm. These network maps are binary matrices in which

ones represent positive ChIP interactions. Based on a certain strin-

gency level, the top L interactions predicted by NetProphet 2.0 mod-

ules were evaluated against ChIP interactions. The mapping

accuracy, termed as ChIP support rate, is the fraction of these pre-

dicted top interactions supported by ChIP evidence. The network

size is based on all predicted edges above a given stringency, while

the ChIP support rate is based on the edges whose TFs have ChIP

data. We evaluated the accuracies of the mapped networks of differ-

ent sizes as we varied the stringency levels.

3.2.2 PWM support

The PWM score matrix for yeast was binarized using a threshold for

each TF. The threshold was the greatest binding potential score that

was exceeded by at least 10% of the ChIP-supported interactions of

that TF. We calculated the PWM-support rates using this binary ma-

trix, just as we did for the ChIP binary matrix.

3.3 Weighted averaging
3.3.1 Calculation of weighting function & threshold

We used a four-step process to characterize the relationship between

the similarities of DBDs and the similarities of known PWMs. First,

for each yeast TF, we obtained the sequences of any DBDs found

within it as well as the PWM associated with it from the CIS-BP

data base (Weirauch et al., 2014). We then aligned the DBDs of

each TF to the DBDs of each other TF by using Clustal Omega

(v1.2.1) (Sievers et al., 2014) and used the percent identity (PID) to

quantify the similarity between the two DBDs. If there were multiple

DBDs within a TF all pairs of DBDs were aligned and the largest

percent identity was used. Second, we aligned the PWM of each TF

to that of each other TF by using Tomtom (v4.9.1) (Gupta et al.,

2007) and used the E value output from Tomtom as a measure of

the similarity between the two PWMs. Third, for the TF pairs whose

DBD similarity scores fall in a certain range, we calculated the frac-

tion of the corresponding PWM pairs that are similar (Tomtom E

value<1). Finally, we fit a logistic function to model the relation-

ship between the percent identities of DBDs and the fraction of sig-

nificantly similar PWMs:

wðdÞ ¼ 0:9

1þ e�0:1ðd�40Þ (1)

where d is the percent identity of a pair of DBDs (Supplementary

Fig. S1). The fraction of similar PWMs can also be seen as the prob-

ability of a pair of TFs at a given DBD-similarity level binding to

similar DNA sequences.

3.3.2 Use of weighting function

To implement Module C, we calculated the PID between each pair

of DBDs to predict the probability that the DBDs bind significantly

similar sequences, according to the logistic model. For each TF i,

this probability was used as a weighting factor for each other TF

with PID >¼50%; for TFs with PID<50%, the weighting was 0.

Row i was then replaced by the weighted sum of all rows:

S0 i ¼
X

k

w dk;i

� �
Sk (2)

where S
0
i is the updated row of edge scores of TF i to all genes, dk;i is

the percent identity score between the DBD’s of TF k and TF i, and

w(�) is the weighting factor calculated using the logistic function.

3.4 Bayesian Additive Regression Trees
We used the BART model trained for each target gene to predict the

effects of varying each TF’s level on the level of the target gene.

Specifically, we varied the RNA level of each TF between its min-

imum and maximum observed levels while keeping the levels of

other TFs constant. The edge score of TF i to target j in the BART

network map is the difference between the predicted level of target j

in the two simulations, one with TF i at its maximum observed level

and the other with TF i at its minimum observed level. BART pack-

age implemented in R was used [v0.3-1.3, https://cran.r-project.org/

package¼BayesTree (Chipman et al., 2010)].

3.5 Quantile combination of network maps
Since the network maps output by various modules have different

score distributions, we used quantile normalization (Module D) to

combine score matrices. One matrix is designated as the reference

and the other as the auxiliary. The scores in the auxiliary matrix are

modified to have the same distribution as the reference matrix be-

fore averaging with the corresponding entries of the reference ma-

trix. Formally, if Sref
i;j is the score for TF i as a regulator of gene j in

the reference matrix and Saux
i;j is the score for TF i as a regulator of

gene j in the auxiliary matrix:

Si;j ¼
1

2
Sref

i;j þ F�1
ref Faux Saux

i;j

� �� �� �
(3)

where Fref and Faux are the empirical cumulative distribution func-

tions of the reference and auxiliary matrices, respectively. For com-

bining the NetProphet-derived (Fig. 1, Network 1) and BART-

derived (Fig. 1, Network 2) matrices, the former is designated as the

reference. This approach was chosen over other quantile normaliza-

tion methods empirically, because it gave better results.

3.6 PWM inference and promoter scoring
3.6.1 PWM inference

Module E uses an algorithm called FIRE (Elemento et al., 2007) to

infer a motif for each TF based on its score vector and the promoter

sequences of all genes. For each TF, Module E divides the range of

target scores into 20 bins, each spanning 1/20th of the range. For

each gene, the bin number corresponding to its score as a target of

the TF is input to FIRE, along with the sequence of its promoter re-

gion. We used 7 as the k-mer seed size, 20/20 as the robustness

threshold, and default parameters for other criteria. If more than

one motif passed the criteria for a TF, we only considered the best

one, according to FIRE.

3.6.2 Promoter scoring

Semantically, the motifs output by FIRE are patterns specifying

which nucleotides are possible at each position of a binding site.

However, these can be converted to PWMs by assigning each of the

possible nucleotides at each position the same probability and as-

signing each impossible nucleotide probability zero. For example, if
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the motif specified is {A, T}{G}{G, C, T}, A or T in the first position

would have probability 1/2, G in the second position would have

probability 1, and G, C or T in the third position would have prob-

ability 1/3. With this interpretation, Module F uses the FIMO pro-

gram (Grant et al., 2011) to score the binding potentials by scanning

the inferred motifs over the promoters. The TF-promoter binding

potential was calculated as the maximum of two scores: (1) the log

odds of the most significant binding site, (2) the sum of log odds of

all significant (P<0.05) binding sites. Subsequently, we used

Module D again to combine this binding potential matrix (the auxil-

iary matrix; Fig. 1, Network 4) with the input to Module E (the ref-

erence matrix; Fig. 1, Network 3). The rows of TFs for which we

could not infer a motif were left unchanged.

3.7 Other algorithms to which NetProphet 2.0 is

compared
3.7.1 TIGRESS

Trustful Inference of Gene REgulation using Stability Selection

(TIGRESS) uses stability selection to sample the expression data and

scores the TF-target interaction as the frequency of each TF being

chosen in LARS for each target gene (Haury et al., 2012). We used

its MATLAB implementation (v2.1) downloaded from http://cbio.

mines-paristech.fr/�ahaury/svn/dream5/html/index.html. We modi-

fied the code so that the TFs could be indexed at any position in the

comprehensive gene list.

3.7.2 CLR

Context likelihood of relatedness (CLR) estimates the likelihood of

the mutual information (MI) by contrasting the MI calculated using

the RNA levels of each TF-target pair across all samples with the

null model, given the local network context (Faith et al., 2007). We

used minet (v3.30.0, R/Bioconductor package) downloaded from

https://www.bioconductor.org/packages/release/bioc/html/minet.

html to build MI matrix and infer CLR network.

3.7.3 Inferelator pipeline

The Inferelator pipeline in DREAM4 (Greenfield et al., 2010) is a

mixture model that consists of median corrected Z-score, mutual in-

formation (CLR) and LASSO regression coefficient (Inferelator 1.0).

The source code was downloaded from

https://github.com/smidget/Network-Inference-Workspace/tree/

master/algorithms/inferelator-pipeline. We wrote a script to pipeline

Inferelator modules according to the provided pseudo-code.

3.7.4 GENIE3

GEne Network Inference with Ensemble of trees (GENIE3) uses ran-

dom forests that estimate how much the expression level of each TF

contributes to explaining the level of each target gene (Huynh-Thu

et al., 2010). We used the Python implementation downloaded from

http://www.montefiore.ulg.ac.be/�huynh-thu/software.html.

3.7.5 ARACNE

ARACNE (Algorithm for Reconstruction of Accurate Cellular

Networks) is an approach based on mutual information and the

data processing inequality (Margolin et al., 2006). We downloaded

ARACNE from http://califano.c2b2.columbia.edu/aracne/.

4 Discussion

NetProphet 2.0 is designed around the principle of using only data

that can be obtained with robust, predictable and scalable experi-

mental methods. Specifically, it requires only gene expression data

after TF perturbation and genome sequence with automated annota-

tion. It makes use of three fundamental ideas. First, combining the

results of distinct approaches to mapping networks from gene ex-

pression data can significantly improve accuracy (Marbach et al.,

2012a). Second, similar DNA binding domains bind similar sets of

promoters (Weirauch et al., 2014). Third, even a noisy, imperfect

network can be used to infer useful binding motifs from promoter

sequences. By combining these three ideas, NetProphet 2.0 signifi-

cantly outperforms NetProphet 1.0 and a range of other expression-

based algorithms, as assessed by measured binding locations and by

binding potentials. The fraction of predicted interactions that are

supported by both ChIP and PWM substantially exceeds that of the

other algorithms tested (Fig. 6).

There are many possible ways to implement the ideas behind

NetProphet 2.0. For example, there are other non-parametric regres-

sion algorithms that could substitute for or supplement BART. Fused

regression (Lam et al., 2016) is a possible alternative to our weighted

averaging approach for exploiting the similarities between DNA bind-

ing domains. There are also many software packages for inferring TF

binding motifs, which could be substituted for FIRE. Implementations

using these alternative components, which are beyond the scope of

this paper, have the potential to improve accuracy in the future.

NetProphet’s ‘data light’ approach stands in contrast to the ‘inte-

grative’ approach, which has also been applied to mapping the fly

TF network (Marbach et al., 2012b). In that study, a network was

constructed by using all available data sources, including the same

TF-ChIP and PWM datasets that we used only for validation.

Because these two data sources were used as inputs, they could not

also be used for validation of the integrative network. As a result, it

is not possible to directly compare the accuracy of the two

approaches on genome-scale networks. The integrative model also

used ChIP of a wide range of chromatin marks as input. Thus,

applying it to a new organism or cell type would require a data gen-

eration effort beyond what can currently be done in a single lab.

Integrative network construction is feasible for a few model systems

that have been targeted for exhaustive data generation by large con-

sortia. When the integrative approach is feasible, NetProphet 2.0

can be used to process the available gene expression data in place of

methods such as the Spearman correlation of expression profiles

(Marbach et al., 2012b). In addition, NetProphet 2.0 can integrate

binding specificity models determined by methods such as yeast one

hybrid (Fuxman Bass et al., 2016), high throughput SELEX (Jolma

et al., 2013) and protein binding microarrays (Weirauch et al.,

2014), for any TFs for which they are available. An interesting inter-

mediate between data-light and integrative approaches would be

to combine NetProphet 2.0 with TF binding locations that are

predicted from TF binding specificity, conservation and cell-type

specific DNA accessibility data, but not requiring ChIP-seq of indi-

vidual TFs (Cuellar-Partida et al., 2012; Zhong et al., 2013). There

has also been recent progress in formal frameworks for integration of

prior knowledge into expression-based network mapping (Ghanbari

et al., 2015; Lam et al., 2016).

TF-target interactions predicted by NetProphet 2.0 are sup-

ported by binding potential (PWMs derived from protein-binding

microarray experiments) at a significantly higher rate than the inter-

actions predicted by existing yeast ChIP-chip data (Fig. 4B). The

ChIP-seq data on the fly genome are much more recent than the

NetProphet 2.0 255

http://cbio.mines-paristech.fr/~ahaury/svn/dream5/html/index.html
http://cbio.mines-paristech.fr/~ahaury/svn/dream5/html/index.html
http://cbio.mines-paristech.fr/~ahaury/svn/dream5/html/index.html
https://www.bioconductor.org/packages/release/bioc/html/minet.html
https://www.bioconductor.org/packages/release/bioc/html/minet.html
https://github.com/smidget/Network-Inference-Workspace/tree/master/algorithms/inferelator-pipeline
https://github.com/smidget/Network-Inference-Workspace/tree/master/algorithms/inferelator-pipeline
http://www.montefiore.ulg.ac.be/~huynh-thu/software.html
http://www.montefiore.ulg.ac.be/~huynh-thu/software.html
http://califano.c2b2.columbia.edu/aracne/


yeast data (Clough et al., 2014; Georlette et al., 2007; Hadzic et al.,

2015; Ikmi et al., 2014; Liu et al., 2009; Marbach et al., 2012b;

Page et al., 2005; Teleman et al., 2008). When networks of similar

size (number of targets per TF) are compared, the fly ChIP edges are

supported by PWMs at a slightly higher rate than the NetProphet

2.0 predictions (Fig. 4D). However, the NetProphet 2.0 edges that

score among the top 14 535 (�15 targets per TF) are supported by

strong binding potential at a rate comparable to those of the larger

ChIP network. For practical purposes, it is also important to keep in

mind that the ChIP data come at a much higher cost than the

NetProphet 2.0 predictions, take much longer to generate, and are

plagued by the uncertain success of individual ChIP-seq experi-

ments. Furthermore, existing evidence suggests that only a very

small fraction of ChIP-supported interactions are functional, in the

sense that the expression of the gene whose promoter is bound

changes when the TF is perturbed [typically<10% (Cusanovich

et al., 2014; Gitter et al., 2009); reviewed in Brent (2016)]. Since

NetProphet 2.0 is primarily an expression-based method, all its pre-

dictions are supported by expression data and hence are likely to be

functional. Thus, NetProphet 2.0 provides an attractive alternative

to TF ChIP, especially for experimental systems that are unlikely to

benefit from an ENCODE-style undertaking to systematically ChIP

a large number of TFs.

NetProphet 2.0 is the first algorithm that has been shown to be

effective on an animal genome without requiring any data beyond

gene expression after TF perturbations and genome sequence. While

the steps from bacteria to yeast and yeast to fly were significant

(Haynes et al., 2013; Marbach et al., 2012b), the step from a com-

pact invertebrate genome such as that of the fly to mammalian gen-

omes will also be challenging. The primary challenges include

limited data availability, large, poorly defined promoters, and long-

range enhancers. The data limitation will probably be removed over

the next few years, now that CAS9 has made deleting TFs in mam-

malian systems much easier. The problem of defining enhancers and

identifying their target genes may also be alleviated before long.

One source of data that will likely prove useful is the expression of

enhancer RNAs, which can highlight active enhancers and the genes

whose expression correlates with enhancer activity (Andersson

et al., 2014; Core et al., 2008; Danko et al., 2015). Data on three-

dimensional chromosome conformation from rapidly improving,

sequencing based methods will also prove useful. We expect that

these new data sources will make it possible to test, validate and

apply NetProphet 2.0 to mammalian systems in the near future.
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