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Abstract 

Reactive oxygen species (ROS) at supraphysiological concentration have a determinate role in contributing to 
immuno-metabolic disorders in the epithelial immune microenvironment (EIME) of psoriatic lesions. With an exclusive 
focus on the gene-oxidative stress environment interaction in the EIME, a comprehensive strategy based on ROS-
regulating nanomedicines is greatly anticipated to become the mainstay of anti-psoriasis treatment. This potential 
therapeutic modality could inhibit the acceleration of psoriasis via remodeling the redox equilibrium and reshaping 
the EIME. Herein, we present a marked overview of the current progress in the pathomechanisms of psoriasis, with 
particular concerns on the potential pathogenic role of ROS, which significantly dysregulates redox metabolism of 
keratinocytes (KCs) and skin-resident or -infiltrating cells. Meanwhile, the emergence of versatile nanomaterial-guided 
evolution for transdermal drug delivery has been attractive for the percutaneous administration of antipsoriatic thera-
pies in recent years. We emphasize the underlying molecular mechanism of ROS-based nanoreactors for improved 
therapeutic outcomes against psoriasis and summarize up-to-date progress relating to the advantages and limita-
tions of nanotherapeutic application for transdermal administration, as well as update an insight into potential future 
directions for nanotherapies in ROS-related skin diseases.
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Introduction
Psoriasis (Ps) is a multifaceted disease related to chronic 
dysimmunity and genetic disease, which manifests in skin 
symptoms of demarcated erythematous and scaly lesions, 
accompanied by other systemic inflammatory comor-
bidities, like psychological illness, metabolic disturbance, 
arthritis, and cardiovascular disorders [1]. It has been 
affecting appropriately 125 million people worldwide [2, 
3], in which the age group of 60–69 years is recognized 
as a weighty psoriasis burden according to the Global 
Burden of Disease (GBD) 2019 study [4, 5]. According to 
the clinical features, psoriasis is classified into cutaneous 
psoriasis and systemic psoriasis. Among the variants in 
cutaneous psoriasis, plaque psoriasis, also known as pso-
riasis vulgaris, is the most common phenotype, affecting 
∼85–90% of patients with psoriasis [6]. The histopatho-
logical feature of psoriatic lesions is parakeratosis in the 
thickened stratum corneum, the remarkably thickened 
epidermis with elongations into the dermis, and an abun-
dance of different immune cells from dermis infiltration 
into the epidermis. Numerous studies have currently 
revealed that the direct or indirect cross-talking among 
different cell types in epithelial immune niches, plays a 
vital role in the pathogenesis of psoriasis and predomi-
nately emphasized the trigger role of oxidative stress in 
these cell types dysfunctions. Oxidative metabolites, 
namely reactive species, such as ROS/RNS, including 
superoxide anion hydroxyl radical (•OH−), radical (•O2

−), 
hydrogen peroxide  (H2O2), singlet molecular oxygen 

(1O2), as well as nitric oxide, hydrogen sulfide, and oxi-
dized lipids, prominently originates from mitochondrial 
electron transport chain (ETC), NADPH oxidases, other 
oxidases like peroxisome, several superoxide dismutases 
(SOD1–SOD3) and so on [7–10]. The physiological con-
centration of reactive species is significant to orchestrate 
cellular redox signaling and guarantee diverse normal cell 
processes. Inversely, the supraphysiological level of these 
metabolites has the opposite pleiotropy. Therefore, it is 
imperative to deeply understand the role of detrimental 
ROS in the dyshomeostasis of keratinocytes (KCs) and 
immune cells in the epithelial immune microenviron-
ment (EIME), ultimately leading to the generation and 
perpetuation of the inflamed cascade reaction in psoria-
sis [7].

The conventional medications for psoriasis such as cor-
ticosteroids, vitamin D derivatives, targeting biologics, 
folic acid antagonists and calcineurin inhibitors are failing 
far to fulfill the current clinical need due to the systemic 
adverse reaction and the lower drug penetration [11, 12]. 
Over the past decades, we have witnessed great success 
in medical nanomaterial, which has provided more and 
more nano-drugs and possible solutions for transdermal 
administration to improve psoriasis. The application of 
biomaterials to locally deliver conventional medications 
for psoriasis therapy can achieve an enhanced local drug 
concentration and circumvent system adverse reactions. 
Among the various nanotechnologies, several nanomate-
rials, e.g., microneedle and hydrogel, have demonstrated 
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to be promising in clinical applications which are already 
on the market. In this review, we stay organized around 
the following two topics: firstly, we review how specific 
ROS perturbs and reprograms redox signaling pathways 
in KCs and immune cells, as well as provide a compre-
hensive understanding value of ROS as a promising 
therapeutic target for the applications in the treatment of 
psoriasis. In the end, we summarize the state-of-the-art 
ROS-regulating nano-medicines and nanomaterial-based 
therapies with distinctive transdermal delivery features 
used in anti-psoriatic therapies.

Oxidative stress and its roles in different cell types 
dysfunctions of psoriasis
As the outermost immune and barrier organ of the 
human body, the skin is most vulnerable to be attacked 
by external insults, such as pathogen, toxication, pol-
lution, trauma, UV rays, etc., concomitantly with an 
increased baleful ROS, consequently disturbing cuta-
neous defense mechanism and priming skin immune 

responses maintained by EIME [13], which is com-
posed of cellular communications among KCs, skin-res-
ident and skin-infiltrating immune cells via interactions 
with a gradient of various chemo-attractants, such as 
chemokines, cytokines, vesicles and exosomes in the 
epidermis and papillary dermis [13, 14], as shown as in 
Fig.  1. In the past decades, a dramatic increase in the 
numbers of evidence has highlighted that turbulence of 
EIME evokes the initiation and chronic inflammation 
in dermatoses significantly associated with oxidative 
stress [15–17]. In addition to direct skin abnormality, 
systemic-based perturbations of metabolome also have 
appreciable effects on the pathogenesis of psoriatic 
inflammation [18]. As the pathogenic roles of increased 
oxidative stress, proinflammatory cytokines, adipocy-
tokines, endoplasmic reticulum (ER) stress unbalance, 
and gut microbiota dysbiosis in the development of pso-
riasis with metabolic comorbidities are decoded, thus 
evaluating the metabolite profiles of psoriasis contributes 
to indicating biomarkers or novel therapeutic targets for 

Fig. 1 Dysfunctional different cell types (KCs, skin-resident and -infiltrating immune cells function) mediate the propagation of inflammatory loops 
in EIME of psoriasis: turbulence of EIME evokes the initiation and chronic inflammation in psoriasis significantly associated with oxidative stress. 
Deleterious reactive metabolites ROS have a harmful role in inducing irreversible damage to these cells in EIME, thereby reprogramming their 
metabolic pathways involved in the development, proliferation, activation and function. Subsequently, intricately interwoven effects among these 
cells form clusters of inflammatory circuits in the pathophysiological EIME of cutaneous inflammation, ultimately giving rise to psoriasis
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prognosis and monitor response to the treatment [6, 19]. 
What’s more, numerous discoveries exploring the path-
ogenic mechanism of psoriasis have shed light on intri-
cately interwoven effects among keratinocyte, innate and 
adaptive immune cells to form clusters termed induc-
ible skin-associated lymphoid tissue (iSALT) [20–24] in 
the pathophysiological EIME of cutaneous inflamma-
tion, especially in psoriasis [14, 25]. Deleterious reactive 
metabolites like ROS have a harmful role in inducing 
DNA mutations, epigenetic alterations, post-translational 
modifications of protein kinase (cysteine residues)[10], 
lipid peroxidation, and other key cellular components 
irreversible damage to these cells, thereby reprogram-
ming their metabolic pathways of development, prolif-
eration, activation and function, ultimately giving rise 
to psoriasis [15, 26, 27]. Therefore, disturbances in the 
oxidant-antioxidant system of the skin bring a dominant 

role in the pathogenesis of psoriasis [28], and keeping 
the dynamic equilibrium of the redox system is the most 
significant factor to sustain a myriad of normal biologi-
cal processes in cells of EIME. Intracellular sophisticated 
antioxidative systems can counteract oxidative stress-
induced ROS compounds, maintain redox homeostasis 
with a physiological threshold of ROS, and protect cells 
from an oxidative stress injury. The antioxidant capacity 
of the various skin cells is armed with the main cellular 
antioxidant pathways, including the main components 
of glutathione (GSH) pathways [29] and transcriptional 
regulator NF-E2-related factor 2 (NRF2) [29–31], which 
translocate to the nucleus and binds to DNA promoters 
to initiate transcription of many antioxidant genes and 
cytoprotective proteins, to balance the level of oxidative 
metabolites, as shown as Fig. 2. Hence, we elucidate the 
focus role of ROS and molecular mechanism in skin KCs 

Fig. 2 ROS contributes to the rearranging immunometablism of different cell types, accompanied by exerting their effector functions in response 
to tissue environments via intermediating the main cellular oxidation-reduction (redox) signaling pathways
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and immune-resident or –infiltrating cells under psoria-
sis conditions.

Oxidative stress‑induced pathological signaling in KCs
It is admitted that KCs as amplifiers contribute to cell-
mediated psoriatic IL-23/IL-17 axis inflammation cas-
cade effect in psoriasis. That is, cytokines, derived from 
IL23/IL-17 axis, induce ROS accumulation and cause 
redox dyshomeostasis of KCs, resulting in impairing the 
proliferation, differentiation and function of KCs via 
dysregulating phosphorylation/dephosphorylation key 
transcription factors and signal transductions in these 
cells, including NF-κB, STAT3, and others [30, 32, 33]. 
These “activated” KCs exert a core pathogenic role in 
the cytokine-mediated various inflammation cascades 
[34–36], not merely serving as immune response triggers 
but also as proinflammatory non-immune cell effectors, 
which are capable of amplifying cytokine signal pathways 
from innate and adaptive immune cells to create a self-
perpetuating autoimmune cytokine loop further so that 
persisting inward recruitment of leukocytes subsets into 
psoriatic lesions [37–39], e.g., macrophages, neutrophils, 
myeloid DCs and T subsets. Young CN et al. found that 
the crucial psoriatic cytokine TNF-α could stimulate the 
activation of the mTOR-NF-κB pathway by ROS genera-
tion and ultimately production of inflammatory cytokines 
in KCs to initiate and maintain the progression of psoria-
sis; these ROS-induced cytokines could be attenuated by 
antioxidant enzyme and catalase, including taurine and 
N-acetyl-cysteine [28]. Besides, rapamycin, an inhibitor 
of mTOR, could exert antiproliferative properties in the 
imiquimod (IMQ)-induced mice psoriasis via activating 
NRF2 signaling and restraining NOX2/4 from decreasing 
ROS generation [40]. Likewise, inhibiting the activity of 
NOX1/NOX4 in KCs could abrogate detrimental oxida-
tive stress and rescue high levels of signature cytokines 
in a 2D model of atopic dermatitis and psoriasis [16]. 
CHF6001, a PD4 inhibitor, was reported to repress ROS 
through inactivating p47 (a subunit of the NOX com-
plex 1) and then inhibit translocation of phosphorylated 
NF-κB, promoting the loss of cyclin D1 to alleviate redox-
inflammatory crosstalk of psoriasis [41]. Apart from 
NOX isoforms, dual oxidase 2 (DUOX2) homologues can 
also generate ROS. A study reported by Nadeem A et al. 
had shown that GPR43 agonists could activate epidermal 
GPR43-mediated DUOX2 and IL-6 signaling pathways to 
give rise to pernicious ROS, leading to Th17 polarization 
immune responses and deterioration of psoriasis [42]. 
Besides, Kumari S et  al. uncovered that TNF-α induced 
the ROS-ERK pathway-dependent upregulation of IL-24 
and activation of STAT3 signaling in stressed KCs upon 
KCs stimulated by endogenous and exogenous insults 
[36]. STAT3, as an essential transcription factor, leads 

to the production of many cytokines in inflammatory 
processes of KCs [43, 44], which in turn not only have 
an impact on disturbing the oxidant-antioxidant system 
but also recruiting a more deal of immune cells into the 
skin lesions to perpetuate a positive feedback inflamma-
tory loop and remodeling extracellular matrix [28, 36]. 
Supraphysiological level of ROS makes the KCs be the 
state of ‘oxidative distress’, which can induce the genera-
tion or modification of functional reductant protein net-
works under regulating the redox signaling pathways, as 
mentioned already, to control ROS production and avail-
ability [7]. Among them, SIRT1, as a NAD-dependent 
deacetylase, plays a salient role in regulating the cellu-
lar pathological process of oxidative stress and autoim-
mune inflammation[17, 32, 45, 46]. In psoriasis, SIRT1 
has been reported as a vital detoxifier of ROS-mediated 
redox signaling pathways, including MAPK, NF-κB, and 
STAT3, with downregulation of psoriatic inflammatory 
cytokines, suppression of keratinocyte hyperprolifera-
tion, and inhibition of angiogenesis [32, 46–50]. In addi-
tion, IL6/IL22-induced STAT3 activation in KCs was 
controlled by HO-1 induction and activation of protein 
tyrosine phosphatase SHP-1, accompanied by reduction 
of KCs hyperproliferation [51].

Similarly, the KEAP1/NRF2 system, as cytoprotective 
and antioxidative gene transcription, is critical in the 
redox signaling pathway with a core role in regulating 
inflammation, maintenance of epidermal differentiation 
and keratinization in response to ROS challenge [52, 53]. 
The accumulated research has shown that a significant 
increase in detrimental ROS impairs the well-balanced 
cellular redox signaling pathways. It generates harmful 
protein oxidation products, leading to cell dysfunction 
and disease initiation. The expression of NRF2 is reduced 
and its downstream regulatory genes in psoriatic skin 
tissues. In the IMQ-induced psoriasis-like mice model, 
NRF2/HO-1 in the skin lesion was decreased. The accu-
mulation of excessive ROS activated the NF-κB pathway, 
concomitantly with the secretion of proinflammatory 
cytokines IL-17, IL-23, IL-1β and VEGF expression [54, 
55]. The reduction of other prototypical examples of 
redox signaling-mediated antioxidative enzymes is also 
involved in the pathomechanism of psoriasis, such as 
GSH, Px, CAT, and SOD [56, 57]. In addition, several 
aquaporins (AQP3, AQP8 and AQP9), referred to as ‘per-
oxiporins’, facilitate the transportation of  H2O2 across 
cellular membranes to regulate downstream intracel-
lular signalings [58, 59]. The study of Hara-Chikuma M 
et  al. demonstrated that AQP3-facilitated  H2O2 trans-
port was the precondition of NF-κB activation in KCs 
participating in the acceleration of psoriasis; In AQP3 
knockout mice AQP3 (-/-), IL-23-mediated psoriasiform 
skin inflammation was reduced [58]. Taken together, 
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the abovementioned studies of dysfunctional KCs sug-
gest that oxidative stress-related signaling pathways 
make a difference in the pathogenesis of psoriasis, and 
it is worthy of decreasing cytokines gene expression and 
obstructing the autoimmune loop for the treatment of 
psoriasis effectively via quenching generation and traffic 
of triggers-induced pernicious ROS with ROS-depletion 
or -blockade approaches.

Oxidative stress‑mediated abnormal immunometabolism 
in immune cells of psoriasis
The role of oxidative stress in macrophage dysfunction
It is well established that macrophages derived from 
monocytes lineage cells are the main component cells 
of innate immunity. Most human and animal studies 
have emphasized the crucial role of macrophages in the 
pathogenesis of psoriasis [60–62]. ROS/RNS contributes 
to rearranging macrophage differentiation and exerting 
their effector functions in response to tissue environ-
ments via intermediating the main cellular oxidation-
reduction (redox) pathways, including glutathione (GSH) 
pathways, and NF-E2-related factor 2 (NRF2) [30, 63, 
64]. Myeloid-derived suppressor cells (MDSCs) have 
been demonstrated involved in the progress of psoriasis. 
GSH synthesis in MDSCs isolated from the bone mar-
row of IMQ-induced psoriatic mice model with ROS 
accumulation was reduced, resulting in interruption 
of MDSCs differentiation into  CD11c+MHC  II+ den-
dritic cells and  CD206+ M2 macrophages to exacerbate 
skin inflammation [65]. In murine macrophages, LPS/
IMQ could induce ROS/RNS-NF-κB/ERK/JNK signaling 
pathway and decrease the expression of NRF2, increas-
ing iNOS and other inflammatory cytokines to exacer-
bate psoriasiform skin inflammation [66]. It is admitted 
that the major endogenous enzymatic sources of  O2 and 
 H2O2 are transmembrane NADPH oxidases and NADPH 
oxidase 2 complexes (NOX2) complex-generated ROS 
can participate in regulating the metabolism and oxi-
dation-reduction signaling pathways of macrophages 
and neutrophils involved in chronic inflammation, such 
as mannan-induced Ps and PsA (MIP), rheumatoid 
arthritis (RA) and systemic lupus erythematosus (SLE) 
[7]. Zhong J et  al. demonstrated that Nos2-derived NO 
modulated the pathogenic IL-1α secretion from the local 
macrophages, which acted to downstream target innate 
lymphoid cell 3 (ILC3), resulting in the up-regulation 
of IL-17 A to trigger and accelerate the development of 
MIP [67]. Moreover, mitochondria are also the source of 
cellular ROS [68]. Once the antioxidant defense mecha-
nism is compromised, the aggravation of mitochondrial 
malfunction-induced ROS could provoke the onset of 
chronic inflammatory diseases [69, 70]. Mitochondrial 
ROS is capable of NLRP3 inflammasome activation [64, 

71], which is a crucial reactor to trigger innate immune 
defenses by maturing proinflammatory cytokines such as 
interleukin (IL-1β and IL-18) [71, 72]. In the peripheral 
blood of untreated patients with psoriasis, the expres-
sion levels of inflammasome sensors, IL-1β and IL-18 
were enhanced; Verma D et al. demonstrated that TNF-α 
upregulated pro-IL-1β and pro-IL18 and stimulated these 
inflammasome activities via increasing ROS and activa-
tion of NLRP3 signaling pathways [73]. A previous study 
reported that administration of propranolol (the non-
selective beta-blocker) was relevant with exacerbation 
of psoriasis, ascribed to inhibition of autophagic flux, 
with an abundance of ROS-producing mitochondria in 
cutaneous LCs, leading to IL23A production [74]. Addi-
tionally, HO-1, considered an antioxidative enzyme, is 
responsible for cytoprotective molecules against oxida-
tive damage and inflammation. Recent shreds of evi-
dence have mentioned that drugs with the property of 
increased HO-1 expression are protective in animal 
models of psoriasis, such as curcumin, carnosol, DMF 
and hemin [54, 75, 76]. Elevated HO-1 expression could 
attenuate psoriasiform inflammation via inhibiting iNOS 
in macrophages and maintaining DCs immune toler-
ance phenotypes [70, 75, 77]. Oppositely, some conflict 
data suggested that variation of HO-1 system expression 
in macrophages not only presented beneficial roles, but 
detrimental outcomes in other diseases, such as cancer 
and infection [78, 79]. Based on the abovementioned 
research, it should be realized that macrophages, as the 
main effector components of innate immunity, are acti-
vated by intrinsically and extrinsically oxidative stress 
through tissue-specific signals to promote the secretion 
of disease context-specific cytokines [80–82]. Therefore, 
the treatment of unspecific antioxidants could alleviate 
disease depending on the situation of specific pathogen-
esis. Furthermore, a full elucidation of oxidative stress 
in the pathogenesis and progression mechanisms of 
disease-specific is a precondition for their use as thera-
peutic antioxidants in medical applications. In psoriasis, 
proinflammatory macrophages are essential contributors 
to the pathophysiological inflammatory cascade by form-
ing immunological clusters termed inducible skin-associ-
ated lymphoid tissue (iSALT) in the dermis of cutaneous 
inflammation [14, 23–25, 83], which is indispensable for 
elicitation of adaptive immunity and ultimately orches-
trated immune-related signal pathways in KCs, causing a 
switch into keratinocyte hyperplasia and aberrant differ-
entiation in chronic psoriasiform skin inflammation [61]. 
Thus, inhibition of the proinflammatory phenotypes of 
macrophages could be of therapeutic benefit in the psori-
asis context. Emerging selective targets against oxidative 
stress of macrophages and skin inflammation in derma-
tologic diseases are given by the above multiple specific 
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ROS-mediated signaling pathways and offer a perspec-
tive for better-refined redox medicine.

The role of oxidative stress in neutrophil dysfunction
Psoriasis has a wide range of clinical subtypes, which 
are determined by complicated fine-tuning of innate 
and adaptive immune responses [43]. General pustular 
psoriasis (GPP) is an acute and severe systemic inflam-
mation characterized by neutrophilic-rich dysfunction, 
leading to sterile pustules in skin lesions. It was trig-
gered by neutrophil extracellular traps (NETs) forma-
tion (termed as NETosis, a cell death process), which is 
implicated in autoimmune inflammatory reactions and 
induced by neutrophil activation and respiratory burst, to 
release the non-specific effects of CitH3, enzymatic pro-
teins (like neutrophil elastase and MPO), cytosolic pro-
teins (such as S100 calcium-binding proteins) and recruit 
pro-inflammatory immune cells [84–87]. The process 
of NETosis mediated by reactive oxygen species (ROS)-
derived from mitochondria and NADPH oxidase could 
induce autoantibody production, resulting in uncon-
trolled inflammatory response and tissue pathology [88]. 
In the onset of psoriasis, KCs are attacked and stressed 
upon various stimuli, such as trauma, drugs, and infec-
tions, followed by the release of damaged DNA/RNA, 
LL-37, AMPs, DAMPs and other cytokines/chemokines 
from these activated KCs, which could initiate innate 
immune responses and attract more neutrophils infil-
tration into the epidermis to form Munro or Kogoj 
abscesses, this sterile pustules constitutes typical patho-
logical manifestations of GPP. Meanwhile, these stressed 
neutrophils produce weblike NETs under ROS-induced 
respiratory burst, and the release of MPO, elastase and 
hydrolase from NETs are known to transform inactive 
precursors of the IL-1β and IL-36 family released from 
KCs into more biologically active mature bodies, lead-
ing to the characteristic pro-inflammatory imbalance 
of the IL-36 autocrine and autoinflammatory circuits in 
generalized pustular psoriasis [87, 89, 90]. In the mean-
time, activated neutrophils secrete psoriatic cytokines 
such as IL-17 A and IFN-γ members, which could aggra-
vate the self-perpetuating autoimmune cytokine loop 
in KCs so that persisting inward recruitment of leuko-
cytes subsets into psoriatic lesions and promotion of 
KCs proliferation [33–35]. There is mounting evidence 
of NETs formation at obvious risk of autoimmune dis-
eases, an inflammatory neutrophil subset with charac-
teristics of aged  CD10negCD16lowCD11blow neutrophils 
appeared in lesional skin and circulation of psoriasis 
and these aged neutrophils increased IL-17 expression 
by T cells in a NETosis-dependent way [91]; immature 
 CD10negCD16negCD11bneg/low neutrophils from patients 
detected a higher ROS level under TNF-α plus f-MLF 

stimulation as compared with those of healthy controls 
[91]. Noting that the enzyme MPO is induced by expo-
sure of neutrophils to various forms of oxidative stress, 
which is one of the important markers of NETosis [87]. 
this pro-oxidative and pro-inflammatory hemeprotein is 
recognized to provide a preponderant role in NETs for-
mation; MPO-deficient neutrophils from MPO-deficient 
individuals cumulatively associated with GPP, the for-
mation of NETs was predominately reduced compared 
to healthy donors [90]. Similarly, serum MPO levels 
displayed a significant increase and caused the injury of 
antioxidative defenses in psoriasis children [92]. Nota-
bly, in the IMQ-induced psoriatic mouse model, lev-
els of MPO and oxidative stress were also upregulated 
[93]. In combination, these accumulations of evidence 
supported that redox imbalance between oxidant–anti-
oxidants occurred very early in neutrophils, thereby oxi-
dative burst, activation and degranulation of neutrophils 
involved in the process of NETosis, which implicated in 
the prolonged persistence of neutrophils in the affected 
psoriatic individuals and the inability of resolvable 
inflammation. Conclusively, these data implicate that det-
rimental ROS contributes to the induction of NETs and 
the application of ROS-elimination drugs could restore 
the potential occurrence of NETs formation, thereby 
shifting the balance to predominant anti-inflammatory 
signals to counteracting many neutrophil-mediated dis-
eases, in particular GPP. Therefore, targeted NETs deg-
radation biological treatment may be conducive to the 
containment of sustained neutrophil-mediated skin 
inflammation.

The role of oxidative stress in DC dysfunction
Much substantial evidence from clinical studies and 
experimental models has emphasized the critical role of 
DCs in the pathogenesis of autoimmune diseases, espe-
cially psoriasis [94]. The aberrant hyperactivation of DCs 
could bridge the innate and adaptive immune responses, 
sufficient to induce psoriasis. it is well appreciated that 
the cellular immunometabolism changes and redox sign-
aling pathways of immune cells are tightly interwoven 
and interdependent to regulate their differentiation, pro-
liferation and function  [30]. Mizuguchi S et al. unveiled 
that in a psoriatic mouse model, the suppression of 
mtROS attenuated the exacerbation of IMQ stimulation 
psoriasiform dermatitis and IMQ-induced DC activation 
in vitro was suppressed by inhibition of the generation of 
mtROS [95]. A similar result, reported by Al-Harbi NO 
et  al. that activation of BTK signaling in  CD11c+ DCs 
upregulated oxidative stress, associated with significant 
elevation of inflammatory mediators, which are crucial 
factors in the pathogenesis of IMQ-induced psoriasis-
like inflammation in mice [96]. Asides from these data, 
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the cellular redox disequilibrium of DCs could adversely 
affect their ability to induce activation of T-cells and reg-
ulate the polarity of the immune response via glutathione 
depletion interfering in DC maturation and IL-12 pro-
duction [97]. As a consequence, these advances suggest 
that ROS homeostasis is inseparable from maintaining 
the well-balanced cellular immunometabolism of DCs. 
Potential therapeutic strategies by neutralizing the excess 
of ROS could open up new insight into prevention in 
psoriasis.

The role of oxidative stress in T cell dysfunction
The pivotal role of T cells in the pathogenesis of pso-
riasis is evidenced by substantial studies. Dysfunctional 
different T cells subpopulations and their associated 
cytokines are crucially involved in the onset or exac-
erbation of psoriasis, and blockade of these cytokine-
mediated inflammations could be identified as potential 
therapeutic targets. Strikingly, dynamic cellular redox 
reactions are obbligato for ensuring and regulating the 
homeostatic maintenance of different T cells subsets 
differentiation and cellular functions. The disruption of 
redox homeostasis in T cell subsets provides susceptibil-
ity to numerous immunopathies [30, 98]. Esmaeili B et al. 
demonstrated antioxidant defense mechanisms were dis-
ordered by elevated ROS in stimulated memory  CD4+ T 
cells from psoriasis patients [99]. It is well-known that 
regulatory T cells (Tregs) are regarded as protect effect 
on preventing psoriasis, and excessive ROS would reduce 
the ratio of Treg: Th17 cells by promoting the prolifera-
tion and differentiation of pro-inflammatory Th17/Th1/
Th22 cells and reversely suppression of the frequency of 
Treg to sustain the process of psoriasis [100, 101]. Fur-
thermore, detrimental cellular ROS-induced oxidized 
8-oxo-dGTP and DNA also could amplify Th17 subset 
cells, along with striking elevation of IL-17-producing γδ 
T cells in lymph nodes [102]. Considering the essential 
role of the dermal IL-17-producing γδ T cells in psoria-
sis, its redox regulation engaged in immunometabolism 
gains more attention as the pivotal player in develop-
ing psoriasis [103]. Recent advances demonstrated that 
mTORC2 constrained mitoROS production in γδ T cells, 
causing impairment of γδ T17 differentiation, which is 
critical innate dermal predominate IL-17-producing cells 
in the development and aggravation of psoriasis [104]. 
These previous researches make us conscious that more 
efforts should be paid to comprehensively decipher the 
definite role of ROS mediated in metabolic rewiring and 
impaired functions of T cells in disease-specific patho-
genesis. It conduces accelerating the discovery of more 
advanced treatment modalities to restore the balance 
of ROS levels in T cells for combating autoimmune dis-
eases, particularly psoriasis.

The role of oxidative stress in other immune cells dysfunction
Similar to what is discovered in the abovementioned 
immune cells involved in the occurrence of psoriasis, 
extensive research has been performed to detail the cru-
cial role of skin-resident ILCs-associated cytokines IL-17 
and IL-22 in contributing to driving dermal inflamma-
tion, particularly in psoriasis [105, 106]. ILCs belong to 
a family of innate immune cells lacking antigen-specific 
receptors and are classified into three subgroups (ILC1, 
ILC2, and ILC3) according to their key transcription 
factors expression and cytokines production [106, 107]. 
Among them, type 3 ILCs (ILC3s) play a central role in 
the etiology and disease severity of psoriasis, which was 
ascribed to the elevated number of IL-22- and IL-17 A/F-
producing ILC3s induced by their expression of RORγt 
transcription factors in psoriatic skin and blood [106, 
108–110]. RORγt+ ILC and γδ T cells are also prereq-
uisites for driving psoriasiform plaque formation in 
the IMQ-induced disease models through the aggrega-
tion delivery of IL-17 A, IL-17 F, and IL-22 into the skin 
inflammation [111]. Similar to the immunometablism 
of other immune cells, ILC plasticity could be super-
vised by redox metabolic pathways and cytokine milieu. 
The deficiency of NOX2 shifted  Tbet+ ILC1s transdif-
ferentiation into RORγt+ ILC3s in a redox-dependent 
manner through IL-1β production and aggravated the 
inflamed joints of Ncf1−/− mice [112]. Likewise, one 
study also found that Nos2-derived NO upregulated IL-
17-producing ILC3 by IL-1α stimulation from the local 
macrophages participated in triggering and progressing 
the development of MIP. In addition to the better-stud-
ied pathogenesis of ILCs in psoriasis, contributions of 
NK cell-mediated innate immune responses to inflam-
matory skin diseases, especially psoriasis, have shown 
increasingly emerging [113–115]. Different subsets of 
NK cells take part in dysregulating the imbalance of 
immune response to many autoimmune diseases through 
the induction of their cytokines and cytotoxic functions 
[116]. A study reported by Gilhar A et al. illuminated that 
NK and NKT cells from autologous human lymphocytes 
were injected into nonlesional skin grafts from psoriatic 
patients on mice could give rise to representative psori-
atic skin inflammation with the expression of inflamma-
tory epidermis signatures [117]. Besides, NKT cells with 
IFN-γ/CCR5 expression in psoriatic skin were relevant 
to the severity of psoriasiform hyperplasia and microab-
scess [118]. Certainly, analogous to the effect of redox-
associated metabolic pathways on ILC development and 
function, the probabilities of NK cell-fate transitions at 
different stages are also shifted upon autophagy pertur-
bations-inducing ROS disequilibrium [119]. The exces-
sive ROS production under the condition of disrupting 
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dysfunctional mitochondria elimination caused by 
the deletion of Atg5 or Atg7, severely compromised 
homeostasis and the maturity of NK cells. Additionally, 
progressive research in mast cells (MCs) enables satis-
factory characterization of cells and their delicate roles 
in the complex network of psoriasis. Gaudenzio N et al. 
reported that IFN-γ-primed human MCs caused abun-
dant immunologic synapses with  CD4+ T cells, concomi-
tantly with an enhancement of the production of Th22 
and IL-22/IFN-γ-producing Th cells from the circulating 
memory  CD4+ T-cell pool; a productive infiltration of IL-
22+CD4+ T cells observed in contact with mast cells in 
human psoriatic skin biopsies [120]. Strikingly, the pro-
portion of IL-22-producing mast cells occupied 20–80% 
in patients with psoriasis, and skin mast cells expressed 
IL-22 and IL-17 mRNA [121]. Furthermore, IL-24 from 
activated T cell-derived microvesicles motivated MCs 
and excessive MCs activation in psoriasis could produce 
IL-24, subsequently provoking STAT3 phosphorylation 
of KCs [122, 123].

Advances in understanding MCs activation and 
degranulation have shown that the role of mitochon-
drial translocation and ROS involved in activating MCs 
of allergic inflammatory diseases is overwhelming  [124–
127]. Skin biopsies from AD revealed that mitochondrial 
translocation was present in the degranulation and TNF 
secretion of human skin mast cells [125]. However, the 
causal relationship between ROS-stimulated MCs acti-
vation and psoriasis is needed to be done to expand our 
basic knowledge. Overall, a disordered oxidant-antioxi-
dant system, in combination with the turbulence of cellu-
lar ROS homeostasis from enhanced activation of redox 
signaling pathways, renders the disturbed immunome-
tablism of immune cells particularly vulnerable to trigger 
and exacerbation of psoriasis. Comprehensively studying 
the pathophysiological role played by ROS in the above-
mentioned immune cells related to the pathogenesis of 
psoriasis would help to design potential dysfunctional 
effector cells-targeted anti-inflammatory and anti-psori-
atic drugs.

Therapeutic drugs targeting oxidative stress 
in EIME of psoriasis
To date, the therapeutic efficacies of various agents 
depend on how well these cycles of inflammation medi-
ated by the abovementioned dysfunctional cells in EIMEs 
of psoriasis are broken [38]. In consideration of the afore-
mentioned multi-faceted influences of oxidative stress 
present in the dysfunctional different cell types in EIME 
of psoriatic inflammation (summarized in Table 1), con-
siderable research has demonstrated disorganized cellu-
lar redox signaling pathways in these dysfunctional cells 
whose induced multiple inflammatory networks could 

be sophisticatedly modulated and blocked by a variety 
of chemical agents or drugs. As shown in Table 2, DMF 
has been previously reported as a broad-spectrum anti-
inflammatory drug. It could be used to treat psoriasis 
via modulating the phenotypic switch of immune cell 
types through glutathione depletion and reprogram-
ming the cellular redox balance, particularly the modula-
tion of macrophages and type II dendritic cells [76, 128]. 
Alongside these mechanisms, DMF could also impair 
NETs formation in polymorphonuclear granulocytes iso-
lated from psoriasis patients via limiting oxidative burst 
capacity, mediated by depletion of intracellular GSH lev-
els [129]. Building on a study reporting that DMF could 
cause short-term oxidative stress and activate the anti-
oxidant signaling response of transcription factor NRF2, 
increasing the antioxidant protein expression and modu-
lating cellular redox state to alter the expression of key 
genes or proteins related to calcium signaling of immune 
cell activation [128]. In type II DCs, DMF performed its 
therapeutic effect via inducing glutathione (GSH) deple-
tion of DCs, followed by increasing the expression of 
antioxidant hemoxygenase-1 (HO-1) gene and impaired 
phosphorylation of STAT1 to ameliorate psoriasis and 
MS (Multiple Sclerosis) [76]. CBD (Cannabidiol), as a 
wide spectrum of antioxidant and anti-inflammatory 
modulators, is studied for application in preventing and 
treating redox imbalance and inflammation-associated 
diseases [130–132]. Indeed, CBD could be considered a 
potential anti-NETotic factor to inhibit NETosis forma-
tion by reducing NADPH oxidase and MPO expression 
[87]. Ibrutinib, a BTK inhibitor, could ameliorate psori-
asiform inflammation by attenuating ROS and inflam-
matory mediators in  CD11c+ DCs [96]. Apremilast, a 
PDE4 inhibitor, improvement of intracellular cAMP, 
could augment IL-10-producing Bregs and its concomi-
tant decrease in Th1 cells, IFNγ-producing NKT cells and 
IL-17-producing NKT cells and suppress IFNγ+CD3+ 
T cells and IL-17+CD3+ T cells for combating PsA and 
Ps [133–136]. Other natural immunomodulatory com-
pounds, such as curcumin [75], proanthocyanidins [100, 
137], and galanin [54] perform their anti-proliferative 
and anti-inflammatory effects in different cell types via 
utilization of their important pharmacological proper-
ties of antioxidant to neutralize baleful ROS, interrupt 
pro-inflammatory MAPK, NF-κB, and STAT3 signalings 
and potentiate anti-inflammatory NRF-2, SIRT1, and 
HO-1 pathways. Other non-canonical anti-inflammatory 
drugs, like Ambroxol [66] and MTH1 inhibitors[102] 
could be used as antipsoriatic drugs possessing capabili-
ties of aiming at ROS elimination in specific diseasing-
causing cell types to ameliorate psoriasis. In addition to 
the above-mentioned chemical and non-classical drugs 
as a potential treatment for psoriasis, some of the main 
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classical traditional anti-psoriasis drugs also can regulate 
immune cell metabolism and keratinocyte excessive pro-
liferation. For example, MTX, the classical anti-psoriasis 
drug [138], can also be regarded as an antioxidant, which 
can neutralize free radicals and reactive oxygen super-
oxide  (O2

−), thereby inhibiting the formation of malon-
dialdehyde acetaldehyde (MAA) adducts. Vitamin A is an 
indirect antioxidant that indirectly regulates many genes 
involved in mediating typical antioxidant responses and 
can prevent lipid peroxidation, thus remodeling meta-
bolic pathways and gene expression profiles in tissues and 
cells [139]. However, their traditional therapeutic routes 
targeting the abovementioned inflammatory network are 
still not satisfactory due to their substantial toxicity con-
cerning internal organs, nonspecific targeting, low effec-
tive drug concentration of skin lesions, specific risks of 
infection, and poor patient compliance [140, 141]. 90% of 
voters in the International eDelphi Consensus Meeting 
recommended switching the MTX route to subcutaneous 

administration against psoriasis for averting oral adverse 
events [142].

Topical therapy is the safe, convenient, and most 
widely used approach for the transdermal delivery of 
classical antipsoriatic drugs to treat mild psoriasis and 
consolidation treatment of moderate-to-severe psoria-
sis in current clinical applications. the circumvent of 
adverse reactions and sufficient concentration of thera-
peutic drug at the target lesion could be facilitated by 
transdermal administrations [141, 143]. A number 
of strategies for the transdermal delivery of bioactive 
drugs have been investigated for the clinic. Compared 
with the parenteral delivery route, topical different 
formulations [144], including ointment, cream, lotion, 
liquid, emulsions, gel formulations and nanomedi-
cines-assisted transdermal delivery of drugs could 
directly repress the deterioration of psoriasis to achieve 
comparable therapeutic effects through a variety of 

Table 2 The therapeutic effects of common natural compounds and drugs in the targeted regulation of ROS-mediated pathogenesis 
of psoriasis

Chemical or drug Mechanism Administration References

Galangin Neutralization of harmful ROS to induce NRF2/OH-1 
expression

Topical daily (0.5 mg cream) [54] 

Acitretin Activation of ERK1/2 MAPK signaling pathway-GSH 
synthesis

Oral (5 mg/kg, daily) [65] 

PDE4 inhibitor Inhibition inactivation of p47 subunit protein Topical [41, 136] 

Ambroxol Reduction of ROS-NF-κB/ERK/JNK signaling pathway 
and improvement of the expression of SOD-2 and 
NRF2

Subcutaneous group (30 mg/kg) [66] 

Hemin Suppression of iNOS in macrophages Intraperitoneally injected every week (4 mmol/L) [77] 

Hemin Inactivation of STAT3 through upregulating SHP-1 
expression to suppress Stat3-controlled aberrant 
keratinocyte hyperproliferation and differentiation

Topical [51] 

Curcumin Activation of OH-1, leading to reduction of MAPK 
activation with the function of maintenance of DC in 
an immature and tolerogenic phenotype with signifi-
cantly reduced pro-inflammatory responses

Ex-vivo psoriasis PBMC (5 µM) [75] 

DMF/FAEs Modulation of the phenotypic switch of immune cell 
types through glutathione depletion and reprogram-
ming the cellular redox balance

Oral (240 mg/day) [76, 129, 148–150] 

Cannabidiol (CBD) Reduction of NETosis formation via inhibiting the 
expression of NADPH oxidase and MPO

Neutrophils from psoriatic patients (10 µg/mL) [87] 

Ibrutinib Attenuation of IMQ-induced oxidative stress in 
 CD11c+DCs and neutrophils

Intraperitoneal injection (10 mg/kg/daily) [96] 

Proanthocyanidins Increase the ratio of Treg:Th17 cells and blockade of 
MAPK/NF-κB/HO-1 signaling pathway

Topical daily (20 µM) [100, 137] 

MTH1 inhibitors Normalization of the neutrophils and T cells frequen-
cies in the skin and skin-draining lymph nodes, 
decrease of IL-17-producing γδ T cells and preventa-
tion of IL-17-downstream genes in KCs

Ex-vivo psoriasis PBMC/ HEKn/Th17-driven inflamma-
tion in mice

[102] 

Astragalus sinicus L. Inhibition of NF-κB signaling cascades in cytokine-
stimulated KCs, and suppression of  CD4+ T cells differ-
entiated into Th2 and Th17 cell subsets via scavenging 
intracellular ROS

HaCaT/  CD4+ T cells/IL-23-induced psoriasis-like 
mouse model

[101] 
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mechanisms with lower drug doses. Nowadays, trans-
dermal drug delivery of systemic drugs with particular 
advantages of avoiding first-pass metabolism, lesser 
side effects, pain-free and noninvasive self-administra-
tion for patients brings into investigation [145, 146]. 
Still, effectively cutaneous drug absorption becomes 
challenging in the local treatment of psoriasis, particu-
larly for its thickened epidermis [141].

Latest developments of biomaterials for psoriasis 
therapies
For the past few years, numerous studies have explored 
and optimized more new and refined effective thera-
peutic modalities for psoriasis with drugs or nanomate-
rials to circumvent the drawback of conventional drugs 
and resolve the transdermal approaches limitation of 
drug diffusion or permeation to the dermis. As a result, 
switching the dynamic equilibrium of the oxidation-
reduction system of these key pathogenetic cells is quite 
pertinent to providing a comprehensive strategy to 
reshape the immune-microenvironment in psoriasis.

Mounting evidence has emphasized the critical role 
oxidative stress played in the pathogenesis of psoria-
sis, which promotes the discovery of new therapeutic 
modalities. Based on the abovementioned reports, ROS-
mediated dysfunctional different cell types (KCs, skin-
resident and -infiltrating immune cells functions) in the 
epithelial microenvironment (EIME) propagate multi-
ple inflammatory loops of psoriasis. Therapies based on 
ROS-inhibition and -elimination targets for the blockade 

of inflammatory loops could be effective in the treatment 
of psoriasis. Besides the systemic and topical antipso-
riatic drugs, recent advances in nanotechnology have 
promoted the emergence of numerous nanosystems, as 
shown as Fig. 3 and Table 3, which could resolve limita-
tions of drug systemic side effects and transdermal drug 
diffusion or permeation in conventional therapies.

Table 3 Nanomaterials used for transdermal drug delivery in psoriasis treatment

Nanomaterials Composition Advantages Limitations References

Liposomes Phospholipid, cholesterol, oleic 
acid

Encapsulation of hydrophilic and 
hydrophobic drug

Oxidative degradation and lim-
ited skin penetration

[151–154] 

Polymers/micelles Polyethylene glycol
ligands; poly(ε-caprolactone)

Biocompatibility; stable biologi-
cal activity; sustained release of 
encapsulated dugs; relatively 
long-circulating drug carriers, 
increased solubility of hydropho-
bic drugs

Relatively low drug loading 
capacity and highly dependent 
on critical micellar
concentration

[155–157] 

Nanoparticles Various inorganic nanoparticles 
(silver, gold and cerium oxide)

Sustain the release of the drug, 
reduction in side effects, high 
drug loading capacity

Lower biocompatibility; potential 
skin irritation

[158, 159] 

Natural bioactive compound Bilirubin, polyphenols, flavonoids, 
lithocholic, melatonin

Clinical translation availability, 
good biocompatibility

Lower hydrophobicity [160–163] 

Hydrogels Hydrophilic polymers, gelatin, 
hyaluronic acid, bioactive nano-
particles and drugs used to con-
struct hydrogels through various 
chemical or physical cross-links

Good hydrophilicity, biocompat-
ibility, good moisture, retention, 
avoidance of the intrusion of 
external bacteria caused by 
materials’ breakage, appropriate 
microstructure

- [164–167] 

Microneedles Solid, hydrogel, siRNA, drugs and 
polymers

Biodegradable, higher transder-
mal delivery efficiency

Infection-associated risks; a lack of 
precise drug dosage

[168–170] 

Fig. 3 Different types of nanoparticles/nanocarriers used as 
therapeutic modalities of ROS-related psoriasis
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Self‑therapeutic nanomaterials for the treatment 
of psoriasis
Mental nanoparticles
Ce‑based nanoparticles Ceria nanoparticles (NPs) have 
been regarded as typical nano-antioxidants with thera-
peutic effects on a range of ROS-related diseases, includ-
ing hepatic ischemia-reperfusion injury [171], acute kid-
ney injury (AKI) [172, 173], multiple CNS diseases [174, 
175], rheumatoid arthritis (RA) [176], etc. Their detailed 
mechanism for scavenging the overproduction of ROS 
from pathogenic cells restores the redox homeostasis for 
reprogramming the immuno-environment by facilitating 
the transformation of cytopathogenic phenotypic transi-
tion into the cytoprotective subtype. Besides, the ceria 
NPs could be modified with the capability of localized into 
mitochondria for reduction of ROS against neuroinflam-
mation [175]. It is well-documented that psoriasis is a dis-
ordered oxidative stress-related inflammatory disease, a 
feasible approach could be manufactured to downregulate 
oxidative stress for a detoxification effect via direct deliv-
ery of ROS-regulating nanosystems into skin lesions. On 
account of the above ROS-eliminating activity of ceria, 
it uncovers more opportunities for potential therapeutic 
interventions to the progress of psoriasis to reconfigure 
the steady-state cellular redox homeostasis in EIME. 
Wu L. et al. fabricated β-cyclodextrins (β-CDs) modified 

ceria NPs (β-CDs/CeO2 NPs) with drug-loaded and anti-
oxidative activities for combinational psoriasis therapy 
in the IMQ-induced psoriatic model (Fig. 4).  CeO2 with 
intrinsic superoxide dismutase- and catalase-mimicking 
capacities have been developed as therapeutic agents for 
cytoprotection against ROS-mediated damage [177] and 
provides combinational antipsoriatic efficacy for trans-
dermal delivery of dithranol (DIT) [178]. Further research 
is imperative to broaden better our understanding of the 
ceria-based NPs and tailor their functional orientations to 
meet their specific needs for reversing the role of specific 
redox pathways in the interrelated pathology of psoriasis.

Gold nanoparticles Gold nanoparticles (Au NPs) have 
shown good biocompatibility, water-solubility, catalytic 
activity and great potential as self-therapeutic nanosys-
tems for drug delivery platforms against inflammatory 
disorders, including AKI and RA due to their anti-inflam-
matory and antioxidative performances [179, 180]. It has 
been reported that the tunable bio-effects of Au NPs differ 
across research due to the application of regulatory par-
ticle sizes and surface modification [181]. Özcan A et al. 
found that Au NPs, as transdermal drug delivery, could 
facilitate MTX transcutaneous delivery into the skin 
across the stratum corneum barriers and lessen psori-
atic skin inflammation in noninvasive manners, to avoid 

Fig. 4 Ce NPs-based self-therapeutic nanomaterials for the topical treatment of psoriasis. β-cyclodextrin modified ceria nanoparticles were 
designed as a ROS scavenger nanozyme to transdermal delivery of dithranol for the combinational therapy of psoriasis. Reproduced with 
permission [178]. Copyright 2020, Dove Medical Press
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systemic side effects and achieve good skin penetration, 
ascribed to small size and immunomodulatory effects of 
Au NPs (Fig. 5a) [158]. Likewise, Au NPs coupled with oli-
gonucleotides (siRNA) can be qualified to preferentially 
gene editing and enhance the transdermal treatment of 
psoriasis (Fig. 5b) [182]. Additionally, sub-15 nm Au NPs 
could be tailored by 30% octadecyl chains to restore the 
deterioration of psoriasis without an excipient and the side 
effects of hair loss and skin wrinkling [159]. It was attrib-
uted to the optimal core size for effective endocytosis by 
KCs and the assistance of epidermal delivery of Au NPs to 

effectively restrain the IL-17 signaling pathway mediated 
the epidermal hyperproliferation and inflammation in the 
IMQ-induced psoriasis mice model (Fig.  5c). Therefore, 
the decisive contributions of these studies in bespoke Au 
NPs for the intervention of psoriasis make a favorable dif-
ference in the biomedical application of Au NPs for the 
treatment of psoriasis.

Silver nanoparticles Recently, considerable research 
have demonstrated that bio-friendly silver (Ag) NPs have 
potential properties in immunomodulatory and ROS-

Fig. 5 Au NPs-based self-therapeutic nanomaterials for the topical treatment of psoriasis. a MTX-GNPs were prepared to inhibit the exacerbation 
of psoriasis via reshaping the immune infiltration and cytokine secretion of the skin. Reproduced with permission [156]. Copyright 2020, Elsevier. 
b siRNA conjugated with spherical nucleic acid gold nanoparticles were developed for the reduction of T cell activation and inflammatory gene 
expression to topically control the progress of psoriasis. Reproduced with permission [182]. Copyright 2017, Elsevier. c Alkyl-terminated Au NPs were 
synthesized as self-therapeutic nanomedicines for topically preventing and treating imiquimod-induced psoriasis mice via downregulation of gene 
expression involved in the interleukin-17 signaling pathway. Reproduced with permission [159]. Copyright 2017, American Chemical Society
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modulating activities by elaborately tailoring their size 
and shape [183, 184]. AgNPs decorate biomaterials with 
appropriately therapeutic window concentrations of  Ag+ 
ions, not only can they endow AgNPs with the biological 
function of regulating macrophage polarization and ROS 
responsiveness but also optimize their biocompatibility 
for alleviating a wide variety of preclinical inflammatory 
diseases such as RA and diabetic wound [183–187]. Ag 
NPs extracted from natural herbs efficiently suppressed 
NF-κB activation of macrophage in vitro and human pso-
riasis plaques, eventually resulting in psoriasis resolution 
[188]. Furthermore, immunomodulatory Ag NPs co-deco-
rated ZnO nanoparticles were conferred with the capabil-
ity of inactivating p65 in proinflammatory macrophages 
and abrogating the secretion of ROS-induced adaptive 
cytokines in psoriatic KCs (Fig. 6). These composite nan-
oparticles (Ag/ZnO NPs) identified as self-therapeutic 
nanocarriers to deliver MTX into the stratum corneum, 
not only exerted their immunosuppressive effect but also 
combinedly augment the antipsoriatic efficacy of a low-
dose MTX under the realization of sustainable MTX 
release [189]. Therefore, these results suggested that the 
appropriate concentration of Ag NPs could be designed 

for anti-inflammation and ROS-depletion against inflam-
matory disorders.

Polymers
It is worth mentioning that multifarious polymers with 
different modifications are available for a wide range of 
biomedical applications, including drug delivery systems 
[190], gene targeting [191, 192], and therapeutic agents 
[193, 194] for targeted therapy in inflammatory dis-
eases. Cell-free DNA (cfDNA) has been proven to be an 
inflammatory trigger to activate DNA sensors-induced 
immune responses involved in initiating and exacerbat-
ing the pathogenesis of autoimmune diseases [195, 196], 
such as RA, SLE and psoriasis. It presents evidence that 
approaches for effectively eliminating cfDNA is feasi-
ble for the remission of disease severity. Liang H et  al. 
constructed self-assembly of PLGA-block-PDMA block 
copolymer, PLGA-b-PDMA463 with a high DNA-binding 
affinity, which could scavenge cfDNA released from dead 
and dying cells to restrain autoimmune inflammation 
against RA [194]. In psoriasis, these cationic nanoparti-
cles were composed of the diblock copolymer of PLGA-
b-PDMA474, which similarly beneficially prevented 
cfDNA from the formation of the DNA-LL37 immune 

Fig. 6 Ag NPs-based self-therapeutic nanomaterials for the topical treatment of psoriasis. The Car@NMs@MTX-ZA hydrogel was successfully 
fabricated as self-therapeutic nanotherapy for combined anti-inflammation with antiproliferation for the treatment of psoriasis. Reproduced with 
permission [189]. Copyright 2022, Springer Nature
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complex via topical application against psoriasis (Fig. 7) 
[197]. Altogether, these data implied that the possible 
applications of bespoke polymers could neutralize the 
detrimental effects of cfDNA or RNA signature to serve 
as potential antipsoriatic nanomedicines.

Natural bioactive compound
Natural products have gained considerable attention for 
psoriasis treatment due to their excellent biocompatibil-
ity and high effectiveness. Bilirubin, a highly potent anti-
cancer and anti-inflammatory compound can scavenge 
various ROS and plays a crucial role in protecting cells 
from oxidative stress-mediated damage in the human 
body [161]. Hyeongseop Keum et  al. demonstrated that 
the bilirubin nanoparticles (BRNPs), composed of the 
endogenous antioxidant bilirubin and a safe hydrophilic 
PEG polymer, can readily infiltrate the disrupted outer 
cornified skin barrier and efficiently downregulate the 
accumulation of intracellular ROS in KCs. Meanwhile, 
this novel biocompatible nanomedicine could be further 
expanded to treat other chronic skin inflammation dis-
eases, including atopic dermatitis [160]. Polyphenols and 
flavonoids in natural products have been widely used in 
the treatment of inflammation-related diseases due to 
their excellent antioxidative properties. Recently, mung 
bean-derived NPs (MBNs) with a facile approach has 
been reported for alleviating skin inflammation. MBNs 
can regulate macrophage polarization and antagonize 

the activation of the nuclear factor kappa B (NF-κB) 
signaling pathway which are conducive to the subsides 
of inflammation in psoriasiform skin [162]. Moreover, 
melatonin (MLT), a natural hormone and antioxidant 
mainly derived from the pineal gland with the circadian 
rhythm of secretion, have regarded as an anti-inflamma-
tion and immunomodulator for inflammatory skin dis-
eases [198–201], such as skin psoriasis [201] and wound 
healing [163]. Several studies have shown that the circa-
dian rhythm of melatonin secretion in psoriatic patients 
is disappeared and melatonin-dependent redox homeo-
stasis of the skin cells is dysregulated [201, 202]. Topi-
cal or systemic administration of melatonin could make 
good effective in diminishing the extensive ROS genera-
tion and proinflammatory cytokines under psoriasis and 
skin tissue regeneration [198, 201]. Taken together, these 
biologically-derived antioxidant NPs have not only signif-
icant efficacy but also high clinical translation potential.

Nanomaterial‑based transdermal drug delivery platform 
for the treatment of psoriasis
Other than the aforesaid representatively self-therapeu-
tic nanoparticles for the topical restoration of psoriasis. 
Recently, several nanocarriers, such as liposomes [151, 
153], polymers [157, 197], silica nanoparticles[157, 203], 
metal nanoparticles [158, 159] and microneedles[12] 
have been introduced to favor transdermal delivery of 
antipsoriatic drugs and gene editing efficiency, which 

Fig. 7 Polymer-based self-therapeutic nanomaterials for the topical treatment of psoriasis. Cationic nanoparticles were constructed as cfDNA 
scavengers for topical remission of DNA-LL37-induced cell inflammation in a psoriasiform mice model and cynomolgus monkey model. 
Reproduced with permission [197]. Copyright 2020, American Association for the Advancement of Science
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strategically make contributions to avoidance of their low 
solubility, bioavailability, and poor skin permeability to 
augment their antipsoriatic efficacy.

Lipid nanoparticles
It is widely recognized that lipid nanoparticles have been 
widely used in skin-related diseases [153, 204] and skin-
based cosmetics  [205], owing to their excellent bioavail-
ability and biodegradability. Their comprehensive roles 
of both topical drug carriers and penetration enhancers, 
improve transdermal delivery of drugs [151, 206, 207], 
peptides [153], and oligonucleotide [154, 208] into skin 

lesions. Kim JY et  al. designed STAT3-inhibiting pep-
tide-encased discoidal lipid nanoparticles (DLNPs) that 
could contribute to promoting the penetration of pep-
tide inhibitors into thicked stratum corneum of psoriasis 
(Fig. 8a). Meanwhile, these lipid formulation-based trans-
cutaneous delivery systems exerted good biocompatibil-
ity without the side effects of conventional corticosteroid 
drugs [153]. In addition, Suzuki IL et  al. fabricated pol-
ymer-lipid nanoparticles (PLNs) to resolve the delivery 
limitation of RNAi topical therapy, such as improving 
the biological stability of siRNA, optimizing its cellular 
endocytosis and sufficient endosomal release (Fig.  8b) 

Fig. 8 Lipid nanomaterials-based transdermal drug delivery platform for the treatment of psoriasis. a The preparation of the DLNP transcutaneous 
delivery system could improve the skin penetration of STAT3-inhibiting peptides for efficiently treating psoriatic skin inflammation without causing 
adverse systemic events. Reproduced with permission [153]. Copyright 2018, American Chemical Society. b Hybrid polymer-lipid nanoparticles in 
combinational with photosensitizer TPPS2a for delivery of siRNA were aimed to topical treat psoriasis effectively through optimizing the endosomal 
escape of TNFα siRNA in the cytoplasm. Reproduced with permission [208]. Copyright 2021, Elsevier. c Lipid-hybridized CNF film was successfully 
prepared for transdermal delivery of curcumin to cure psoriasis. Reproduced with permission [206]. Copyright 2018, Elsevier



Page 20 of 31Xu et al. Journal of Nanobiotechnology          (2022) 20:448 

[208]. Analogously, curcumin-loaded cellulose nanofiber 
(CNF) films composed of hybridized curcumin (Cur)-
loaded nanostructured lipid carriers (NLCs) were con-
structed to enhance the deposition of curcumin into the 
dermis via topical treatment, conducing to amelioration 
of the psoriatic skin symptoms in IMQ-induced mice, 
almost comparable to topical corticosteroid cream [206]. 
Another report also demonstrated that curcumin-loaded 
hyaluronan (HA)-modified ethosomes could target over-
expressed CD44 protein and allowed the slow release of 
the loaded curcumin in the inflamed epidermis [209]. Yet 
the limitation of lipid nanoparticles is vulnerable to oxi-
dative degradation and exhibits poor stability, resulting in 
lower drug payload and inconvenient storage. These car-
rier systems may not have the capacity of prolonging cir-
culation and retention, leading to a limit in the systemic 
bioavailability and therapeutic efficacy of cargos. More 
efforts should be made to optimize the facility of lipid 
nanoparticles.

Silica nanoparticles
It is well-demonstrated that mesoporous silica nanoparti-
cles have been considered as available drug/gene delivery 
carriers for their unique properties and biocompatibil-
ity. They could be functionalized with specific properties 
via tuning their size and surface modification/ biocon-
jugation for targeting and delivering therapeutic agents 
against a variety of inflammatory diseases [210], such as 
RA [176], osteoporosis [211], and atherosclerosis [212], 
etc. Owing to the abovementioned advantages of silica 
NPs, Mo C et  al. employed dendritic mesoporous silica 
NPs as drug carriers to enhance the penetration activ-
ity of erianin across the skin in the favor of exerting an 
inhibitory effect on keratinocyte proliferation for the 
topical therapy of psoriasis (Fig. 9a) [203]. Moreover, the 
skin retention and permeability of silica NPs could be 
regulated by the particle size and polymer decoration, 
thereby affecting their affinity to cfDNA in the dermis 
along with regulation of the antipsoriatic effects (Fig. 9b) 
[157]. As a result of these positive results, it is encourag-
ing that the versatile well-controlled and -modified fabri-
cation of silica NPs has great potential to clinically apply 
to treat cutaneous inflammatory diseases.

Polymer/nanomicelles
It is widely known that polymer/nanomicelles can pro-
mote targeted therapy and sustained hydrophobic drug 
delivery with relatively high drug loading capacity, except 
for their performance as cfDNA scavengers. Because of 
their capability of prolonged circulation, reducing the ini-
tial-burst release and delivery of the hydrophobic drug, 
they are often utilized as a carrier system for transdermal 
drug delivery to resolve the restriction of drug controlled 

release and percutaneous absorption, thereby circum-
venting the drug-associated side effects [11, 189, 190]. 
Polycaprolactone-Polyethyleneglycol-Polycaprolactone 
(PCL-PEG-PCL)-based self-assembled nanomicelles 
were employed as a carrier system for efficient delivery 
and sustainable release of MTX against RA and psoriasis 
through the transdermal route [189, 190]. Similarly, the 
stable multi-component monolithic lipid-polymer hybrid 
nanoparticles (LPNs) were fabricated to load clobetasol 
propionate, a potent corticosteroid, contributing to facili-
tating its sustained release and penetration into deeper 
dermis, consequently exhibiting enhanced therapeu-
tic effect at dose reduction without systemic toxicities 
absorption of the corticosteroids (Fig. 10) [11]. However, 
the therapeutic efficacy of topical administration is com-
promised by the comprehensive effect of limited penetra-
tion and skin retention. Yang Mai et al. developed the tris 
(hydroxymethyl) aminomethane-modified bioadhesive 
nanoparticles (Tris-BNPs) encapsulated with betametha-
sone dipropionate (BD) which showed deeper penetra-
tion and longer retention compared with commercial 
BD ointment. This formulation can mitigate skin inflam-
mation after only a single administration [213]. Thus, all 
these present works demonstrated polymers with good 
drug loading capacity, biocompatibility, stability, drug 
controlled release and efficient cellular uptake, possessed 
great potential for pharmaceutical applications in the 
field of transdermal drug delivery systems. However, the 
drug capacity strongly depends on the concentrations 
of nanomicelles [214]. Strategies should be innovated 
to combine the advantages of different nanoparticles to 
achieve most of the benefits of improved transcutaneous 
antipsoriatic efficacy.

Microneedles
Emerging nanotechnologies based-microneedles asso-
ciated with efficient settlement for the dilemma of skin 
penetration hold tremendous promise in transdermal 
delivery therapy  [145, 215]. Microneedles are capable of 
traversing the stratum corneum in a micro-invasive man-
ner and directly translocating bioactive drugs into the 
dermis [12, 168–170, 216]. It could be equipped with var-
ious therapeutic efficacies via the incorporation of appro-
priate structural nanomaterials, genome editing materials 
as well as drug molecules or nanomedicines with tailored 
pharmacological properties. Wan T et  al. had taken 
advantage of the CRISPR-Cas9–based genome edit-
ing technology for precisely targeting the inflammatory 
signatures of NLRP3, which mediated abnormal cross-
talking of innate and adaptive immune responses and 
glucocorticoid resistance in psoriasis [168]. More impor-
tantly, the presence of a microneedles-mediated trans-
dermal therapeutic strategy positively reduced off-target 
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effects of gene editing by allowing the local release of 
genome editor in target lesions of psoriasis and atopic 
dermatitis to improve glucocorticoid sensitivity (Fig. 11a, 

b). Additionally, Q. Jing et  al. utilized the homologous 
targeting functions of the HaCaT cell membrane to 
develop HaCaT cell membrane-coated nanocarriers for 

Fig. 9 Silica nanomaterials-based transdermal drug delivery platform for the treatment of psoriasis. a The synthesis of erianin-loaded dendritic 
mesoporous silica was employed for topical therapy of psoriasis, ascribed for their mechanisms on pro-apoptotic effect in KCs. Reproduced with 
permission [203]. Copyright 2020, Springer Nature. b Optimized size of silica NPs decorated with polymer could elevate the affinity of cfDNA to 
inhibit topical psoriasis inflammation via better penetration ability. Reproduced with permission [157]. Copyright 2021, Elsevier
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transdermal targeted delivery of shikonin in the patho-
logical epidermis, as shown in Fig. 11c-d. This nanocom-
posite could be internalized by the KCs, leading to the 
triggering of drug release in the target lesion. Ultimately, 
the augmented therapeutic efficacy of shikonin against 
imiquimod-induced psoriatic epidermal hyperplasia was 
achieved [216]. As surveyed above, whereas therapeutic 
drug delivery through microneedles, has received con-
siderable attention for different applications in the field 
of dermatology, the potential skin bacterial, fungal infec-
tion-associated risks, sensitization, and other restrictions 
of the costs, transportation, cargoes stability, and loading 
are inevitable [169, 170]. More studies should be inves-
tigated to optimize the biocompatibility of microneedles 
before being applied to human skin. Meanwhile, further 
schemes of ingredients should be facilitated to resolve 
the above limitation and optimize the clinical translation 
of formulations.

Hydrogel
In consideration of multiple inflammatory pathways of 
psoriasis immunopathogenesis and optimization of topi-
cal drug bioavailability, inhibition of psoriasis activity 
with multiple therapeutic modalities specific to differ-
ent targets outbalance single-agent approaches. Conse-
quently, an ideal percutaneous nanocarrier needs to meet 
the following requirements: (1) self-therapeutic activity, 

with intrinsic anti-inflammatory property and improved 
therapeutic efficacy of extrinsic medication; (2) better 
drug loading capacity and controllable drug release; (3) 
good moisture retention, which can maintain the moist 
environment of the skin and reduction of drug break-
age; and (4) enhanced patient compliance. Hydrogels, 
owing to their biochemical characteristics of good reten-
tion, avoidance of drug leakage, good hydrophilicity and 
adhesiveness, have been identified as the most competi-
tive candidate for the percutaneous treatment of inflam-
matory diseases [164–166]. Considerable research has 
demonstrated that hydrogels can be well-appointed with 
tunable functions via the incorporation of various bio-
active substances, such as nanoparticles and drugs and 
establish well-pleasing biomedical applications in trans-
dermal drug delivery [190, 217–220]. As shown in Fig. 12, 
For improvement of the transdermal application of lyo-
phobic drugs, Sun L et  al. fabricated curcumin (Cur) 
loaded poly (lactic-co-glycolic acid) (PLGA) nanoparti-
cles (NPs) loaded into the hydrogel which was employed 
to topically treat IMQ-induced psoriasis-like mouse for 
promotion of drug permeability across skin and enhance-
ment of anti-psoriatic activity (Fig. 12a) [219]. similarly, 
Qiu F et  al. produced Celastrol Noisome hydrogel (Cel 
Nio gel) for topical administration to psoriasis. When 
applied in the IMQ-induced psoriatic mice model, cel 
was mainly accumulated in the skin other than exposure 

Fig. 10 Polymer/nanomicelles-based transdermal drug delivery platform for the treatment of psoriasis. Lipid-polymer hybrid nanoparticles were 
fabricated to load clobetasol propionate for enhancement of its cellular uptake and skin permeability to improve antipsoriatic efficacy. Reproduced 
with permission [11]. Copyright 2020, Elsevier
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Fig. 11 Microneedles-based transdermal drug delivery platform for the treatment of psoriasis. a Microneedle-mediated transdermal codelivery of 
CRISPR-Cas9–based genome editor and glucocorticoids were used for high-efficiency treatment of psoriasis. Reproduced with permission [168]. 
Copyright 2021, American Association for the Advancement of Science. b Characterization images of the MN patches, CP/Ad-SS-GD/Cas9 RNP 
nanoparticles and Dex-loaded PLGA nanoparticles; drug release of Cas9 protein and Dex from the MN patch; fluorescence images of MN patch. 
Reproduced with permission [168]. Copyright 2021, American Association for the Advancement of Science. c Schematic illustration of the synthesis 
of SKN-PMs and HCM/SKN-PMs. Reproduced with permission [216]. Copyright 2021, Elsevier. d Sketch of the MN-HCM/SKN-PM preparation process 
and their characterization images. Reproduced with permission [216]. Copyright 2021, Elsevier

Fig. 12 Hydrogel-based transdermal drug delivery platform for the treatment of psoriasis. a Cur encapsulated into PLGA NPs were synthesized 
as hydrogel to optimize the dispersion, sustained release and penetration of curcumin across the skin for improvement of its anti-psoriatic 
efficacy. Reproduced with permission [219]. Copyright 2017, Elsevier. b Therapeutic mechanism of Cel Nio gel for the transcutaneous treatment of 
imiquimod-induced psoriasiform skin inflammation. Reproduced with permission [221]. Copyright 2021, Dove Medical Press
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to the blood or lymphatic system, resulting in the reduc-
tion of the mRNA levels of inflammatory cytokines 
(Fig. 12b) [221]. Additionally, Kajal Rana et al. presented 
that a betamethasone-loaded topical hydrogel (B-Gel) 
which can efficiently entrap steroids with the properties 
of spreadability and sustained release drugs, provided an 
alternative for topical application of steroids [220]. More-
over, implementing biocompatible hydrogel micropatch 
probes integrated with mass spectrometry to explore 
the skin metabolome could be regarded as a diagnostic 
approach to provide information about the pathological 
alterations of the skin metabolome caused by psoriasis, 
favoring understanding of the complicated pathophysiol-
ogy. However, antibiotic-immobilized hydrogels should 
be seriously utilized due to the problems of multidrug 
resistance and relatively long treatment course, while 
hydrogels loaded with noble metal nanoparticles often 
cause undesirable systemic toxicity.

Above all, It is noted that most of the existing 
ROS-based nanomedicines or transdermal delivery 
nanoplatform are engineered with some deficiency, com-
prehensive resolution of limitations of these nanobio-
technological carriers related to drug controlled release, 
drug lower loading capacity and optimizing transdermal 
permeation, particularly in the thickened stratum cor-
neum of psoriasis remains intractable. Therefore, it is 
highly expected that address these issues in elaborately 
engineered redox-active nanosystems design and a more 
simplified way for the feasibility of clinical translation, 
rather than decorating sophisticated structures that may 
render potential biosafety issues.

Summary and Outlook
As the significant role of oxidative stress in the molecu-
lar pathological mechanisms of psoriasis continues to be 
unraveled, targeting ROS in dysfunctional different cell 
types in EIME offers a promising methodology for pso-
riasis. In the future, a more major focus should be paid to 
investigating more effectively new-generation of thera-
peutics mediated precisely regulation of cellular ROS 
concentrations in EIEM within a physiological threshold. 
Meanwhile, it is appreciated that the noticeable advances 
in the field of nanotechnology regarding multifarious nano-
materials with ROS depletion performances have been 
witnessed. Most notably, besides current ROS-detoxifying 
self-therapeutic nanomaterials directly against psoriasis, 
the emergence of a nano-platform for transdermal drug 
delivery system greatly expands the application of nanoma-
terials in the field of precision medicine. Nanotechnologies 
dramatically facilitate the absorption and diffusion of drugs 
at skin barriers, especially in psoriatic conditions charac-
terized by highly packed SC, giving rise to increased drug 
availability in local therapy and decreased systemic adverse 

effects. The incorporation of nanotechnologies offers pro-
tection for the labile therapeutically active compounds as 
well as the assistance of drug storage and prolonged resi-
dence time of drug molecules at the target site against skin 
disease. Aside from the mentioned already, it is anticipated 
that more comprehensive investigations related to recon-
structed skin experimental models should mimic the real-
time biological status of skin lesions for the achievement 
of accessing the permeability and pharmaceutical proper-
ties of nanomaterials. Furthermore, the skin irritation and 
biosafety evaluations of nanomaterials about long-term 
therapeutic effects should be conducted for potential clini-
cal transformation. Finally, we envision that these nano-
biotechnologies will expand more therapeutic avenues for 
precision medicine, especially in skin diseases.
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