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Oncolytic bluetongue viruses: promise, progress, and 
perspectives
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Humans are sero-negative toward bluetongue viruses (BTVs) since BTVs do not infect normal 
human cells. Infection and selective degradation of several human cancer cell lines but not normal 
ones by five US BTV serotypes have been investigated. We determined the susceptibilities of 
many normal and human cancer cells to BTV infections and made comparative kinetic analyses 
of their cytopathic effects, survival rates, ultra-structural changes, cellular apoptosis and necrosis, 
cell cycle arrest, cytokine profiles, viral genome, mRNAs, and progeny titers. The wild-type US 
BTVs, without any genetic modifications, could preferentially infect and degrade several types 
of human cancer cells but not normal cells. Their selective and preferential BTV-degradation of 
human cancer cells is viral dose–dependent, leading to effective viral replication, and induced 
apoptosis. Xenograft tumors in mice were substantially reduced by a single intratumoral BTV 
injection in initial in vivo experiments. Thus, wild-type BTVs, without genetic modifications, have 
oncolytic potentials. They represent an attractive, next generation of oncolytic viral approach 
for potential human cancer therapy combined with current anti-cancer agents and irradiation.
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of work on potential uses of oncolytic viruses to treat cancers has 
not been well accepted and this approach has not yet generated any 
significant breakthroughs to treat human cancers.

In 1998, Professor Patrick Lee and his associates at the University 
of Alberta, Calgary provided the first data and evidence that reo-
virus with a segmented double-stranded (ds) RNA genome could 
selectively destroy certain human cancer cells in vitro (Strong et al., 
1998). This “proof-of-principle” demonstration was a novel break-
through and has raised hope that reovirus specifically and other 
viruses (Kim et al., 2006) with oncolytic potentials can be killing 
machines against human cancers (Kikuchi et al., 1997; Rodgers 
et al., 1997; Liu, 2006; Holtz, 2007). Through intensive investiga-
tion and exploration, the oncolytic potentials of viruses have been 
discovered in six major viral families, reovirus type 3, papillomavi-
ruses, herpesviruses, hepadnaviruses, flaviviruses, and retroviruses 
(Norman and Lee, 2005; Alain et al., 2006, 2007; Kim et al., 2006; 
Shen and Nemunaitis, 2006; Vidal et al., 2006; Burroughs et al., 
2007; Qi et al., 2007; Cripe et al., 2009; Ou and Yen, 2010). Since 
all these, with the exception of reovirus, are also “human cancer 
viruses” and they cause more than a fourth of all human cancers, 
innovative methods incorporating recent advances (Wildner, 2003) 
in molecular biology and genomics/proteomics have been devel-
oped and/or modified in the last decade to reduce the pathology 
of these viruses and to direct and enhance their specific onco-
lytic activities against different cancer cells and tumors (Aghi and 
Martuza, 2005; Alain et al., 2006; Holtz, 2007; Ou and Yen, 2010). 
This generally involves deleting or modifying essential viral genes 
that restrict the replication of these viruses except in cancer cells. 
In recent years, combinatory approaches using RNA interference 
(RNAi) or the addition of transgenes, whose products target mol-
ecules that are over-expressed only or preferentially in cancer cells, 
have also been formulated with the uses of these oncolytic viruses.

Parasites, fungi, bacteria, and viruses are the four major types of 
human pathogens causing many human diseases with cellular 
damages and continuous confrontations to our immune systems. 
Humans tend to dislike their existence. However, recent scientific 
findings indicated that especially with viruses, the infectious, and 
pathological outcomes can be converted to some beneficial poten-
tial for human health. The potential application of viruses to retard 
the growth of human cancers was initially introduced by Dock 
(1904) when he published a landmark article in the American 
Journal of Medical Science entitled “Influence of complicating 
diseases upon leukemia.” He had observed and recorded that the 
white blood cell count of a patient with chronic myelogenous leuke-
mia (CML) decreased dramatically during what was described as 
a flu-like illness. Thus, he “bravely” made the first suggestion to 
fellow physicians to use viral infection to treat tumors. The exciting 
idea of using viruses to destroy cancer cells led numerous medi-
cal treatment attempts for over five subsequent decades. However, 
using only wild-type viruses without genetic modifications such 
as selective genetic deletion of viral virulent domains or modifica-
tion of viral genes critical for viral replication and the addition of 
immune enhancer genes have not been successful. Parallel to this 
innovative idea was the suggested use of “superbugs” called bac-
teriophages that kill bacteria but do not harm humans, to combat 
pathogenic bacteria that kill thousands of people globally each 
year (Hausler, 2006). The subsequent discovery of phage genetic 
conversion that might lead to production of either endotoxin and/
or exotoxin tempered the use of this medical “superbug” therapy 
(Singer, 1976) but this approach has begun to resurface in recent 
years. With the introduction and availability of penicillin to combat 
bacteria, both medical “superbug” therapy and uses of viral infec-
tion to treat and destroy different cancers were largely ignored in 
the twentieth century (Liu, 2006; Liu et al., 2007). Thus, a century 
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1985; Wade-Evans et al., 1992; Pritchard et al., 1995; Ramadevi et al., 
1998a; Gouet et al., 1999), Henk Huismans (Huismans, 1979, 1985; 
Huismans and Els, 1979; Van Dijk and Huismans, 1982; Huismans 
et al., 1987a,b,c; Hall et al., 1989; Huismans and Van Dijk, 1990; 
Nel et al., 1991; Uitenweerde et al., 1995), Van Djik (Van Dijk and 
Huismans, 1982, 1988; Hall et al., 1989; Van Dijk, 1993), Bryan 
Eaton (Eaton et al., 1987, 1988, 1990, 1991; Gould et al., 1988a; 
Eaton and Crameri, 1989; Hyatt et al., 1991, 1998; Martyn et al., 
1991; Du Plessis et al., 1994; Murray and Eaton, 1996), Alan Gould 
(Gould and Pritchard, 1988; Gould et al., 1988a,b, 1994; Eaton 
et al., 1991; Hyatt et al., 1991; Martyn et al., 1991, 1994; Pritchard 
and Gould, 1995; Pritchard et al., 1995), B. Gorman (Cowley and 
Gorman, 1987, 1989, 1990; Gould et al., 1988a), William Wilson 
(Wilson, 1991; Pritchard et al., 1995; Xu et al., 1997), J. Mecham 
(Sundin and Mecham, 1989; Mecham and Jochim, 1990; Xu et al., 
1997), B. Osborn (Barber et al., 1985; Stott et al., 1985; Oberst et al., 
1987; Waldvogel et al., 1987; Unger et al., 1988; de Mattos et al., 
1991; He et al., 1991; Carr et al., 1994; Odeon et al., 1999), N. J. 
MacLachlan (Whetter et al., 1990; Rossitto and MacLachlan, 1992; 
Barratt-Boyes and MacLachlan, 1995; DeMaula et al., 2000, 2001), 
M. J. Grubman (Campbell and Grubman, 1985; Devaney et al., 
1988; Grubman and Samal, 1989; Grubman et al., 1990; Lewis and 
Grubman, 1990), M. H. Jeggo (Jeggo and Wardley, 1982a,b, 1985; 
Jeggo et al., 1983), L. F. Wang (Wang et al., 1988, 1989, 1994, 1996; 
He et al., 1991; Nagesha et al., 2001), A. M. Wade-Evans (Wade-
Evans, 1990a,b, 1992; Wade-Evans et al., 1992, 1996; Pritchard et al., 
1995), and others (Shipham, 1979; Moss et al., 1990; Dunn et al., 
1991; Cowley, 1992; Harding et al., 1995; Theron and Nel, 1997; 
Taraporewala et al., 2001), have begun to identify and determine 
the sequences of each of the 10 BTV genes of many BTV serotypes 
and the functionalities of the corresponding viral structural and 
non-structural proteins underlying much of the variability in dif-
ferent animals. The results of viral genomic and protein sequences, 
their replication cycles in different host cells, multifunction of the 
structural, and non-structural proteins, etc., can also be found in 
several BTV reviews (Barber et al., 1985; Campbell and Grubman, 
1985; Roy, 1989, 1992, 1996; Eaton et al., 1990; Gorman, 1990; Roy 
and Gorman, 1990; Osburn, 1994; Huang and Li, 2000; Roy and 
Noad, 2006; Yang, 2009).

In our laboratory, we have sequenced the entire viral genomes of 
BTV 2, 11, 13, and 17, and some of BTV 10 genes (their accession 
numbers are shown in Table 1), established their genetic related-
ness, identified various antigenic epitopes, and functional charac-
teristics of several viral proteins, located some of the nucleic acid 
binding domains of viral proteins, and recently identified three 
anti-BTV compounds, and their mechanisms of action (Li et al., 
1987, 1989; Li and Yang, 1990, 1992; Hwang et al., 1992a,b, 1993, 
1994; Yang et al., 1992a; Li and Hwang, 1992; Huang et al., 1993, 
1995; Hwang and Li, 1993; Hayama and Li, 1994; Wang et al., 1996; 
Huang and Li, 1997, 2000; Fillmore et al., 2002; Xiao et al., 2004; 
Hu et al., 2008).

In addition to our continuous pursuit of the virolomic biosys-
tems of BTVs, we have discovered their oncolytic activities that can 
selectively degrade human cancer cells both in vitro (Xiao et al., 
2004; Hu et al., 2008) and in vivo (manuscript in preparation), 
but not normal human cells. Thus, greater attention is devoted in 
our lab to further explore and investigate the oncolytic activity of 

One potential next generation newcomer recently discovered 
in the oncolytic virus field is the bluetongue virus (BTV), the 
genomics, and proteomics of which we have worked with for the 
last 25 years (Kowalik and Li, 1987, 1989, 1991; Li et al., 1987, 
1989; Kowalik et al., 1990a,b; Li and Yang, 1990, 1992; Hwang et al., 
1992a,b, 1993, 1994; Yang and Li, 1992, 1993; Li and Hwang, 1992; 
Yang et al., 1992a,b; Huang et al., 1993, 1995; Hwang and Li, 1993; 
Hayama and Li, 1994; Wang et al., 1996; Huang and Li, 1997, 2000; 
Fillmore et al., 2002; Xiao et al., 2004; Hu et al., 2008). BTV belongs 
to the orbivirus (ring or circle in Greek) genus of the Reoviridae 
Family which also includes the reovirus. BTVs were initially iso-
lated in several endemic episodes in Africa in late 1960s and early 
1970s (Goltz, 1978; Erasmus, 1985; Gorman, 1990). Currently there 
are 24 different BTV serotypes worldwide. The viral genome of 
BTVs contains 10 ds-RNA fragments, each of which encodes for 
one viral structural or non-structural protein (Roy, 1989, 1992) 
except the S4 fragments that can encode for two non-structural 
proteins (Wu et al., 1992; Hyatt et al., 1993). BTV transmitted via 
the blood-feeding midges, Culicoides variipennis in North America 
and C. imicolain in Africa and the Middle East, is the causal agent 
of bluetongue disease (BD) in domestic cattle and wild ruminants, 
with virus-induced hemorrhagic fevers (HVFs), vasculitis, edema 
of the face, lips, muzzle, and ears, excessive salivation, hyperemia 
of the oral mucosa, and various necrosis and apoptosis of epithelial 
and mucosal surfaces (Goltz, 1978; Barratt-Boyes and MacLachlan, 
1995; Huang and Li, 2000). Neurovirulence has also been detected 
with some recent BTV isolates (Waldvogel et al., 1987; Carr et al., 
1994). With nasal mucopurulent discharges, the tongue becomes 
cyanotic, and thus, the name, BTV.

Bluetongue viruses (BTVs) are associated with BD in domes-
tic cattle and wild ruminants with much interspecies variabil-
ity (Goltz, 1978; Gibbs, 1983; Gibbs et al., 1983; Erasmus, 1985; 
Gorman, 1990), including fatality in sheep and progressive recovery 
in wild ruminants after BTV infection. Molecular biology efforts 
from our group (Kowalik and Li, 1987, 1989, 1991; Li et al., 1987, 
1989; Kowalik et al., 1990a,b; Li and Yang, 1990, 1992; Hwang 
et al., 1992a,b, 1993, 1994; Yang and Li, 1992, 1993; Li and Hwang, 
1992; Yang et al., 1992a,b; Huang et al., 1993, 1995; Hwang and Li, 
1993; Hayama and Li, 1994; Wang et al., 1996; Huang and Li, 1997, 
2000; Fillmore et al., 2002; Xiao et al., 2004; Hu et al., 2008) and 
other research groups such as Polly Roy (Purdy et al., 1984; Ghiasi 
et al., 1985; Lee and Roy, 1986, 1987; Fukusho et al., 1987, 1989; 
Yu et al., 1987, 1988; Roy et al., 1988, 1991, 1990a,b,c, 1992, 2009; 
Urakawa and Roy, 1988; Wang et al., 1988; Roy, 1989, 1992, 1996, 
2003; French and Roy, 1990; French et al., 1990; Hirasawa and Roy, 
1990; Marshall and Roy, 1990; Marshall et al., 1990; Oldfield et al., 
1990, 1991; Roy and Gorman, 1990; Iwata et al., 1991; Loudon and 
Roy, 1991; Bremer et al., 1992; Chuma et al., 1992; Hewat et al., 
1992a,b,c, 1994; LeBlois et al., 1992; Liu et al., 1992; Hyatt et al., 
1993; Monastyrskaya et al., 1994; Tanaka and Roy, 1994; Zhao et al., 
1994; Tanaka et al., 1995; Jones et al., 1996; Mikhailov et al., 1996; Yi 
et al., 1996; Basak et al., 1997; Stauber et al., 1997; Bansal et al., 1998; 
Martinez-Costas et al., 1998; Ramadevi and Roy, 1998; Ramadevi 
et al., 1998a,b; Hassan and Roy, 1999; Horscroft and Roy, 2000; 
Limn et al., 2000; Diebold et al., 2003; Mortola et al., 2004; Roy 
and Noad, 2006; Boyce and Roy, 2007; Marcato et al., 2007), Peter 
Mertens (Mertens et al., 1984, 1987, 1996; Mertens and Sangar, 
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( manuscript in preparation) to investigate and determine the onco-
lytic activities and capacities of BTVs and their selective degradation 
of human cancer cells as potential treatment of human cancers. 
Human cancer cell lines such as Hep-3B and Hep-G2, A549, A498, 
SPC-A-1, and MA 782 cells infected with BTV 10, 11, 13, 17, and 
HbC

3 
at various MOIs exhibited the following easily detected char-

acteristics 36 h post-infection (pi) but not in HEL and MEF cells in 
multiple determinations (Xiao et al., 2004; Hu et al., 2008). Briefly:

1. Between 70 and 90% cytopathic effects (CPE) were readily 
observed and detected along with cellular apoptosis and 
necrosis in many human cancer cell lines.

2. Various degrees of morphological and cellular damage could be 
visualized by either light, confocal, or electron microscopy (EM).

3. Viral particles could be seen intra-cellularly and at the plasma 
membrane.

4. Cellular dilated endoplasmic reticulum, nuclear chromatin 
condensation, and cytoplasmic shrinking were readily detec-
ted and easily observed in EM.

5. BTV viral genomic ds-RNA fragments and viral mRNAs could 
be found in BTV-10, 13, 17, and HbC

3
 infected human cancer 

cells, but not in normal HEL or MEF cells by gel electrophoresis,  
ELISA, RIP, Western blots, PCR, and qRT-PCR (Tiwari et al., 2000).

6. The survival rate of several human cancer cell lines was low if 
high MOI was used.

7. Primary HEL and MEF cells survived very well for 6–9 days 
independent of the MOI used for testing.

8. Human cancer cells infected with BTVs had more efficient 
viral replication and provided higher viral progeny yields.

9. Selective cell cycle arrest at sub-G1 peak in several human 
cancer cells infected with BTV-10 (Hu et al., 2008) and HbC3 
similar to the reovirus-induced G2/M cell cycle arrest (Poggioli 
et al., 2000).

After tumor cells were grown in culture and then injected as xenografts 
into mice (eight mice/sample), tumors developed and all these mice 
died in less than 8 days (Preliminary data). When 0.1 ml of BTVs 
with different MOIs in sterile phosphate-buffered saline (PBS) was 
injected at three different sites of each xenograft, the sizes of tumors 
in mice were reduced 60–85%. Most mice with the reduced tumors 
survived more than 35 days before they were sacrificed for tissue 
and organ samples (kidney, lung, liver, heart …. etc.) to detect the 
presence of BTVs. No BTVs and CPEs were found in these tissue and 
organ samples. There was also no weight loss (manuscript in prepara-
tion). The outcomes of three independent repetitions were similar. 
Thus, BTVs’ selective cytotoxic effects to human tumor cells in vitro 
and partially in vivo have been clearly indicated and demonstrated. 
Further in vivo research and clinical studies are now in progress to 
document and investigate this unique oncolyitc potential of BTVs 
which will provide us better and safer application in humans either 
in monotherapy or combination therapy in the near future.

Inflammatory medIators are elevated durIng Btv 
InfectIon
Bluetongue viruses administration has been shown to cause cell 
death and apoptosis in several cell lines as well as in several human 
tumor cell lines (Wechsler and McHolland, 1998; Xiao et al., 2004; 

BTV and identify the viral factors, events, and pathways with which 
BTVs can selectively degrade human cancer cells. These data can 
be used for potential treatment of human cancers after additional 
in vivo and subsequent clinical studies.

unIque novel oncolytIc actIvItIes of the Btv 
vIrolomIc system
Bluetongue viruses, pathogenic only to domestic cattle and wild 
ruminants (Barratt-Boyes and MacLachlan, 1995; Tsuboi and 
Imada, 1997), are non-pathogenic to humans (Xiao et al., 2004; Hu 
et al., 2008) and thus, humans do not have pre-existing antibodies to 
BTVs (Jeggo et al., 1983; Barratt-Boyes and MacLachlan, 1995; Dong 
et al., 1998). Not only can BTV be grown easily in vitro (Jameson and 
Grossberg, 1981; Du, 1985; Samal et al., 1985; Sundin and Mecham, 
1989; Dong et al., 1998; Wechsler and McHolland, 1998; Chen et al., 
1999; Prasad et al., 1999; Xue, 2001; Lei et al., 2004; Xiao et al., 2004; 
Liang et al., 2006; Hu et al., 2008), it has powerful oncolytic activity 
against many different in vitro cultured cancer cell lines (Chen et al., 
1999; Xiao et al., 2004; Hu et al., 2008), such as A498 human kidney 
cells (ATCC: HTB-4), HEP-G2 human liver cells (ATCC: HB-8065), 
A549 human lung epithelial cells (ATCC: CCL-185), baby hamster 
kidney cells (BHK-21), monkey kidney (Vero) cells (Ramig et al., 
1989), mouse fibroblast cells (NIH 3T3), SPC-A-1 cells (Lei et al., 
2004), MA 782 cells (Liang et al., 2006), and in mouse models. No 
normal human cells such as the primary human embryo lung fibrob-
last (HEL) and primary murine embryos fibroblast (MEF) have ever 
been successfully infected by BTV (Dong et al., 1998; Chen et al., 
1999; Lei et al., 2004; Xiao et al., 2004; Liang et al., 2006; Hu et al., 
2008) and thus, humans are normally sero-negative. Madin–Darby 
canine kidney (MDCK) which is sensitive to reovirus apoptosis also 
proved resistant to BTV infection except in high MOI (unpublished 
data). BTVs can also infect cultured insect cells (King and Alders, 
1985; Samal et al., 1987; Guirakhoo et al., 1995; Mullens et al., 1995; 
Mertens et al., 1996; Xu et al., 1997; Tan et al., 2001).

In the last decade, our lab and collaborators have used both 
cell culture systems (Dong et al., 1998; Chen et al., 1999; Lei et al., 
2004; Xiao et al., 2004; Liang et al., 2006; Hu et al., 2008) and mice 

Table 1 | Available BTV genome sequence accession numbers.

Segment US Prototype bluetongue viruses

 2 10 11 13 17

L1 L20508 X12819 L20445# L20446# L20447#

L2 * M11787 M17437 D00153 M17438

    L11874 

L3 L19967# M22096 L19968# L19969# K02369

M1 L08637# L13726# L08638# L08641# L08639#

M2 M97680# Y00422 M97681# M97762 X17041

M3 X62283 P07389 L15424# X54308 X55359#

S1 M38172# P07886 M32102# J04365# X53693#

S2 L08673# D00500 L08674# L08675# L08676#

S3 L08668# L08669# L08670# L08671# L08672#

S4 L08628# M28981 L08631# L08629# L08630#

*Published sequence but no accession number available in GenBank.
#Accession numbers provided by Dr. Joseph Li’s laboratory.
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expression in immortalized human kidney, lung, and liver cells 
and subsequently kill the infected cell with cell line-dependent 
severity. Analysis of results from the cytokine profiles and expres-
sion levels in these five cell lines indicated that human tumor cells 
and tumor reduction might be a result of the combined effects of 
direct viral induced cell death and recruitment of T-lymphocytes 
(Jeggo and Wardley, 1982a,b; Jones et al., 1996, 1997) to the tumor 
through elevated cytokine/chemokine production (Shmulevitz 
et al., 2005, 2010). Very high levels of pro-inflammatory cytokines 
were secreted from BTV-infected cells and cytokine levels secreted 
from each of the seven cell types were directly proportional to the 
measured death of infected cells. Thus, we hypothesize that the 
cell death and cytokine expression are related and may be caused 
by shared signaling pathways or events. These pathways/events 
are currently under investigation. If these same events occurred 
in human tumors, BTV would be expected to reduce tumor size 
in infected patients by directly causing infected human cancer cell 
death and by inducing cytokine expression from the tumor that 
would lead to lymphocyte recruitment to the site of the tumor. 
Thus, BTV has the therapeutic potential in cancer because of its 
selective ability to cause preferential apoptosis of various human 
cancer cell lines and tumors.

Progress and PersPectIves of oncolytIc vIruses
Ideal oncolytic viruses should have essential survival data, sys-
temic effect, resist immune system clearance, targeted delivery, 
and distribution, be highly mobile for intravenous spread, travel 
to and kill distant metastases, have a high rate of replication 
to stay ahead of immune system clearance, tolerable toxicity, 
and side effects, etc. Systemic efficacy is the ability of a virus 
to find and attack distant metastases. Systemic delivery makes 
sense in cancer where primary tumors and metastases are dis-
persed. However, systemic approach in cancer is a big problem 
because we do not have a good target specific delivery device 
that would facilitate uptake specifically for certain cells. There 
is no transport vehicle to target specific cell type yet. Oncolytic 
viruses can become a radical approach to treat cancer. If this 
can be achieved, then it would be better than the current and 
conventional therapies. However, it is very difficult to get enough 
control patients in clinical trials and to get biopsies from different 
tissues, organs and tumors after the oncolytic virus treatments 
to determine the efficacy or survival of most oncolytic viruses. 
Oncovirologists consider oncolytic virus as a dark horse treat-
ment but not a dead one since they know that many anti-cancer 
agents appear to be actively effective in lab cultures and animal 
models but failed in human trials.

Many oncolytic viruses (Norman and Lee, 2005; Alain et al., 
2006, 2007; Kim et al., 2006; Shen and Nemunaitis, 2006; Burroughs 
et al., 2007; Qi et al., 2007; Ribacka et al., 2008; Cripe et al., 2009; 
Ou and Yen, 2010) that are currently in phase I/II/III human clini-
cal trial status include adenovirus, vaccinia virus, coxsackie virus, 
reovirus, Newcastle disease virus, herpes simplex virus 1, measles 
virus, and Seneca Valley virus (Burroughs et al., 2007). In 2007, the 
only oncolytic virus approved for phase III clinical trials in China 
was the adenovirus (H101) with E1B deletion produced jointly 
by the Sunway Biotech of China and Onyx Pharmaceuticals of 

Liang et al., 2006; Hu et al., 2008). The mechanism by which tumor 
reduction occurs is still unknown. However, in experiments with 
cultured human cancer cells, the cells detached and died progres-
sively throughout BTV infection. All BTV genes are transcribed 
and BTV proteins are expressed during infection.

In the analysis of secreted analyte expression, cytokine and 
chemokine levels from mock- and BTV-17 infected cells were 
determined using Multiplex Immunoassay Kits and reagents sup-
plied from Quansys Biosciences (Logan, UT, USA), according to 
the supplier’s protocol. Twenty-five analytes were tested and these 
included IL-1a, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p40, 
IL-12p70, IL-13, IFNγ, TNFα, TNFβ, TGF-b1, MCP-1, RANTES, 
ANG2, HGF, TIMP, TPO, VEGF, PDGF, FGF-basic, and CRP (man-
uscript in preparation).

Of the 25 analytes tested for during infection, only seven were 
found to be expressed from five cell lines: A498 human kidney 
cells, HEP-G2 human liver cells, A549 human lung epithelial 
cells (ATCC: HTB-4, HB-8065, CCL-185, respectively), BHK-21 
cells, or Vero cells. Of these seven analytes, five were found to be 
consistently elevated upon BTV infection, with the expression 
pattern consistent among cell lines. These are IL-6, IL-8, MCP-1, 
RANTES, and FGFβ. The levels of VEGF and TIMP were similar 
in control and BTV-infected cells. However, A498 kidney cells 
responded to infection with the greatest secretion of cytokines, 
followed by A549 lung cells while HEP-G2 liver cells secreted the 
least amount of cytokines.

Polyinosine:polycytosine (poly I:C) is a synthetic ds-RNA that 
has been used to assess the role of ds-RNA segments of many 
ds-RNA viruses in vitro since it can induce differential interferon 
and cytokine production (Der et al., 1998; Diebold et al., 2003; 
Chiang et al., 2006). However, poly I:C alone did not cause cell 
death or have a significant impact on cytokine or chemokine 
expression in BTV-infected human cancer cell lines. Only IL-6 
and IL-8 were found to be significantly elevated during poly I:C 
treatment. Increases in IL-6 and IL-8 were observed only in kidney 
cells (A498 and Vero) and were most prevalent in samples treated 
with 1 μg/ml poly I:C. The other cytokines MCP-1, RANTES, 
and FGFβ were all at expression levels comparable to the placebo 
treated cells.

With the identification of some of the antigenic epitopes of 
various BTV proteins (Wang et al., 1972; Geysen et al., 1985; 
Fukusho et al., 1987; Gould et al., 1988a, 1994; Grieder and 
Schultz, 1989; Geysen, 1990; Li and Yang, 1990, 1992; Marshall 
and Roy, 1990; Mecham and Jochim, 1990; Eaton et al., 1991; 
Rossitto and MacLachlan, 1992; Du Plessis et al., 1994, 1995; 
Schoehn et al., 1997; Nagesha et al., 2001), BTV immunity has 
only been studied partially in the last two decades because of 
lack of supporting funding and reliable immune assays (Jeggo 
and Wardley, 1982a,b; Gibbs et al., 1983; Jeggo et al., 1983; 
Campbell and Grubman, 1985; Stott et al., 1985; Fukusho et al., 
1987; Huismans et al., 1987a; Marshall and Roy, 1990; Martyn 
et al., 1991; Li and Hwang, 1992; Jones et al., 1996, 1997; Lin and 
Zhou, 1996; Wade-Evans et al., 1996; Odeon et al., 1999; Prasad 
and Minakshi, 1999; DeMaula et al., 2000; Roy, 2003). With the 
recent development of more reliable immune assays and microar-
rays, we have found that BTV can induce inflammatory cytokine 
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comParatIve vIratheraPy and vIratheraPeutIcs of 
reovIrus (strong et al., 1998; norman et al., 2004; norman and 
lee, 2005; shmulevitz et al., 2005, 2010; alain et al., 2006; Kim 
et al., 2007; marcato et al., 2007; cripe et al., 2009; hill and lee, 
2010; thirukkumaran et al., 2010) and Btv (dong et al., 1998; 
chen et al., 1999; lei et al., 2004; Xiao et al., 2004; liang et al., 
2006; hu et al., 2008)
Bluetongue viruses and reovirus are more advantageous than the 
genetically modified oncolytic DNA viruses since the integration 
of viral ds-RNA genome into the host cell genome have not been 
shown or reported. Since humans are sero-negative to BTVs, 
potential future use of BTV to degrade human cancer by direct 
intratumoral injection to degrade the injected tumors will not 
be inhibited by pre-existing immune components within human 
cancer cells. Thus, BTV is potentially better than Reovirus in ini-
tial oncolytic applications. The current mechanisms of oncolytic 
Reovirus toward human cancer cells have recently been summa-
rized (Strong et al., 1998; Norman et al., 2004; Norman and Lee, 
2005; Shmulevitz et al., 2005, 2010; Alain et al., 2006; Kim et al., 
2007; Marcato et al., 2007; Cripe et al., 2009; Hill and Lee, 2010; 
Thirukkumaran et al., 2010).

Genetically modified reovirus serotype 3, but not types 1 and 
2, is a proprietary product called Reolysin produced by Reolytics 
Biotech, Inc. Data for cancer treatment with this agent from the 
last decade in animal models and lately in phase I/II human clinical 
trials have shown encouraging indications of its potential oncolytic 
activities in cancer cells bearing an activated Ras pathway. Phase 
III human clinical trials have been approved and initiated in 2009. 
However, the pre-existing anti-reovirus sera in humans worldwide 
can trigger greater immune responses against this virus, reducing its 
efficacy and effectively shutting down its potential oncolytic treat-
ment. Uses of oncolytic BTV have greater advantages over reovi-
rus since no anti-BTV serum is detected in most people globally. 
Even though BTV injected into tumors can activate dendritic cells 
for early detection of viral infection, it will take 10–14 days before 
adaptive immune responses can be generated against BTVs which 
can eradicate xenografted tumor cells in mice in less than 10 days 
(preliminary data).

Oncolytics Biotech at Calgary, AB, Canada showed the uses of 
Reovirus (Reolysin) plus cisplatin, a standard chemotherapy agent 
in both cultured melanoma cells and a mouse model. The com-
bined uses of Reolysin and cisplatin were much better than either of 
these two agents alone since they appeared to work synergistically 
(Abstract of the 4th International Symposium on the “Treatment 
of Cancers with Oncolytic Viruses” at Scottsdale, Arizona March 
15–17, 2007). Furthermore, they had also showed that simultaneous 
and combined uses of Reolysin and gemcitabine could completely 
eradicate the transplanted colon cancer in four of the five mice 
(Abstract of the American Association for Cancer Research (AACR) 
Annual Meeting in April 2007).

Since mid-April, 2007, Oncolytics Biotech has demonstrated 
some success in multiple Phase II trials with several medical centers 
in the UK and US, administering intravenous Reolysin to patients 
with sarcomas that have metastasized to the lung. Multiple clini-
cal trials for other tumors with the US National Cancer Institute 
(NCI) were conducted in late 2007. Clinical trials of head and neck 

Emeryville, CA, USA (Privilege communication). Since mid-2005 
to the end of 2010, several other oncolytic viruses have also been 
approved for phase III clinical trials primarily outside US as briefly 
described below. Thus, cancer therapy with oncolytic viruses has 
survived and revived, and this unique approach is poised for a 
comeback (Aghi and Martuza, 2005; Norman and Lee, 2005; Alain 
et al., 2006; Liu, 2006; Liu et al., 2007).

The results of the last 10–15 years of investigation gener-
ated by researchers have increased interest in oncolytic viruses. 
Investigators have generated and obtained some genetically modi-
fied viruses with greater oncolytic potentials (Aghi and Martuza, 
2005; Norman and Lee, 2005; Alain et al., 2006; Liu, 2006; Liu et al., 
2007). A significant effort is underway to understand the genetic 
and mechanistic basis of cancers, selective degradation of cancer 
cells by these oncolytic viruses, and their effects on downstream 
cellular events and pathways (Strong et al., 1998; Norman et al., 
2004; Vorburger et al., 2004; Aghi and Martuza, 2005; Norman 
and Lee, 2005; Shmulevitz et al., 2005, 2010; Alain et al., 2006; 
Liu, 2006; Kim et al., 2007; Liu et al., 2007; Marcato et al., 2007; 
Hu et al., 2008; Cripe et al., 2009; Hill and Lee, 2010; Ou and Yen, 
2010; Thirukkumaran et al., 2010). Increasing attention is being 
paid to protein families like proteases, caspases, and kinases which 
play critical roles in cancer.

Current therapeutic approaches for human cancer include 
the regimen of selective surgery, high dose but cytotoxic chemo-
therapy with two to three drugs and radiation. These approaches 
are not very effective to combat the increasing numbers of human 
cancers. Using oncolytic viruses generates a paradigm shift from 
current cancer treatment using chemotherapy and radiation 
which typically destroy both normal and cancer tumor cells. As 
we learn more about cancer biology and oncolytic viruses, new 
strategies for treating cancers are rapidly evolving. Uses of onco-
lytic virus alone or with synergistic anti-cancer drugs or irradia-
tion in human clinical trials are currently under consideration 
or in progress.

Reovirus leads the field of oncolytic viruses and positive 
clinical trials are very encouraging (Strong et al., 1998; Norman 
et al., 2004; Norman and Lee, 2005; Shmulevitz et al., 2005, 
2010; Alain et al., 2006; Kim et al., 2007; Marcato et al., 2007; 
Cripe et al., 2009; Hill and Lee, 2010; Thirukkumaran et al., 
2010). Other companies and institutes are not far behind. In 
mid-May 2010, researchers of the University of Helsinki and 
Oncos Therapeutics have treated 200 patients with their “modi-
fied” GMCSF armed oncolytic adenovirus which exhibited anti-
tumor immunity that recruited natural killer cells and induced 
tumor-specific cytotoxic T-cells with strong efficacy and safety. 
The media report indicated that its clinical benefit is about 
45% according to the RECIST criteria with no grade four to 
five side effects detected. This represents an extension of their 
initial investigation in 2008.

With these successful applications and those from other onco-
lytic viruses, we can now add the simple but oncolytic BTV as a key 
component to the armamentarium of oncologists to combat and 
destroy the insidious cancer cells since BTVs have similar charac-
teristics and additional subtle advantages over reovirus and other 
oncolytic viruses.
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2. BTV is harmless to normal human cells which have active p53. 
However, BTV will attack human tumor cells that have impai-
red p53.

3. BTV is very stable since it can be stored at pH 8.2–8.4 at 4°C 
for over 20 years with only 5–10% loss of infectivity (unpubli-
shed data). It is also stable at room temperature at this pH for 
3–4 weeks. Thus, it can be shipped by air-mail globally without 
significant loss of its infectivity and oncolytic activities (unpu-
blished data).

4. BTV correlates well with measurement of viral level and 
tumor responses. Thus, this is a direct effect toward cancer 
cells. 2-D gel electrophoresis and the 3-D assay (Lam et al., 
2007) for the measurement of BTV-induced oncolysis are 
currently under optimization and further development 
and adaptation.

5. BTV infection of many cultured human tumor cells has led 
to the production of many “inflammatory” cytokines such 
as TNF-alpha and IL-6 which strongly activate the kinase 
activity of p38 MAPK and ERK1/2. These cytokines also 
assist the subsequent activation of p38-dependent MAPK 
and PKR pathways which can bring about the necrosis and 
apoptosis of cancer cells. This strongly suggests that BTV 

cancers began in mid-August 2010. This will help to determine 
whether Reolysin can migrate systemically to metastasized tumor 
sites and exhibit its oncolytic activity.

Oncolytics Biotech has expended more than 65 million dollars 
and a decade of genetic modifications of Reolysin before human 
clinical trials were approved. Similar and greater expenditures 
have also been made by other companies and institutes in the last 
12–15 years to develop different oncolytic viruses with tremen-
dous personnel efforts before some clinical trials are approved 
and conducted. We strongly believe that BTV is the front runner 
of the next generation oncolytic viruses since it needs no genetic 
modifications and attenuation, and carries no payloads. It can grow 
fast and spread easily within many human cancer cells. Since there 
is no pre-existing neutralizing antibody against BTV in humans, 
they should be undetected nor immunologically inhibited in the 
initial injection alone or with anti-cancer agents. In addition to the 
comparison of the oncolysis of human cancer cells by reovirus and 
BTV as shown in Table 2, BTV has additional advantages. Briefly:

1. Since BTV does not infect normal human cells, we do not have 
to suppress the immune system before use. However, it might 
affect subsequent injections.

Table 2 | Comparison of oncolytic reovirus and bluetongue virus.

Reovirus* Bluetongue virus#

About 100× more efficient replication in RAS-transformed cancer cells 5,000× more efficient replication in RAS-transformed cancer 

cells

Produce potent and specific CPEs Similar results

About 3× more efficient proteolytic disassembly (uncoating) because more active 

endosomal and lysozsomal proteases (cathepsins B and L) are present in cancer cells

Determination in progress

Produce 4× more infectious progeny than non-infectious defective interfering particles Determination in progress

About 9× more caspase-induced apoptosis Has caspase-3 induced apoptosis

Caspase-independent apoptosis (NA) Presence of Caspase-independent apoptosis

Poly (I:C) did not prevent reovirus infection Similar results

Pro-inflammatory cytokines (NA) Higher levels of pro-inflammatory cytokine production

Reovirus persistently infected Raji cell, did not reduce xenograft tumor in mice and 

“cure” cells (Raji) 

Data Not Available (NA)

HTR1 cell is a highly reovirus-resistant Fibrosacoma cell derived from HT1080. It has 

reduced cathepsin B activity and it constrains reovirus oncolysis

No BTV-resistant human cancer cells have not been detected 

yet

Persist in tumor through days (NA) Persist in human tumor xenografts in mice through day 30 

from a single injection

Toxicity tests are well tolerated Similar preliminary results

Systemic delivery (some success) Work in Progress

Required specific genetic modifications No modification is required

Humans have pre-existing anti-reovirus sera Humans have no pre-existing anti-BTV sera 

No integration of viral genome into host cell genome No integration of viral genome into host cell genome

Have done Phase I–II clinical trials and Phase III is ongoing Work under planning and in progress

*Reovirus references: Strong et al. (1998), Norman et al. (2004), Norman and Lee (2005), Shmulevitz et al. (2005, 2010), Alain et al. (2006), Kim et al. (2007), Marcato et al. 
(2007), Cripe et al. (2009), Hill and Lee (2010), Thirukkumaran et al. (2010).
#BTV References: Dong et al. (1998), Chen et al. (1999), Lei et al. (2004), Xiao et al. (2004), Liang et al. (2006), Hu et al. (2008).
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tion receptors and can  recognize  molecules that are broadly shared 
by many pathogens. Thus, TLRs pathways play a key role in both 
innate immunity and normal immune physiology that can sense 
different pathogens and cancer cells. We hypothesize that some of 
the TLRs have mutated in many cancer cells.

To determine whether mutated TLRs are involved with the rec-
ognition of BTVs, we have initiated the “silencing” of each 1 of the 
10 known human TLRs TLR- 1–10 using RNAi. Human cancer 
cell lines, A498 and HEK 239, are transfected with DNA plasmids 
containing siRNA sequences against human TLRs (Invivogen, CA, 
USA). Preliminary data indicated that endosome-located TLR-3 
which specifically recognizes ds-RNA is potentially involved since 
cells transfected with this TLR-3 RNAi plasmid produced substan-
tially less BTV 17 and 10 progeny. Cells transfected with TLR-2, 4, 7, 
8, and 9 RNAi plasmids produced slightly less viral progeny in these 
two human cancer cell lines. Similar results are also found in A549 
and Hep-G2 cells. Experiments are now underway to determine 
what types of mutation are in the TLR-3 in these four human cancer 
cell lines and this might provide a potential explanation of why 
normal human cells are not infected by BTV because the regular 
TLR-3 has not been modified nor mutated. Several signal pathways 
related to TLRs are currently under screening using Pathway Screen 
Arrays (Qiagen/SABiosciences).

conclusIon
Human cancers can be divided into two major types, 90 and 10% 
of which are solid (carcinoma and sarcoma) or liquid (leukemia) 
tumors, respectively. There have been widely unrealistic claims of 
personalized cancer medicine in the last decade. Recent data and 
epidemiological analysis of many tumors reveal that most FDA-
approved cancer therapeutic drugs can only provide small incre-
mental improvement and survival to cancer patients. Companies 
that make many unrealistic claims for human cancer cures in 
scientific tabloid media do so strictly for financial reasons since 
these expensive cancer drugs can generate great revenues via physi-
cians who make drug recommendation and to whom drug com-
panies provide substantial and financial “kick-back” incentives. 
Interestingly, primary tumors are heterogeneous and they do not 
kill most cancer patients. However, the 90% of deaths of cancer 
patients are primarily caused by those cancer stem cells that have 
metastasized to other regions to form metastatic tumors.

Humans are sero-negative toward BTVs since BTVs do not infect 
normal human cells. Infection and selective degradation of several 
human cancer cell lines, but not normal cells, in vitro by five US 
BTV serotypes have been investigated by our lab for the last few 
years when BTV oncolytic potential was discovered. We have also 
recently found that direct single injection of oncolytic BTV into the 
human tumor xenografts in mice, have led to cytotoxic destruction 
and preferential lysis of cancer cells within the xenograft but not 
in normal healthy human or mouse cells (preliminary data). Thus, 
oncolytic BTVs are safer and more effective than most current 
cancer treatments. However, we believe that oncolytic BTV is not 
a “stand-alone” therapeutic and that simultaneous combination 
of BTV with either radiation or chemotherapy can obliterate the 
tumors more rapidly and extensively. Cancer patients should have 
fewer side effects since small dosage radiation and anti-cancer drugs 
are used for this combined treatment.

can prime and direct the immune system of cancer patients 
against certain solid tumors such as breast and prostate 
cancer.

6. Repeat screening of over 500 human cytokines using biotin 
label-based cytokine antibody array is currently in progress 
and data are under comparative analysis.

7. Construction and rescue of recombinant infectious BTV 
(Boyce and Roy, 2007) expressing the enhanced green fluore-
scent protein (eGFP), using a protocol similar to one recently 
published by our lab for human parainfluenza virus type 3 
(Roth et al., 2010) will be initiated shortly.

dIfferent mechanIsms By WhIch oncolytIc reovIrus 
and Btv can selectIvely degrade cancer cells
An activated Ras/RalGEF/p38 pathway is potentially involved with 
the permissiveness of host cells to Reovirus infection (Norman 
et al., 2004; Shmulevitz et al., 2005; Alain et al., 2007; Kim et al., 
2007; Marcato et al., 2007). It has been shown that the c-K-ras gene 
inside the lung carcinoma cell line A549 we used has mutation at 
codon 12 (Valenzuela and Groffen, 1986). Since the Ras/RalGEF/
p38 signal pathway inside the A549 cell has been activated, this 
might allow BTV to degrade human tumor cells efficiently similar 
to reovirus (Stott et al., 1985; Shmulevitz et al., 2005, 2010; Kim 
et al., 2007; Marcato et al., 2007).

We have further hypothesized that the genetic alterations/
mutations of different human cancer cells, such as signals within 
a Ras-activated pathway, play a key role in the susceptibility of 
different oncolytic viruses in addition to specific viral receptors 
which might be present in human cancer cells but not in normal 
human cells. Identification of BTV receptor(s) on the surface of 
human cancer cells is also currently in progress. Comparison of 
oncolytic potentials between reovirus and BTV is summarized 
in Table 2.

With regard to the potential cytotoxic effect mechanisms of 
BTVs, the GP5 protein of BTV identified by our lab (Li and Yang, 
1992; Yang and Li, 1992, 1993; Yang et al., 1992a) has recently been 
shown to induce or trigger apoptosis in mammalian cells (Mortola 
et al., 2004). Furthermore, the non-structural BTV protein, NS-3, 
has been shown to be a “viroporin,” the polymerization of which 
forms pores on the surface of BTV-infected cells, leading to severe 
cellular leakage, and potential cell death (Han and Harty, 2004). We 
hypothesize that these two BTV proteins and other(s) are involved 
with the cytotoxic effect of human cancer cells after BTV infection. 
Individual BTV gene “silencing” with RNAi to determine the con-
tribution of each of the BTV gene products to onclysis of human 
cancer cells are also in progress.

toll-lIKe recePtor sIgnalIng and Btvs
The protein Toll (means “weird” in German) was discovered in 
the fruit fly Drosophila melanogaster in 1980s. It is a transmem-
brane signal reporter protein that functions primarily in develop-
ment. However, if mutations in Toll occurred in the fruit fly, the 
infection by Aspergillus fumigates (a fungus) is lethal. Toll-related 
molecules involved with human innate immunity and coined as 
toll-like receptors (TLRs) were then discovered in mid-1990s by 
Ruslan Medzhitov and Charles Janeway (Medzhitov and Janeway, 
2002; Norman et al., 2004). TLRs are molecular pattern recogni-
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progeny obtained when several primary human cell lines were 
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When xenografts implanted in mice were injected directly with 
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potential risks of BTV oncotherapy is substantially lower than 
risks associated with other oncolytic viruses. However, this 
author sincerely hopes that expert advice and suggestions will 
be forthcoming from different “champions” after they have read 
this brief review.
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Related to the oncolytic BTVs, the following questions have been 
frequently asked: Is widely curing cancer by oncolytic viruses pos-
sible or just hype? What are some of the mechanisms of the selec-
tive degradation of human tumors? Will this become a therapeutic 
modality bridging the lab to bedside? Will the data and results 
be useful and informative to clinical medicine? Will this scientific 
innovation transform into health gain for humanity? How “big” 
is the gap between in vitro/in vivo studies and human application? 
Is oncolytic BTV a vital alternative for cancer therapy? What are 
the pathways BTV used to carry out this task? How long would it 
take to translate BTV oncolysis to medicine? Overall, we believe 
that the oncolytic ability of BTV represents a significant potential 
to selectively degrade human cancer cells alone and would even be 
greater when combined with simultaneous anti-cancer drug and 
radiation treatment.

Our group and collaborators are currently engaged in several 
types of investigations with these goals: (1) Study the mechanistic 
basis of lung, kidney, and liver cancer destruction by BTVs, (2) 
Examine and determine biological profiles of three types of solid 
tumors after BTV infection, (3) Correlate the responses of these 
human cancer cells to changes at the cellular DNA, RNA and protein 
level, and (4) Construction and rescue of an infectious recombinant 
BTV 17 expressing the enhanced eGFP using the method that we 
have developed for the human parainfluenza virus type 3 (Roth 
et al., 2010) with BTV ds-RNA fragments (Kowalik et al., 1990b; 
Boyce and Roy, 2007), the success of which can further reveal the 
oncolytic pathways used by BTVs.

Taking the next step in the investigation of BTV oncolysis 
is very challenging since no one can individually excel in all 
the technical, scientific, and clinical avenues involved in this 
endeavor. Our ongoing in vitro work with different human cancer 
cell lines will assist us in elucidating the potential mechanisms 
of the BTV oncolytic activities. No CPE was detected nor viral 
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