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OBJECTIVE—We tested the hypotheses that human brain
glycogen is mobilized during hypoglycemia and its content
increases above normal levels (“supercompensates”) after
hypoglycemia.

RESEARCH DESIGN AND METHODS—We utilized in vivo
13C nuclear magnetic resonance spectroscopy in conjunction
with intravenous infusions of [13C]glucose in healthy volunteers
to measure brain glycogen metabolism during and after euglyce-
mic and hypoglycemic clamps.

RESULTS—After an overnight intravenous infusion of 99%
enriched [1-13C]glucose to prelabel glycogen, the rate of label
wash-out from [1-13C]glycogen was higher (0.12 � 0.05 vs. 0.03 �
0.06 �mol � g�1 � h�1, means � SD, P � 0.02, n � 5) during a 2-h
hyperinsulinemic-hypoglycemic clamp (glucose concentration
57.2 � 9.7 mg/dl) than during a hyperinsulinemic-euglycemic
clamp (95.3 � 3.3 mg/dl), indicating mobilization of glucose units
from glycogen during moderate hypoglycemia. Five additional
healthy volunteers received intravenous 25–50% enriched
[1-13C]glucose over 22–54 h after undergoing hyperinsulinemic-
euglycemic (glucose concentration 92.4 � 2.3 mg/dl) and hyper-
insulinemic-hypoglycemic (52.9 � 4.8 mg/dl) clamps separated
by at least 1 month. Levels of newly synthesized glycogen
measured from 4 to 80 h were higher after hypoglycemia than
after euglycemia (P � 0.01 for each subject), indicating increased
brain glycogen synthesis after moderate hypoglycemia.

CONCLUSIONS—These data indicate that brain glycogen sup-
ports energy metabolism when glucose supply from the blood is
inadequate and that its levels rebound to levels higher than
normal after a single episode of moderate hypoglycemia in
humans. Diabetes 58:1978–1985, 2009

G
lucose is the primary fuel for the adult brain.
During euglycemia and hyperglycemia, the
brain receives more glucose from the blood
than it utilizes and normal metabolism can be

maintained. However, how the energy needs of the brain
are met during hypoglycemia has been a matter of debate.
Mobilization of glucose stored in the form of glycogen is
one potential mechanism that could support brain metab-

olism when blood glucose is low. Glycogen content of the
brain has been measured at 3–10 �mol/g (1–4), an amount
much higher than brain glucose at euglycemia (1–1.5
�mol/g) (5). Although brain glycogen content is much
lower than liver (200–400 �mol/g) (6) and muscle (80
�mol/g) (7), we have previously estimated that it can
augment cerebral energy needs during short periods of
glucose deficit in humans (4). In the current study, we
addressed this question in normal human volunteers using
nuclear magnetic resonance (NMR) methodology first
developed in rats (8) and then translated to humans (9,10).
With this technique, [13C]glucose is administered intrave-
nously and its incorporation into and wash-out from brain
glycogen is tracked (9,10). [1-13C]glucose has been the
substrate of choice since the NMR signal of [1-13C]glucose
in glycogen is well resolved from those of free [1-13C]glu-
cose and other glucosyl positions. The 13C NMR measure-
ment of brain glycogen was recently validated by
comparing glycogen concentrations obtained in vivo in
rats to those measured in extracted tissue by a standard
biochemical assay (11).

Using 13C NMR, we recently estimated that 3–4 �mol/g
glucose is stored in the form of glycogen in the awake
human brain (4). This is in agreement with a measurement
of 5–6 �mol/g in normal gray and white matter obtained by
biopsies during surgery of patients with epilepsy (12)
because anesthesia is known to trigger glycogen accumu-
lation (13). Based on these studies, the glycogen content of
the brain represents a significant glucose reservoir relative
to free glucose. We found that human brain glycogen turns
over very slowly relative to the cerebral rate of glucose
utilization (CMRglc) under normal physiology (4), similar
to what has been observed in the rodent brain (1,8,14).
Namely, at euglycemia and hyperglycemia, bulk brain
glycogen turns over at a rate that is �1–2% of CMRglc
(15–18) in both humans and rodents. Importantly, glyco-
gen synthesis and breakdown rates can be altered by many
factors, such as nutrients, neurotransmitters, and hor-
mones, including glucose and insulin (19–22). The low
metabolic rate of glycogen under normal physiology, to-
gether with the capacity to acutely regulate glycogen
synthase and phosphorylase in response to nutritional and
hormonal state, indicate that glycogen may serve as an
emergency reservoir when glucose supply from the blood
is inadequate. Indeed, brain glycogen is mobilized during
hypoglycemia in the rodent brain (23–26), but whether a
similar event occurs in humans during hypoglycemia is
unknown.

In rodents, brain glycogen was observed to rebound to
levels higher than normal, a phenomenon termed “super-
compensation,” after a single hypoglycemic episode (23).
This led to the hypothesis that glycogen may be involved in
the pathogenesis of hypoglycemia unawareness by supply-
ing extra fuel to the brain during episodes experienced
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soon after the initial hypoglycemia (23,27). Glycogen su-
percompensation has not yet been studied in the human
brain.

The aims of the current study were 1) to assess glyco-
gen mobilization in the human brain during moderate
hypoglycemia and 2) to determine if the glycogen synthe-
sis rate is increased after a hypoglycemic episode indicat-
ing supercompensation in the human brain.

RESEARCH DESIGN AND METHODS

Glycogen utilization study. Five healthy volunteers (four men and one
woman age 43 � 13 years, BMI 25 � 3 kg/m2, means � SD) on no medications
participated in a paired experiment after giving informed consent using
procedures (Fig. 1) approved by the University of Minnesota Institutional
Review Board. Subjects were studied on two separate occasions separated by
at least 1 week, with each subject serving as their own control. Subjects
reported to the General Clinical Research Center (GCRC) at 6:00 P.M. after
starting a fast at 2:00 P.M. Intravenous catheters were placed antegrade in
contralateral arms for [13C]glucose infusion and blood sampling. At 7:00 P.M.,
a bolus of [1-13C]glucose was given to rapidly raise blood glucose enrichment.
A continuous infusion was then given at a variable rate to maintain blood
glucose 25% above basal levels to minimize endogenous hepatic glucose
production and achieve stable glucose enrichments, because postprandial
insulin levels are known to suppress hepatic glucose output (28). Blood
glucose was measured on an automatic glucose meter (OneTouch SureStep;
Lifescan, Milpitas, CA). Additional samples were collected hourly and imme-
diately frozen for the later determination of isotopic enrichment of plasma
glucose by gas chromatography–mass spectroscopy (GC-MS) as described
previously (15). A total of 186 g of [1-13C]glucose (Isotec, Miamisburg, OH, and
Cambridge Isotope Laboratories, Andover, MA; prepared as 20% weight/
volume D-glucose in water with 99% isotopic enrichment) was administered
for 11.1 � 1.2 h to prelabel glycogen. Subjects were then given an unlabeled
glucose infusion for 1.6 � 0.6 h to wash-out [13C]glucose from blood so that
[1-13C]glucose removed from glycogen would not be replenished by plasma
[1-13C]glucose.

After the wash-out period, subjects were transferred to the Center for
Magnetic Resonance Research (CMRR) for a baseline scan, which was
omitted in one subject. They were prepared for a 2-h hyperinsulinemic clamp
study by retrograde placement of a third intravenous catheter into a foot to
provide venous access for arterialized blood sampling (29) while the subject

was in the magnet. The two-arm intravenous catheters were used for
administration of glucose, insulin (2 mU � kg�1 � min�1) and potassium
phosphate (4 mEq/h). Glucose (20% dextrose in water) was titrated to achieve
target blood glucose of 45 mg/dl (2.5 mmol/l) on one occasion and 95 mg/dl
(5.3 mmol/l) on the other occasion, in random order. Blood was obtained
every 5 min for immediate measurement of glucose using an autoanalyzer
(Analox Instruments, Lunenburg, MA). During the hypoglycemic clamps,
blood was also sampled every 30 min for the later determination of glucagon,
catecholamines, growth hormone, and cortisol. Four [1-13C]glycogen NMR
spectra were acquired using methods described below while blood glucose
levels were clamped at the target levels, starting 4.9 � 1.3 h after the end of
the [1-13C]glucose infusion. Subjects were then removed from the magnet, the
insulin and potassium infusions were stopped, glucose was administered to
bring the blood glucose to 95 mg/dl, and subjects were fed a regular meal.
Additional spectroscopic measurements of [13C]glycogen were obtained at
�23, 28, 38, and 46 h after the start of the [13C]glucose infusion.
Glycogen supercompensation study. Five healthy volunteers (four men and
one woman, age 43 � 14 years, BMI 26 � 4 kg/m2, means � SD) on no
medications participated in a paired experiment after giving informed consent
using procedures (Fig. 2) approved by the University of Minnesota Institu-
tional Review Board. Subjects were studied on two occasions separated by at
least 1 month. Subjects reported at 7:00 A.M. to the GCRC in the fasting state.
Two intravenous catheters were placed antegrade in contralateral arms for
administration of glucose, insulin, and KPhos. Each volunteer underwent a 2-h
hyperinsulinemic-euglycemic clamp on one occasion and a hyperinsulinemic-
hypoglycemic clamp on the other, in random order, as described above. After
the clamp, the insulin and potassium infusions were stopped and glucose was
administered to bring the blood glucose to 95 mg/dl. Thirty minutes after the
end of the clamp, [1-13C]glucose infusion was started with an initial bolus to
rapidly raise blood glucose enrichment. The two-arm intravenous lines were
used for [13C]glucose infusion and blood sampling. The infusion rate was
adjusted to maintain blood glucose 25% above basal levels. A total of
820–1,420 g of [1-13C]glucose (25–50% isotopic enrichment) was administered
over 22–54 h. During the infusion, additional blood samples were collected
and frozen for the later determination of isotopic enrichment of plasma
glucose by GC-MS. Subjects were transferred to the CMRR to acquire
[1-13C]glycogen NMR spectra at �4, 8, 12, 22, 29, 35, 46, 53, 60, 70, and 80 h
after the start of the [1-13C]glucose infusion. During the infusion, subjects

FIG. 1. Experimental protocol of the glycogen utilization study. Aver-
age (�SEM) blood glucose levels during the hyperinsulinemic-hypogly-
cemic and hyperinsulinemic-euglycemic clamps are also shown.
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FIG. 2. Experimental protocol of the glycogen supercompensation
study. Average (�SEM) blood glucose levels during the hyperinsuline-
mic-hypoglycemic and hyperinsulinemic-euglycemic clamps are also
shown.
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were fed isocaloric, low-carbohydrate meals designed to minimize the impact
of dietary carbohydrate on [13C]glucose enrichment.
NMR spectroscopy. All measurements were performed on a 4-tesla, 90-cm
bore magnet (Oxford Magnet Technology, Oxford, U.K.) with an INOVA
console (Varian, Palo Alto, CA). Subjects were positioned supine on the
patient bed with the occipital lobe just above the 1H/13C surface coil (30).
Subjects wore earplugs to minimize exposure to gradient noise and were
positioned in the coil holder using cushions to minimize head movement.

The [1-13C]glycogen NMR signal localized in a 7 � 5 � 6 cm3 voxel in the
occipital lobe was acquired as described previously (4,9,10). Each spectrum/
data point presented here was acquired over 30 min. The amount of 13C label
in the C1 position of glycogen was quantified by the external reference method
(9,10). The [1-13C]glycogen concentrations were divided by the plasma glucose
isotopic enrichment to correct for differences in isotopic enrichment between
subjects and to determine the newly synthesized glycogen concentrations.
Modeling glycogen turnover. A model of glycogen metabolism (4) was fitted
to the time courses of [13C]glycogen using the software SAAM II (The SAAM
Institute, Seattle, WA). Data from the euglycemic clamp studies of each
subject were used for modeling, together with their blood glucose isotopic
enrichment time courses as input function. Glycogen synthase (Vsyn) and
phosphorylase (Vphos) rates were set to be equal and brain glycogen concen-
tration was set to be constant. Thus, the fitted variables were total glycogen
concentration (Glyc) and turnover rate Vsyn � Vphos. The cerebral metabolic
rate of glucose (CMRglc) in the human brain was assumed to be 0.4 �mol � g�1 �
min�1 � 24 �mol � g�1 � h�1 (15) and the glucose-6-phosphate concentration
0.1 �mol/g (14). Sensitivity analysis indicated that the results were not
affected over large ranges of both of these variables (18–30 �mol � g�1 � h�1 for
CMRglc and up to 1 �mol/g for glucose-6-phosphate concentration). Concen-
tration and rate estimates are reported as means � SD.
Statistical analysis. In the utilization study, summary statistics and paired t

tests were used to compare within-subject differences in plasma glucose,
glucose enrichment, and glycogen on hypoglycemic versus euglycemic study
days, at each baseline and during clamps. Repeated measures ANOVA was
used to compare euglycemic measures to hypoglycemic measures of glyco-
gen, for both within-clamp measures and after-clamp measures. In the
supercompensation study, summary statistics and paired t tests were used to
compare within-subject differences in plasma glucose, plasma insulin, and the
4-h glycogen measurement on hypoglycemic versus euglycemic study days.

RESULTS

Glycogen utilization study. Brain glycogen of five
healthy volunteers was prelabeled via an overnight intra-
venous infusion of [1-13C]glucose before a euglycemic or
hypoglycemic clamp study in the scanner (Fig. 1). Average
plasma glucose levels and isotopic enrichments during the
overnight infusion were not significantly different for the
euglycemia versus hypoglycemia study days, leading to
equal glycogen prelabeling before both clamp studies
(Table 1). Target levels for blood glucose during the
clamps were reached in �30 min after starting the insulin
infusion (Fig. 1). Average blood glucose concentration
during the hypoglycemic clamps was 57.2 � 9.7 mg/dl and
during the euglycemic clamps 95.1 � 3.3 mg/dl. The
hypoglycemic glucose concentration was slightly above
our target level mainly because of one subject who did not
require glucose infusion and stayed above 60 mg/dl during
the clamp period. Average blood glucose during the hypo-

glycemic clamps of the other four subjects was 53.3 � 4.7
mg/dl. Counterregulation during hypoglycemia was dem-
onstrated by measurement of serum glucagon, growth
hormone, cortisol, and catecholamines (Fig. 3). The resid-
ual plasma glucose enrichment after the chase with
[12C]glucose (Fig. 1) during the hypoglycemic clamps
tended to be higher than that during the euglycemic
clamps (22 � 14 vs. 11 � 4%, P � 0.13, paired t test) likely
because of mobilization of [13C]-labeled hepatic glycogen
during hypoglycemia. However, considering the approxi-
mately twofold higher glucose concentrations during the
euglycemic clamps, the level of cerebral [13C]glucose
available for incorporation into glycogen was equal be-
tween the hypoglycemic and euglycemic clamps, which
was also apparent from the residual glucose peaks in the
spectra (Fig. 4A).

The glycogen signal was stable during the euglycemic
clamps, while it decreased during the hypoglycemic
clamps (Fig. 4A), indicating mobilization of glucose units
from glycogen during moderate hypoglycemia. Average
glycogen integrals, each normalized to first clamp mea-
sure, during euglycemia were higher than during hypogly-
cemia (0.98 � 0.05 vs. 0.87 � 0.08, P � 0.0001, repeated
measures ANOVA) (Fig. 4B). Glycogen utilization was
confirmed by a higher rate at which newly synthesized
glycogen levels decreased during hypoglycemia (0.12 �
0.05 �mol � g�1 � h�1) than during euglycemia (0.03 � 0.06
�mol � g�1 � h�1, P � 0.02, paired t test). This label
wash-out rate during euglycemia was the same as we
previously observed after an 11-h prelabeling period (4).
To further analyze the consistency between our previous
observations during euglycemia and slight hyperglycemia
and this study, we fitted a model of glycogen turnover to
the time courses of [13C]glycogen obtained during the
euglycemia studies of the five volunteers. This resulted in
estimates of glycogen content of 4.3 � 0.2 �mol/g and
turnover rate (Vsyn � Vphos) of 0.18 � 0.01 �mol � g�1 � h�1,
indicating a turnover time constant of 24 h, in excellent
agreement with prior results (4).

Newly synthesized glycogen levels after the clamp (at
23, 28, 38, and 46 h time points) were not different for
euglycemia versus hypoglycemia studies (P � 0.64, re-
peated measures ANOVA). Note that the “newly synthe-
sized glycogen” levels refer to measured [13C]glycogen
levels divided by the isotopic enrichment of plasma glu-
cose during the preclamp infusions; therefore, they do not
necessarily reflect new glycogen synthesized after the
clamps. Based on the lower [13C]glycogen levels at the end
of the hypoglycemic clamps, one might expect the glyco-
gen measurements after hypoglycemia to also be lower
than those after euglycemia. However, the average plasma

TABLE 1
Comparison of glucose and glycogen measurements before clamps in the utilization study (means � SD between subjects)

Euglycemia
study

Hypoglycemia
study

P (paired
t test)

�Mean plasma glucose	 during overnight infusion (mg/dl) 129 � 13 129 � 22 0.97
Mean isotopic enrichment of plasma glucose during overnight infusion (%) 83 � 9 78 � 11 0.22
�13C-glycogen	 at baseline (�mol/g) 1.2 � 0.2 1.3 � 0.2 0.86
�Newly synthesized glycogen	 at baseline (�mol/g)* 1.4 � 0.3 1.5 � 0.2 0.36
�13C-glycogen	 at the beginning of clamp (�mol/g)† 1.4 � 0.1 1.2 � 0.3 0.12
�Newly synthesized glycogen	 at the beginning of clamp (�mol/g)† 1.7 � 0.3 1.5 � 0.2 0.24

*Newly synthesized: corrected for plasma glucose isotopic enrichment during infusions. †These are the glycogen levels obtained in the first
30 min of the 2-h clamps.
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glucose isotopic enrichment at the end of the hypoglyce-
mic clamps was 13 � 11% (as opposed to 2 � 1% at the end
of the euglycemic clamps) and this enriched glucose could
have been incorporated into glycogen once blood glucose
levels were rescued, thereby equalizing [13C]glycogen lev-
els in the following scans. This effect would have been
augmented by glycogen supercompensation after hypogly-
cemia. Therefore, we investigated if glycogen synthesis
was increased after hypoglycemia in the next set of
experiments.
Glycogen supercompensation study. In this experi-
ment, label incorporation from intravenous [1-13C]glucose
into brain glycogen was measured after a euglycemic or
hypoglycemic clamp (Fig. 2). Target levels for blood
glucose during the clamps were reached in 40–60 min
after starting the insulin infusion (Fig. 2). Average blood
glucose concentration was 52.9 � 4.8 mg/dl (means � SD
between subjects) during the hypoglycemic clamps and
92.4 � 2.3 mg/dl during the euglycemic clamps. Counter-
regulation during hypoglycemia was demonstrated by
measurement of serum glucagon, growth hormone, corti-
sol, and catecholamines (Fig. 3). Average plasma glucose
levels during the [1-13C]glucose infusion were 115 � 8
mg/dl and average insulin levels 40 � 12 mU/l, with no
difference between the euglycemia and hypoglycemia
studies (P � 0.38 for glucose levels and 0.51 for insulin,
paired t test) (Fig. 5A and B). Steady 13C isotopic enrich-
ment levels in blood glucose were achieved during the
long infusions as demonstrated by data obtained in one
subject in Fig. 5C. We fitted a model of glycogen turnover
to the time courses of [13C]glycogen obtained during the
euglycemia studies of the five volunteers. This resulted in
estimates of glycogen content of 3.5 � 0.1 �mol/g and
turnover rate (Vsyn � Vphos) of 0.20 � 0.01 �mol � g�1 � h�1,
in agreement with the results of the glycogen utilization
study and our prior published results for euglycemia and
slight hyperglycemia (4). The newly synthesized glycogen

levels were higher after hypoglycemia than after euglyce-
mia across all time points during and after the 13C-glucose
infusions (Fig. 6, P � 0.01 paired t test for each subject
separately), indicating increased glycogen synthesis after
hypoglycemia. The glycogen synthesis rate can be esti-
mated from the initial rate of label incorporation when 13C
enrichment of glycogen is negligible and the labeling
kinetics primarily represents synthesis. The first glycogen
data point obtained from each volunteer at 4 h was used
for this purpose. The synthesis rate of glycogen was 0.25 �
0.03 �mol � g�1 � h�1 after euglycemia and 0.32 � 0.05 �mol
� g�1 � h�1 after hypoglycemia (P � 0.02, paired t test). The
difference between newly synthesized glycogen levels in-
creased steadily over time during the [13C]glucose infusion
(Fig. 6) reaching �1 �mol/g at 34 h, indicating a net
synthesis of �1 �mol/g glycogen occurred over this time
period.

DISCUSSION

Here we present the first evidence for glycogen utiliza-
tion during, and supercompensation after, moderate
hypoglycemia in the healthy human brain. Using 13C
NMR, we found that brain glycogen content decreased
by �15% during modest hypoglycemia, whereas it was
unchanged under isoinsulinemic euglycemia. Our data
also indicate that brain glycogen content increased after
a period of modest hypoglycemia but did not change
after isoinsulinemic euglycemia in a second group of
healthy volunteers.

In the utilization experiment, we detected glycogen
mobilization by an increased 13C label wash-out from
prelabeled glycogen during hypoglycemia relative to eu-
glycemia. The 13C label was incorporated into glycogen
mainly via turnover, as net synthesis does not occur at the
euglycemia and slight hyperglycemia we utilized during
prelabeling (4). Hence, the total and labeled glycogen

FIG. 3. Counterregulatory hormone response during the hypoglycemic clamps in the glycogen utilization and supercompensation (Supercomp)
studies. Basal (5 min and immediately before the clamp) versus peak (maximum observed over the 2-h clamp period) values (average � SEM) are
shown. * P < 0.05, paired t test.
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levels were equal before the hypoglycemic and euglycemic
clamps. We designed the study with an �1- to 2-h [12C]glu-
cose infusion after the 13C to chase the [13C]glucose from
blood, such that any [13C]glucose removed from glycogen
during the clamps would not be replenished by [13C]glu-
cose from the blood, increasing our chances to detect
glycogen mobilization. Ideally, one would turn over all
glycogen molecules before the clamp and keep the isoto-
pic enrichment of the blood constant and equal to that of
glycogen (31) during the clamps such that the glycogenol-
ysis rate would equal the rate of label wash-out from
glycogen. However, it takes 3–5 days to turn over the total
human brain glycogen pool (4) and it is very difficult to
keep blood isotopic enrichments constant during hypogly-
cemia based on our prior experience, making this experi-
mental design unfeasible in humans. The isotopic
enrichment of glucose during hypoglycemia in our studies
tended to be higher than during euglycemia (22 vs. 11%),

which might have even reduced the difference in [13C]gly-
cogen levels between the hypoglycemic and euglycemic
clamps. We do not expect this to be a factor because the
[13C]glucose levels available for incorporation into glyco-
gen were comparable during the two clamps considering
the higher glucose levels during euglycemia. In theory, the
increased label wash-out from glycogen during hypoglyce-
mia may have been because of increased turnover; how-
ever, this possibility is highly unlikely considering the
known reciprocal regulation of glycogen synthase and
phosphorylase (22).

FIG. 4. Glycogen utilization during moderate hypoglycemia in the
human brain. A: Proton-decoupled 13C NMR spectra acquired over four
consecutive 30-min periods during the hypoglycemic and euglycemic
clamps of the utilization study. The C1 peak of glycogen at 100.5 ppm
and the two C1 glucose peaks originating from �- and �-glucose are
marked. Spectra were averaged over the five subjects (4,096 transients
per spectrum per subject with a repetition time of 0.45 s) and normal-
ized with respect to the first half-hour spectrum. The volume-of-
interest was 210 ml (7 � 5 � 6 cm3) in the occipital lobe. B: Glycogen
integrals over four consecutive 30-min periods normalized to the
spectrum acquired during the first 30 min of the clamp. Error bars
indicate SD between subjects.

FIG. 5. Glucose, insulin and 13C isotopic enrichment (IE) in the blood
of volunteers after the euglycemic and hypoglycemic clamps in the
supercompensation study. A and B: Plasma glucose and insulin levels
(average � SEM) during the [1-13C]glucose infusion are shown for
those time points where data are available from two or more subjects.
Only one volunteer was infused with glucose longer than 34 h. C:
Stability of 13C enrichment of plasma glucose in one volunteer.
[1-13C]glucose (29% enriched) was administered intravenously for 54 h
as also apparent from the rapid drop in isotopic enrichment after this
time point.
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Our observations demonstrate that the human brain
employs mechanisms of hypoglycemia response that are
similar to those in the rodent brain (23–26). The [13C]gly-
cogen signal decreases with a rate of �64%/h in the rat
brain at �1.5 mmol/l blood glucose (23) and �10%/h in the
human brain at �3 mmol/l blood glucose, indicating a
mobilization rate commensurate with the severity of hy-
poglycemia. The rat study implied that glycogen was not
mobilized until brain glucose levels were zero (23); how-
ever, in the current study brain glucose was 0.6–0.8
�mol/g based on reported glucose transport parameters
for the human brain (5,32). At these glucose levels, hexo-
kinase is 92–94% saturated (KM � 50 �mol/l), whereas it is
95–97% saturated at euglycemia (1–1.5 �mol/g brain glu-
cose). This slight desaturation of hexokinase may have
been enough to trigger glycogen mobilization to supple-
ment the glucose-6-phospate deficit. Alternatively, a more
general brain stress response may have been operative,
involving the activation of brainstem catecholaminergic
neurons, shown to occur with hypoglycemia (33–35). In
particular norepinephrine is very effective in increasing
glycogen breakdown (22) and may do so in the absence of
a significant glucose deficit. Interestingly, after treatment
with a glycogen phosphorylase inhibitor to increase brain
glycogen content, neuronal function is prolonged during
severe hypoglycemia in rats (36), providing further evi-
dence that the brain may rely on glycogen stores to
augment reduced energy delivery during hypoglycemia.

We only utilized the data from the euglycemia studies to
fit a glycogen metabolic model because the model assumes
the data were collected under steady-state conditions,
which was not true during hypoglycemia. With the eugly-
cemia data, we obtained glycogen content and turnover
values in agreement with our previous findings (4). To
roughly estimate the glycogenolysis rate during hypogly-
cemia we used the formula d[13C-glycogen]/dt � IEglc �
Vsyn � IEglyc � Vphos, using the average blood IEglc
(isotopic enrichment of free glucose) and assuming con-
stant IEglyc (isotopic enrichment of glycogen) during the
2-h clamps. IEglyc was �40% based on the measured
[13C]glycogen level relative to total glycogen (4). Because
brain glucose isotopic enrichment closely follows the
blood glucose isotopic enrichment, IEglc was set equal to
the average isotopic enrichment measured in the blood
during the hypoglycemic clamps, 22%. The net glycogen-
olysis rate (Vphos � Vsyn) could then be estimated by

investigating two limiting conditions, with Vsyn set to 0 or
to the turnover rate of glycogen, 0.18 �mol � g�1 � h�1. This
way we estimated a glycogenolysis rate of 0.22–0.30 �mol �
g�1 � h�1, that is, that 0.4–0.6 �mol/g glycogen was
mobilized during the 2-h hypoglycemic clamp. This glyco-
genolysis rate still constitutes a very small fraction (�1%)
of CMRglc (if CMRglc does not change under hypoglyce-
mia) and shows that the blood supplies the majority of
glucose utilized by the brain during moderate hypoglyce-
mia. This was the case even during severe hypoglycemia in
rats where glycogen was shown to supplement a small
glucose deficit (23).

In the supercompensation experiment, we observed a
higher synthesis rate for human brain glycogen after
hypoglycemia versus euglycemia. This higher rate could
not be because of any differences in insulin levels (23,31)
as these were the same in the paired studies (Fig. 5B).
Clearly, some of this synthesis had to replenish the glyco-
gen mobilized during the 2-h hypoglycemia. However,
because a net synthesis of �1 �mol/g glycogen occurred
during 34 h of [13C]glucose infusion and only 0.4–0.6
�mol/g glycogen was mobilized during the prior hypogly-
cemic clamp, our data indicate that glycogen content was
higher after moderate hypoglycemia. It would be ideal to
observe [13C]glycogen levels higher than the normal gly-
cogen levels (3–4 �mol/g) to confirm supercompensation;
however, this would require even longer experimental
periods in humans than the 4 days in this study.

It is unlikely that the glycogen content of the brain can
increase many-fold because of the restriction of brain
volume within the skull and water retention by glycogen.
However, up to fourfold increases above basal brain
glycogen content have been observed (37) and can likely
be accommodated because of the low glycogen content of
the brain. Glycogen supercompensation has been ob-
served after multiple metabolic stressors in the rodent
brain, such as hypoxia (38), hypoglycemia (37), ischemia
(37), brain injury (39), and sleep deprivation (3), and in
other tissues, such as the muscle after exercise (40).
Furthermore, supercompensation of muscle glycogen af-
ter its depletion with exercise is augmented with repeated
bouts of exercise, that is, in exercise-trained rodents and
humans (40). Therefore, glycogen supercompensation may
be a protective measure taken by the affected tissue in
preparation for the next bout of metabolic stress (38).

Our data that indicate supercompensation of human
brain glycogen are in agreement with similar NMR studies
in rats (23). Furthermore, glycogen supercompensation in
the hypothalamus and cortex after recurrent glucopenia
was demonstrated recently in a rat model of hypoglyce-
mia-associated autonomic failure (HAAF) (41). Although
these observations suggest that glycogen supercompensa-
tion may be involved in the development of hypoglycemia
unawareness, recent experiments by Herzog et al. (24)
failed to demonstrate glycogen supercompensation in the
cortex, cerebellum and hypothalamus in awake rats 6 and
24 h after hypoglycemia. They attributed this failure to
confirm the prior rat NMR study (23) to anesthesia and
severe hyperglycemia levels used for the NMR experi-
ments. However, our current data, that also indicate
supercompensation, were acquired with awake humans
maintained at mild hyperglycemia (115 mg/dl) during the
[13C]glucose infusion after the clamps (Fig. 5A). We sug-
gest that the variability among measurements in animals
studied at different time points might be the reason that
Herzog et al. did not observe supercompensation after

FIG. 6. Glycogen supercompensation after moderate hypoglycemia in
the human brain. Newly synthesized glycogen concentrations (aver-
age � SD) during 13C glucose infusions after euglycemic and hypogly-
cemic clamps are shown for those time points where data are available
from two or more subjects.
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hypoglycemia in the rat model. In NMR experiments, time
courses are monitored in individual subjects, thereby
facilitating the observation of treatment effects relative to
extraction studies where all data points are obtained from
different animals. Indeed, in the Herzog et al. study, even
though the cortical glycogen levels were almost doubled in
cortex after recurrent versus acute hypoglycemia (�7 vs.
4 �mol/g), this difference was not statistically significant,
likely because of the large variance between animals.

Taken together, our observations demonstrate that
brain glycogen is a dynamic source of energy and provide
the first support for the hypothesis that brain glycogen
may be used to offset the loss of substrate that occurs in
humans during hypoglycemia. They further demonstrate
increased brain glycogen synthesis after moderate hypo-
glycemia in humans and indicate glycogen supercompen-
sation. The potential involvement of glycogen in the
development of HAAF in humans, and specifically if su-
percompensated glycogen provides additional substrate to
the brain during subsequent hypoglycemic episodes, need
to be investigated in future studies.
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