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Background: Non-small cell lung cancer (NSCLC) is a significant health concern. The prognostic value 
of oxidative stress (OS)-related genes in NSCLC remains unclear. The study aimed to explore the prognostic 
significance of OS-genes in NSCLC using extensive datasets from The Cancer Genome Atlas (TCGA) and 
the Gene Expression Omnibus (GEO).
Methods: The research used the expression data and clinical information of NSCLC patients to develop 
a risk-score model. A total of 74 OS-related differentially expressed genes (DEGs) were identified by 
comparing NSCLC and control samples. Univariate Cox and least absolute shrinkage and selection operator 
(LASSO) regression analyses were employed to identify the prognostic biomarkers. A risk-score model was 
constructed and validated with receiver operating characteristic (ROC) curves in TCGA and GSE72094 
datasets. The model’s accuracy was further verified by univariate and multivariate Cox regression.
Results: The identified biomarkers, including lactate dehydrogenase A (LDHA), protein tyrosine 
phosphatase receptor type N (PTPRN), and transient receptor potential cation channel subfamily A (TRPA1) 
demonstrated prognostic significance in NSCLC. The risk-score model showed good predictive accuracy, 
with 1-year area under the curves (AUC) of 0.661, 3-year AUC of 0.648, and 5-year AUC of 0.634 in the 
TCGA dataset, and 1-year AUC of 0.643, 3-year AUC of 0.648, and 5-year AUC of 0.662 in the GSE72094 
dataset. A nomogram integrating risk score and tumor node metastasis (TNM) stage was developed. The 
signature effectively distinguished between patient responses to immunotherapy. High-risk groups were 
characterized by an immunosuppressive microenvironment and an increased tumor mutational burden (TMB), 
marked by a higher incidence of mutations in genes such as TP53, DCP1B, ELN, and MAGI2. Organoid drug 
sensitivity testing revealed that NSCLC patients with a low-risk score responded better to chemotherapy.
Conclusions: This study successfully developed a robust model for predicting patient prognosis in 
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Introduction

Lung cancer has a high incidence and is the most common 
cause of cancer-related deaths worldwide (1). Based on 
pathological classification, lung cancer is classified into two 
main types: small cell lung cancer (SCLC) and non-small 
cell lung cancer (NSCLC). About 85% of lung cancers 
are classified as NSCLC (2). While early-stage NSCLC 
can be treated successfully by surgery, most patients are 
diagnosed at an advanced stage, where the 5-year survival 
rate is only 18.6% (3). Currently, drug resistance is the 
primary issue affecting the therapeutic efficacy of NSCLC. 

Like traditional chemotherapy, targeted drugs and immune 
checkpoint inhibitors (ICIs) also lead to drug resistance. 
Due to the heterogeneity of the tumor and the complexity of 
the tumor microenvironment, ICIs are highly effective only 
in patients with programmed cell death ligand 1 (PD-L1)  
>50% (about 30% of the total) (4). Therefore, there is an 
urgent need for new pharmacodynamic strategies to guide 
the treatment of NSCLC patients.

The pathogenesis of lung cancer is believed to be 
associated with the interaction between environmental risk 
factors and individual genetic susceptibility (5). Smoking 
and air pollution are recognized as major environmental 
risk factors for lung cancer (6-8). Tobacco smoke and 
polluted air are rich in carcinogens and oxidants, such 
as polycyclic aromatic hydrocarbons (PAHs). Oxidative 
stress (OS) caused by PAHs may be a key factor in the 
development of lung cancer (9). In addition, adiponectin is 
thought to contribute to the pathogenesis of lung cancer 
by inducing lipid peroxidation and altering the oxidation 
state (10). This finding provides new insights into the 
pathophysiological mechanism of NSCLC (11). Research 
has also demonstrated that applying reactive oxygen species 
(ROS) inducer to gefitinib- and erlotinib-resistant H1975 
cell lines increases ROS levels and induces apoptosis in 
these cells (12). An excess of reactive oxygen free radicals 
disrupts the balance between oxidation and antioxidation 
leading to metabolic dysfunction and resulting in ROS 
accumulation and genetic damage (13). These genetic 
lesions can eventually trigger tumor development (14,15). 
Regulating ROS is emerging as a novel adjuvant anti-
cancer strategy, offering hope for patients with drug-
resistant NSCLC (16,17). A comprehensive understanding 
of the molecular mechanisms of redox homeostasis will 
provide crucial guidance for the rational treatment of  
tumors (18-20).

Highlight box

Key findings
•	 This study identified 74 prognostic oxidative stress (OS)-related 

differentially expressed genes in non-small cell lung cancer 
(NSCLC), and developed a predictive risk-score model with high 
accuracy. The model was validated as an independent prognostic 
indicator for NSCLC.

•	 We also created a nomogram that integrates the risk score and 
tumor node metastasis (TNM) stage to predict patient survival.

•	 This study showed that patients in the high-risk group exhibited 
an immunosuppressive microenvironment and responded better to 
chemotherapy compared to those in the low-risk group.

What is known, and what is new?
•	 The role of OS in NSCLC has been widely recognized; however, 

its prognostic remains unclear until now.
•	 This study established a novel risk-score model that quantifies the 

prognostic impact of OS-genes in NSCLC.

What is the implication, and what should change now?
•	 The model has significant clinical implications for the stratification 

and personalized treatment of NSCLC patients.
•	 It advocates for a paradigm shift towards applying the risk score to 

guide therapeutic decisions, aiming to enhance patient outcomes 
through targeted interventions.

NSCLC, highlighting the critical prognostic value of OS-genes. These findings hold significant potential to 
refine treatment strategies, and enhance survival outcomes for NSCLC patients. By enabling a personalized 
therapeutic approach tailored to individual risk scores, this model may facilitate more precise decisions 
concerning immunotherapy and chemotherapy, thereby optimizing patient management and treatment 
efficacy.
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ROS is closely associated with both the innate and 
adaptive immune responses and plays a significant role 
in the development of various cancers. It can induce the 
immunogenic death of tumor cells, enhance the antigen-
presenting capabilities of dendritic cells (DCs), and 
influence the proliferation, differentiation, and immune 
response of T cells. Additionally, ROS regulates the 
phenotype and function of other immune cells, such as 
tumor-associated macrophages (TAMs). Consequently, it 
is closely linked to drug sensitivity and the development 
of immune resistance (21,22). It has been shown that high 
expression of OS- and anoikis-related genes is associated 
with poor prognosis in men and lung NSCLC patients, and 
that M0 macrophages and the phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B (Akt) pathway play a key role in 
OS-related apoptosis in NSCLC (23). However, there are 
still few studies on the prognostic value of ROS-related 
genes in NSCLC. In addition, the relationship between 
the expression of ROS-related genes and drug treatment 
responses remains unclear. 

Over the years, several prognosis prediction models have 
been developed for NSCLC. These models incorporate 
various predictors such as clinical factors [age, gender, 
tumor node metastasis (TNM) stage], genetic mutations 
(epidermal growth factor receptor, Kirsten rat sarcoma viral 
oncogene homolog), and biomarkers (carcinoembryonic 
antigen, cytokeratin 19 fragment) (24-26). However, each 
of these models has its limitations. Clinical factor-based 
models may not fully capture the biological complexity 
of the disease. Genetic mutation-based models are 
limited by the fact that not all patients have detectable 
mutations, and biomarker-based models may lack specificity 
or sensitivity. For example, while some models using 
traditional biomarkers have shown promise, they often fail 
to accurately predict prognosis in heterogeneous patient 
populations.

To optimize therapy or develop new treatment 
strategies, the present study identified ROS-related genes, 
classified them using cluster analysis, and established 
and validated a risk-score model based on these genes. 
The expression of ROS genes in NSCLC was verified 
through immunohistochemistry (IHC), Western blot, 
and quantitative real-time polymerase chain reaction 
(qRT-PCR). In addition, the relationship between ROS 
and the immune microenvironment was analyzed by 
multiplex immunofluorescence (mIF). The sensitivity of 
chemotherapy drugs was tested using organoids. Our results 

are expected to be valuable for assessing prognosis and 
tailoring individual treatment plans for NSCLC patients. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-24-888/rc).

Methods

Data source

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by the Ethics Committee of The First 
Affiliated Hospital of Shandong First Medical University 
(No. YXLL-KY-081). Informed consent was obtained 
from all the patients. Six NSCLC patients who did not 
receive neoadjuvant therapy were recruited from the First 
Affiliated Hospital of Shandong First Medical University 
for this study. All patients underwent lobectomy or sublobar 
resection, and samples of tumor and adjacent normal tissue 
were collected. The gene expression profiles and clinical 
features of patients with NSCLC were retrieved directly 
from The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/). GSE72094 was obtained from the 
Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/) to verify the prognostic signature. 
ROS-related genes, referred to as OS-genes, were identified 
based on their involvement in the biological process of 
response to ROS, as annotated in the Gene Ontology (GO) 
database under the term (GO: 0000302). A total of 214 OS-
genes were used for the downstream analysis.

Identification and functional analysis of OS-related 
differentially expressed genes (OS-DEGs) in NSCLC

The Differently Expressed Genes (DEGs) between 1,027 
NSCLC and 108 adjacent control samples were identified 
by the “DESeq2” R package (v4.2.1; http://www.R-project.
org) using a |log2 fold change|>1 and an adjusted P 
value <0.05 as the criteria. The OS-DEGs were obtained 
by overlapping the DEGs with the 214 OS-genes. The 
ClusterProfiler R package was used to identify the GO 
terms (https://www.geneontology.org/) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
(https://www.genome.jp/kegg/) that were significantly 
enriched among the OS-DEGs, applying a stringent 
criterion of an adjusted P value <0.05.

https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-888/rc
https://tlcr.amegroups.com/article/view/10.21037/tlcr-24-888/rc
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https://www.genome.jp/kegg/
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Identification of robust prognostic OS-DEGs in NSCLC

A total of 1,030 patients with complete expression profiles 
and survival information from TCGA-NSCLC cohort 
formed the training set. In the initial phase, we employed 
the training dataset to conduct a univariate Cox regression 
analysis to identify OS-DEGs significantly associated with 
survival outcomes, using a P value <0.05 as the criterion. 
Thereafter, the OS-DEGs identified by the univariate 
Cox regression analysis were further screened by the 
least absolute shrinkage and selection operator (LASSO) 
algorithm using the “glmnet” R package.

Construction and verification of the risk-score model in 
NSCLC

Based on the expression levels of the prognostic OS-DEGs 
and their corresponding coefficients, the risk score of each 
patient in the training set was calculated using the formula:

  = 1  1  2 
                      2  3  3  
Risk Score ExpGene Coef ExpGene

Coef ExpGene Coef
× +

× + × + …
	 [1]

where “Coef” denotes the regression coefficients attributed 
to each gene, and “Exp” refers to the normalized expression 
levels of the signature genes. Patients in the training set 
were stratified into high- and low-risk groups based on the 
median risk-score value. The survival rates of these groups 
were compared by Kaplan-Meier analysis.

To assess the predictive accuracy of the risk-score 
model, the receiver operating characteristic (ROC) curves 
were generated with the “survivalROC” package in R. 
The predictive accuracy of the model is considered good 
if the area under the curves (AUC) is greater than 0.6. 
Additionally, to confirm the robustness of the model, the 
same set of analyses was applied to the GSE72094 validation 
cohort.

Construction of the nomogram to predict the prognosis of 
NSCLC

To identify the independent prognostic factors for NSCLC 
patients, a combination of clinical attributes, including age 
and TNM stage, along with the risk score, were analyzed 
using both univariate and multivariate Cox regression. The 
factors identified as independent prognostic determinants 
were subsequently used to develop a nomogram for 
predicting the 1-, 3-, and 5-year survival rates of the 
NSCLC patients. The accuracy of the nomogram was 

evaluated using calibration curves.

Exploration of the mechanisms underlying ROS-related 
NSCLC

To investigate the mechanisms underlying the prognostic 
impact of OS-DEGs on NSCLC, a multifaceted analysis 
was conducted. First, we performed a comparative 
analysis of the risk scores across various patient subgroups 
categorized by tumor stage (T1 to T4, indicating size and/
or local extent of the primary tumor), node stage (N0/
N1 versus N2/N3, reflecting the absence or presence and 
extent of regional lymph node involvement), metastasis 
stage (M0 versus M1, denoting the presence or absence of 
distant metastasis), and gender. This was done using the 
Wilcoxon test to assess the association between the risk 
score and NSCLC progression. Second, a gene set variation 
analysis (GSVA) of KEGG gene sets from the Molecular 
Signatures Database (MSigDB; https://www.gsea-msigdb.
org/gsea/msigdb/) was conducted to identify the KEGG 
pathways significantly enriched in patients with low- 
versus high-risk scores, focusing on those with an adjusted 
P value of <0.05. Third, the ESTIMATE algorithm was 
employed to calculate the immune and stromal scores for 
each patient. Subsequently, the relationships between these 
scores and the individual risk scores were examined. Fourth, 
immune checkpoint data from the Tumor-Immune System 
Interactions and Drug Bank (TISIDB) database (http://
cis.hku.hk/TISIDB/) was leveraged to discern variations 
between the two risk groups using the Wilcoxon test. Fifth, 
to extend our understanding of the effect of immunotherapy 
across different patient groups, the immune phenotype 
scores (IPSs) of the NSCLC patients from TCGA dataset 
were examined on The Cancer Imaging Archive (TCIA) 
platform (https://dev.cancerimagingarchive.net/). Finally, a 
comparative analysis of the tumor mutational burden (TMB) 
between the high- and low-risk groups was performed. 
Additionally, the mutation frequencies of the genes between 
these groups were scrutinized using mutation data from 
TCGA. The top 20 most frequently mutated genes were 
depicted in a waterfall plot, and genes with significant 
differences in mutation frequencies between the groups 
were identified.

RNA preparation and qRT-PCR

Total RNA was extracted from the tumor and adjacent 
normal tissues from 20 sets of samples using TRIzol 

https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
http://cis.hku.hk/TISIDB/
http://cis.hku.hk/TISIDB/
https://dev.cancerimagingarchive.net/
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reagent (Invitrogen, MA, USA). Isolated RNA was used 
for the reverse transcription reaction with HiScript III 
RT SuperMix for qRT-PCR (Vazyme, R323-01, Jiangsu, 
China). The relative RNA levels of the 11 prognostic 
OS-DEGs were detected using the indicated primers  
(Table S1). All the experiments were performed in 
triplicate. PCR product specificity was confirmed using the 
comparative cycle threshold (Ct), method and GAPDH was 
used as an internal control.

Organoid culture and drug sensitivity test

Twenty sets of NSCLC tissues were initially washed 
in a cold washing buffer containing 2% penicillin/
streptomycin (Gibco, GrandIsland, USA) in advanced 
Dulbecco’s Modified Eagle Medium (DMEM)/F12 
(Invitrogen) for 5 minutes. The tissues were then minced 
into fragments smaller than 1 mm3. Subsequently, the 
samples were digested with a digestion buffer containing 
500 U/mL collagenase IV (Sigma-Aldrich, USA),  
1.5 mg/mL collagenase II (Solarbio, Beijing, China),  
20 mg/mL hyaluronidase (Solarbio), 0.1 mg/mL Dispase 
type II (Sigma-Aldrich), 10 mM ROCK inhibitor Y-27,632 
(Sigma-Aldrich), and 1% fetal bovine serum in DMEM 
(Lonza) at 37 ℃ on a rocking platform for 30 minutes. 
Single cells were isolated by filtering the tissue-cell mixture 
through 100- and 70-μm filters.

The cell suspension was adjusted to [1–2] ×104 cells per 
well. Next, it was re-suspended in pre-cooled DMEM/
F12 medium to reach the desired volume. Once mixed,  
40 μL of the resulting cell-matrix mixture was added to each 
well of a 96-well plate. The seeded plate was incubated for 
30 minutes, to allow the matrix gel to solidify completely. 
Subsequently, 500 μL of pre-warmed organoid culture 
medium was carefully added to each well by slowly pouring 
it along the walls of the 24-well plate. After 3 days, the 
formation of organoids was observed under a microscope. 
Organoids with a diameter greater than 50 μm were 
considered successfully formed and were collected for 
further experimentation.

Upon successful culturing, the medium was removed 
and replaced with 100 μL of drug-containing medium. 
This medium included either carboplatin (2.0 μg/mL; 
S47020, Yuanye Biotechnology Co., Ltd., Shanghai, China), 
paclitaxel (1.0 μg/mL; B21695, Yuanye Biotechnology Co., 
Ltd.), pemetrexed disodium (3.0 μg/mL; B27986, Yuanye 
Biotechnology Co., Ltd.), or combinations of carboplatin 
with paclitaxel or pemetrexed disodium. Optical images 

were captured on day 4 post-drug treatment, and organoid 
viability was assessed using the calcein acetoxymethyl 
ester (AM) and propidium iodide (PI) cell viability assay 
(40747ES76, Yeasen Biotechnology, Shanghai, China) 
following the manufacturer’s instructions. The organoids 
were stained with PI, which marks dead cells in red, and 
calcein, which marks live cells in green.

IHC and mIF analyses

Twenty sets of NSCLC tumor samples and their adjacent 
normal lung tissues were preserved by fixation in a 10% 
neutral-buffered formalin solution for an extended period. 
Subsequently, these tissues were embedded in paraffin 
blocks. For IHC analysis, thin sections cut from the paraffin 
blocks underwent antigen-retrieval using microwave energy 
to enhance protein staining on the tissue sections. The 
antibodies against human lactate dehydrogenase A (LDHA) 
(19987-1-AP), protein tyrosine phosphatase receptor 
type N (PTPRN) (10584-1-AP), ADA (13328-1-AP), and 
SESN3 (11431-2-AP) were purchased from Proteintech 
(Wuhan, China). The antibodies against human transient 
receptor potential cation channel subfamily A (TRPA1) 
(TA382859) and GPR37 (TA324840) was obtained from 
OriGene Technologies (Rockville USA). The antibodies 
against SIRPA (ab260039), CDK1 (ab133327), ECT2 
(ab236502), COL1A1 (ab138492), and BTK (ab208937) 
were purchased from Abcam Biotechnology. In accordance 
with the manufacturer’s instructions, the sections were 
treated with the Envision + DAB kit (Dako, Glostrup, 
Denmark). As previously described (27), a semi-quantitative 
method was used to measure the staining intensity and the 
proportion of positive cells. For each tumor, 10 visual fields 
were observed at ×400 magnification, and 100 tumor cells 
in each field were counted. The positive cells were scored 
as follows: <5% (0 points); 5–25% (1 point); greater than 
25% but less than or equal to 50% (2 points); greater than 
50% but less than or equal to 75% (3 points); and >75% 
(4 points). The staining intensity was scored as follows: no 
staining (0 points); light yellow (1 point), yellow-brown 
(2 points); and dark brown (3 points). The product of the 
positive cell score and staining intensity score was used as 
the final score of expression, which was further graded as 
follows: (−), 0–1; (+), 2–3; (++), 4–6; and (+++), 8–12.

In this study, the three-color staining method was 
employed for mIF. Briefly, antigen retrieval was performed 
after paraffin section dewaxing. The section was immersed 
in a 3% hydrogen peroxide solution and subsequently 

https://cdn.amegroups.cn/static/public/TLCR-24-888-Supplementary.pdf
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incubated at room temperature, shielded from light for 
25 minutes, a process designed to block the activity of 
endogenous peroxidases. Blockage was carried out; 10% 
rabbit serum was used if the primary antibody was derived 
from a goat, and for all other sources, 3% bovine serum 
albumin was used. The section then underwent further 
incubation for 30 min. Post blockage, the first primary 
antibody was introduced. The section was positioned 
in a humid chamber and incubated overnight at 4 ℃. A 
HRP-labelled secondary antibody corresponding to the 
primary antibody was subsequently added, followed by 
incubation for 50 min at room temperature. T Tyramide 
signal amplification was appropriately applied, and the 
sections were incubated at room temperature in the dark for  
10 min. The tissue section was then transferred to a retrieval 
box containing an antigen-retrieval buffer and subjected to 
microwave heating. The type of retrieval solution used was 
consistent with the initial retrieval. The heating was set to 
medium for 8 min, followed by an 8-min pause, and then  
7 min at medium-low heat. This process was repeated for 
the application of both the second primary antibody and the 
corresponding secondary antibody.

Following the addition of the third primary antibody, 
the section was returned to the humid chamber for 
overnight incubation at 4 ℃. A fluorescent secondary 
antibody corresponding to the primary antibody was 
added and incubated at room temperature for 50 min, 
avoiding exposure to light. For nuclear counterstaining, the 
sections were treated with a 4',6-diamidino-2-phenylindole 
(DAPI) staining solution and incubated for 10 minutes at 
room temperature in darkness. Spontaneous fluorescence 
quenching agent B was applied for 5 min, followed by 
rinsing under running water for 10 min. Subsequently, 
a fluorescence quenching cover slip solution was used to 
cover the slide.

Image acquisition was conducted using an upright 
fluorescence microscope (Nikon Eclipse C1, Tokyo, Japan) 
and a scanner (Pannoramic MIDI, 3DHISTECH, Budapest, 
Hungary). For DAPI staining, the excitation wavelength 
was set between 330 and 380 nm, and the emission 
wavelength was set at 420 nm, revealing a blue nuclear 
channel. For the 488 dyes, the excitation wavelength was 
set between 465 and 495 nm, and the emission wavelength 
was set between 515 and 555 nm, revealing a green positive 
channel. For CY3, the excitation wavelength was set 
between 510 and 560 nm, and the emission wavelength was 
set at 590 nm, revealing a red positive channel. For CY5, 
the excitation wavelength was set between 608 and 648 nm, 

and the emission wavelength was set between 672–712 nm, 
revealing a pink positive channel. The relevant markers 
were as follows: CD68 (GB113150, 1:500, Servicebio, 
Wuhan, China), CD20 (GB14030, 1:300, Servicebio), 
FAP (ab218164, 1:200, Abcam), CD8 (GB12068, 1:500, 
Servicebio), CD4 (GB113500, 1:200, Servicebio), CD11c 
(GB11059, 1:250, Servicebio), CD163 (GB113152, 1:500, 
Servicebio), CD86 (ab239075, 1:2,000, Abcam), and PD-L1 
(ab213524, 1:500, Cambridge, UK). 

Statistical methods

The DEGs were identified using the Wilcoxon test. 
Univariate Cox regression analysis focusing on overall 
survival was conducted to identify the OS-DEGs that 
were significantly correlated with the survival outcomes. 
Kaplan-Meier survival curves were drawn to visualize and 
statistically compare the survival distributions of the two 
distinct groups using the log-rank test. The Wilcoxon 
test was employed to assess the statistically significant 
differences between these groups. The relationship between 
the risk score, calculated by the prognostic model, and 
both stromal and immune scores was examined using 
Spearman correlation analysis. An unpaired t-test was 
used to determine the significance of differences between 
groups. The threshold for statistical significance was set at a  
P value <0.05.

Results

The associated DEGs are implicated in NSCLC

In the comparison between NSCLC and control 
samples, a total of 9,611 DEGs were identified. Of these, 
6,854 were upregulated and 2,757 were downregulated  
(Figure 1A and table available at https://cdn.amegroups.
cn/static/public/tlcr-24-888-1.xls). The expression levels 
of the top 15 upregulated and top 15 downregulated genes 
are shown in a heatmap (Figure 1B). After overlapping the 
DEGs with the OS-genes, 74 genes were identified as OS-
DEGs (Figure 1C and Table S2). The functional analysis 
showed that the OS-DEGs were mainly enriched in 957 
GO terms and 207 KEGG pathways relevant to ROS  
(Figure 2A,2B), including the response to ROS and chemical 
carcinogenesis ROS pathway. Finally, the protein-protein 
interactions (PPIs) of the candidate genes were explored 
using the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database (https://cn.string-db.org/) 
(Figure S1).

https://cdn.amegroups.cn/static/public/tlcr-24-888-1.xls
https://cdn.amegroups.cn/static/public/tlcr-24-888-1.xls
https://cdn.amegroups.cn/static/public/TLCR-24-888-Supplementary.pdf
https://cn.string-db.org/
https://cdn.amegroups.cn/static/public/TLCR-24-888-Supplementary.pdf
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Figure 1 The differential expression of the OS-related genes in NSCLC. (A) Volcano diagram showing the results of the DEG analysis. A 
total of 9,611 DEGs were identified, with 6,854 genes upregulated and 2,757 genes downregulated. (B) Heat map depicting the DEGs. The 
expression of the 15 most significantly upregulated genes and the 15 most significantly downregulated genes (sorted by adjusted P values) is 
visualized in the heat map. (C) Venn diagram showing the overlap between OS genes and DEGs, revealing that 74 DEGs are associated with 
OS. OS, oxidative stress; NSCLC, non-small cell lung cancer; DEG, differentially expressed gene.

The construction and validation of an OS gene-related 
risk-score model for NSCLC

Subsequently, the prognostic significance of the 74 OS-
DEGs in NSCLC was assessed by univariate Cox and 
LASSO regression analyses. The univariate Cox regression 

analysis showed that LDHA, PTPRN, TRPA1, GPR37, 
SIRPA, CDK1, ECT2, ADA, COL1A1, SESN3, and BTK 
were significantly correlated with the survival of the 
NSCLC patients (Figure 3A). To establish a more robust 
prognostic signature, the 11 OS-DEGs were input into the 
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LASSO algorithm, and LDHA, PTPRN, TRPA1, GPR37, 
SIRPA, CDK1, ECT2, ADA, COL1A1, SESN3, and BTK 
were identified as prognostic OS-DEGs (Figure 3B,3C). 
Next, the risk score of each NSCLC patient in the training 
set was calculated using the following formula: 

( )

  = 0.222   0.012 
                     0.067   0.132 
                     0.231   0.008
        

risk score LDHA expression of PTPRN
expression of TRPA1 expression of GPR37
expression of SIRPA expression of CDK1

× + ×
+ × + ×

+ × + × −

( )
( )

             0.048   0.018 
                     0.011   0.127  

                     0.247 .

expression of ECT 2 expression of ADA
expression of COL1A1 expression of SESN3

expression of BTK

+ × + ×

+ × + × −

+ × −

	

[2]

Next ,  the expression levels of the 11 genes that 
comprised the risk score were visualized (Figure S2A), and 
the correlation between the expression levels of the 11 
model genes was analyzed using the Spearman correlation 

coefficients (Figure S2B). 
Based on the median risk score value, the NSCLC 

patients in the TCGA training set were categorized into 
high- and low-risk groups (Figure 4A). An increase in 
the risk score was correlated with a higher number of 
fatalities (Figure 4B). The high-risk group exhibited poorer 
survival rates than the low-risk group (Figure 4C). The 
area under the curves (AUCs) for the 1-, 3-, and 5-year 
predictions were 0.661, 0.648, and 0.634, respectively 
(Figure 4D). The risk-score model was also validated using 
the GSE72094 dataset, and similar findings were observed  
(Figure 5A-5C). In the validation set, the AUCs were 0.643, 
0.648, and 0.662 for the 1-, 3-, and 5-year predictions, 
respectively (Figure 5D), further confirming the model’s 
reliability in predicting the survival of NSCLC patients.
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Figure 3 Risk-score construction. (A) A univariate Cox regression model was used to analyze the association between the expression of 
candidate genes and patient overall survival. The expression of the 11 genes was found to be correlated with overall survival, as illustrated 
in the forest plot. (B) These 11 genes were analyzed using LASSO regression, and the optimal model parameter λ=0.001921895 was 
determined through cross-validation. (C) The graph displays the variation in characteristic coefficients under different values of λ. LASSO, 
least absolute shrinkage and selection operator.

Development of an OS gene-related nomogram in NSCLC

We performed univariate and multivariate analyses and 
found that the risk score and TNM stage were independent 
prognostic factors in NSCLC (Figure 6A,6B). Using the 
identified independent prognostic factors, a predictive 

nomogram was developed to estimate the 1-, 3-, and 
5-year survival rates of NSCLC patients (Figure 6C). The 
calibration curves showed that the predicted probabilities 
of the nomogram for overall survival closely matched the 
actual survival rates (Figure 6D-6F), showing the accuracy 
of the nomogram.
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Figure 4 Risk-score assessment. (A) Risk scores were calculated for patients in TCGA dataset, with the distribution of risk score presented. 
(B) The survival distribution of patients in TCGA dataset is depicted. (C) Log-rank difference analysis showed a significant difference in 
survival between high- and low-risk groups, categorized based on the median risk score. (D) Risk scores were used to predict patient survival 
through ROC curve evaluation. TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic.

Prognostic OS-genes may influence the progression of 
NSCLC by regulating tumor cell proliferation and invasion

To further examine the influence of the prognostic OS-
genes, a comparative analysis of the risk scores was 
conducted across groups categorized by T stage, N stage, 
M stage, and gender was conducted. Notably, the results 
showed that the risk scores increased as NSCLC advanced. 
Specifically, we found that patients in the T4 stage, N2 
stage, and male patients had the highest risk scores (Figure 
7A-7C). This observation suggests that the prognostic OS-
genes significantly contribute to the severity and lymphatic 
spread of NSCLC, potentially affecting patient survival.

Additionally, a GSVA was employed to explore the 
underlying molecular mechanisms. This analysis revealed 

significant enrichment of specific KEGG pathways within 
the high-risk group, particularly those associated with cell-
cycle regulation, DNA replication, the pentose phosphate 
pathway, and the P53 signaling pathway (Figure 7D). 
These pathways are crucial for tumor cell proliferation. 
These findings suggest that the prognostic OS-genes 
may influence the growth and progression of NSCLC by 
promoting tumor cell proliferation.

The GO biological processes (BPs), cellular components 
(CCs), and molecular functions (MFs) were also examined 
by GSVA. The results indicated significant enrichment of 
the glucose catabolic process (Figure S2C), cell cleavage 
furrow, and cell division site (Figure S2D) in the high-risk 
group. In contrast, the cellular response to hydroperoxide 
(Figure S2C) and oxidoreductase activity (Figure S2E) 
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were significantly enriched in the low-risk group. These 
findings suggest that the prognostic OS-genes may affect 
cell division and proliferation, and that the ROS-related 
pathways are notably activated in the low-risk group.

Prognostic OS-genes exert significant effects on the 
chemotherapy outcomes in NSCLC

We successfully constructed NSCLC organoids and assessed 
the effects of carboplatin, paclitaxel, pemetrexed disodium, 
and their combinations on these models. The results 
indicated significant difference in the efficacy of paclitaxel 
and pemetrexed disodium between the low- and high-risk 
groups. However, carboplatin demonstrated superior anti-
tumor activity in the low-risk group compared to the high-risk 
group. Notably, the combination of carboplatin and paclitaxel 

exhibited a higher tumor inhibition rate in the low-risk group. 
Furthermore, the combination of carboplatin and pemetrexed 
disodium showed the most potent anti-tumor effect in the low-
risk group in our study (Figure 8 and Figure S3).

Prognostic OS-genes exerts significant effects on the 
immune microenvironment, immune checkpoint genes, and 
immunotherapy of NSCLC

A growing body of research shows the pivotal role of the 
immune microenvironment in the prognosis of NSCLC. 
Thus, we investigated the potential of OS-genes to 
influence the immune microenvironment in NSCLC 
patients (21,28). Our analysis revealed a strong significant 
correlation between the risk score and the immune score 
(P=6.68×10−5, Figure 9A). Building on this, we conducted a 
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comparative assessment of immune cell infiltration between 
the low- and high-risk groups of patients. Using the 
CIBERSORT method (https://cibersortx.stanford.edu/), we 

identified variations in the levels of immune cell infiltration, 
including naïve B cells, resting DCs, M0 macrophages, M1 
macrophages, and resting mast cells. Significant differences 

https://cibersortx.stanford.edu/
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were observed (P<0.05, Figure 9B and Figure S4), suggesting 
that the OS-genes might influence the immune landscape in 
NSCLC and potentially affect patient outcomes.

We then selected 34 key ICI genes for further research, 
and found that the expression of 15 ICI genes differed 

significantly between the low- and high-risk groups  
(Figure 9C and Table S3). We detected the expression of 11 
prognostic genes in the NSCLC samples using qRT-PCR 
(Figure S5). To determine whether there is a difference 
in immunotherapy sensitivity between NSLCLC patients 

https://cdn.amegroups.cn/static/public/TLCR-24-888-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-24-888-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-24-888-Supplementary.pdf


Translational Lung Cancer Research, Vol 13, No 11 November 2024 3165

© AME Publishing Company.   Transl Lung Cancer Res 2024;13(11):3152-3174 | https://dx.doi.org/10.21037/tlcr-24-888

in the low-risk and high-risk groups, we calculated the 
Immune Phenotype Scores (IPS) of the patients. The 
results showed that patients in the low-risk group are more 
likely to benefit from immunotherapy (Figure 9D, P<0.001). 
The high- and low-risk groups were categorized based on 
the expression of OS genes and the assessment of risk scores 
following IHC analysis (Figure 10).

MIF staining was used to examine the immune 
microenvironment of NSCLC in the high- and low-risk 
groups. The results showed that the expression levels of the 
CD8 (P<0.05, Figure 11A-11C), and CD4 (P<0.05, Figure 
11D-11F) differed significantly. However, the expression of 
CD11c cells did not show a significantly different between 
the high- and low-risk groups (P>0.05, Figure 11G-11I).  
Figure 11J-11L display the combined staining results.

Interestingly,  the expression of CD20 (P<0.05,  
Figure S6A-S6C) was significantly increased in the low-risk 
group, while the expression of cancer-associated fibroblasts 
(CAFs) was significantly higher in the high-risk group than 
in the low-risk group (FAP+, P<0.05, Figure S6D-S6F). 
Additionally, our MIF staining results indicated that PD-L1  
expression was significantly higher in the low-risk group 
compared to the high-risk group (P<0.05, Figure S6G-S6I). 
The combined results are presented in Figure S6J-S6L.

The expression of macrophages (CD68, P<0.05,  
Figure S7A-S7C) and M2 macrophages (CD163, P<0.05, 

Figure S7D-S7F) was significantly increased in the high-risk 
group. The expression of CD86 cells was not significantly 
different between the high- and low-risk groups (P>0.05, 
Figure S7G-S7I). The combined results are presented in 
Figure S7J-S7L.

Relationship between the TMB and prognostic OS-genes

TMB was determined using somatic mutation data sourced 
from TCGA and then compared between the two groups. 
TMB was significantly higher in the high-risk group than 
in the low-risk group (Figure 12A). A visual representation 
in the form of a waterfall plot revealed that the most 
prevalent somatic mutations in the high-risk group involved 
the TP53, TTN, CSMD3, MUC16, and RYR2 genes  
(Figure 12B). Conversely, in the low-risk group, the 
most common mutations were observed in the TP53, 
TTN, MUC16, RYR2, and CSMD3 genes (Figure 12C). A 
univariate Cox analysis was conducted to compare the two 
groups, revealing that the mutation frequencies of KRAS 
and SETX were notably higher in the high-risk group than 
in the low-risk group (Figure 12D).

Discussion

As cancer treatment enters the era of precision therapy, a 
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Figure 9 Correlation between risk score and immunity. (A) Correlation between the risk score and the immune score. (B) A Wilcoxon test 
was used to analyze differences in infiltrating immune cells between the high- and low-risk groups, with the Bonferroni method used to 
adjust the P value. Six types of immune cells showed significant inter-group differences. (C) Differences in the expression of 34 immune 
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large number of clinical studies have shown that targeted 
drugs, such as tyrosine kinase inhibitors (TKIs) and anti-
angiogenic drugs, significantly prolong progression-free 
survival and improve the quality of life of patients with 
NSCLC (29,30). However, research has shown that drug 
resistance is inevitable in targeted therapy (4). The advent 
of ICIs has led to promising treatment strategies. However, 
ICIs are associated with low response rates and irreversible 
fatal autoimmune toxicity in patients (31,32). The lack of 

reliable biomarkers, particularly effective predictive targets, 
contributes to the poor prognosis of NSCLC patients. 
Therefore, a comprehensive understanding of the NSCLC 
microenvironment is essential to enhance personalized 
treatment strategies. It is crucial to develop curative effect 
predictors validated by evidence-based medicine, and to 
further classify and refine treatment intervention decisions 
to ensure accurate and effective treatment (33,34).

Given that ROS are implicated in the onset and 
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Figure 10 Immunohistochemical staining of NSCLC specimens. Immunohistochemical staining and HE staining were used to detect the 11 
prognostic-related genes. Image magnification of 10×. **, P<0.01; NS, not significant. NSCLC, non-small cell lung cancer.
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Figure 11 Multiple immunofluorescence staining of high- and low-risk NSCLC specimens. (A-C) CD8 cells were highly expressed in the 
low-risk group compared with the high-risk group. (D-F) CD4 cells were also more highly expressed in the low-risk group compared to the 
high-risk group. (G-I) There was no significant difference in CD11c cells between the high- and low-risk groups. (J-L) Merge of CD8, CD4 
and CD11c immunofluorescence staining. Image magnification of 10×. *, P<0.05; NS, not significant. NSCLC, non-small cell lung cancer; 
DAPI, 6-diamidino-2-phenylindole.

progression of NSCLC, the heterogeneity of ROS in 
NSCLC is closely associated with drug response and 
prognosis (17,21). Previous studies have explored the 
differential classification of ROS and its prognostic 
implications in lung adenocarcinoma (LUAD) (35,36). 
Unfortunately, validations of the expression of relevant 
markers and their clinical utility remain inadequate. 
In this study, we analyzed the DEGs involved in redox 
homeostasis and successfully established a NSCLC risk-
score model based on these DEGs. The prediction accuracy 

of the model was validated through Kaplan-Meier survival 
curve and ROC curve analyses using public datasets. 
The risk-score model we constructed was identified as an 
independent prognostic factor for NSCLC. GSVA immune 
cell infiltration, immune checkpoint, and TMB analyses 
were conducted to explore the underlying biological 
factors and drug sensitivity to ICIs. Finally, we assessed the 
expression of the risk genes in NSCLC and adjacent normal 
lung tissues, and the correlation between the risk score and 
drug sensitivity was confirmed by establishing organoids.
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In this study, we used TCGA and GEO databases to 
obtain the NSCLC expression profile. We identified 74 
ROS-related DEGs in NSCLC and control normal lung 
tissues, primarily involved in the biological processes and 
signaling pathway of ROS (37). Research indicates that ROS 
accumulation can induce DNA damage in lung cancer cells, 
while the removal of intracellular ROS can prevent cancer 
cell death (38,39). Further, the survival of lung cancer cells 
has been shown to depend on their ability to defend against 

ROS (40), and the excessive free radicals produced through 
oxidation are closely related to cancer development (41,42). 
ROS can directly damage hydrogen bonds in the DNA 
double helix, promote DNA double-strand breaks, and 
fully expose the internal base groups to ROS. This exposure 
promotes the oxidative modification of DNA bases and 
results in mismatches, deletions, insertions, and chromosomal 
translocation in the nucleus (43). Moreover, ROS may serve 
as a second messenger to regulate cell proliferation and its 
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associated signaling pathways. For instance, PTP1B and 
PTPN2 phosphatases which contain cysteine active sites, 
can be oxidized and inactivated by ROS. This inactivation, 
in turn, can activate the mitogen-activated protein kinase 
(MAPK)/extracellular regulated kinase 1/2 (ERK1/2), 
PI3K/AKT, and nuclear factor κB (NF-κB) signaling 
pathways, thereby promoting tumor cell proliferation (44).

We further identified LDHA, PTPRN, TRPA1, GPR37, 
SIRPA, CDK1, ECT2, ADA, COL1A1, SESN3, and BTK as 
prognostic biomarkers of NSCLC through univariate Cox 
and LASSO regression analysis. Based on these biomarkers, 
we constructed a risk-score model. Both univariate and 
multivariate Cox regression analyses confirmed that 
the risk score is an independent prognostic factor for 
NSCLC, demonstrating stable predictive utility across 
independent datasets. Specifically, LDHA, a key enzyme 
in glycolysis, catalyzes the conversion of pyruvate to lactic 
acid. Research indicates that the accumulation of lactic acid 
promotes NSCLC tumorigenesis by activating the NF-
κB signaling pathway (45). Additionally, lactic acid induces 
the production of hypoxia-inducible factor-α (HIF-α) and 
enhances the expression of SRY related HMGBOX-2 (Sox-
2) and other tumor stem cell factors, ultimately leading 
to tumor stem cell formation (46). SIRPA, an inhibitory 
receptor containing multiple intracellular tyrosine-based 
immunosuppressive motifs (47,48), serves as the principal 
receptor of CD47. CD47 triggers SIRPA phosphorylation 
through Src family kinases, and phosphorylated SIRPA 
recruits the phosphatases SHP-1 and SHP-2. The CD47-
SIRPA axis plays a crucial role in inhibiting phagocytosis, a 
key consideration in NSCLC immunotherapy (49). A study 
has shown that PTPRN is highly upregulated and associated 
with metastasis and poor OS in patients with LUAD (50), 
where its overexpression enhances metastatic capacity by 
modulating the MEK/ERK and PI3K/AKT pathways.

The ion-channel protein TRPA1 is associated with 
LUAD, where its anchor protein plays an essential role in 
regulating fibroblast growth factor receptor 2 (FGFR2)-
driven carcinogenesis (51). GPR37 has been implicated in 
promoting the malignant progression of LUAD through 
the TGF-β/Smad pathway (52). Depletion of GPR37 
inhibits the expression of TGF-β1 and the phosphorylation 
of Smad2 and Smad3. Another study reported that 
GPR37 can promote LUAD by binding to CDK6 and 
thus presenting a potential theranostic target (53). CDK1, 
when phosphorylated, becomes inactivated, leading to 
inhibition of cell proliferation, colony formation, cell-cycle 
entry, and resistance to apoptosis, ultimately suppressing 

tumor growth in vivo (54). The expression of ECT2 is 
upregulated in LUAD, and targeting by miR-30a-5p 
results in the downregulation of ECT2, which inhibits the 
viability, migration, and invasion of LUAD cells (55). ADA 
expression in serum or malignant pleural effusion serves as 
a diagnostic marker for lung cancer (56). A study indicates 
that LINC00511 enhances COL1A1-mediated cell 
proliferation and the cell motility of LUAD by sponging 
miR-126-5p and miR-218-5p, and activates the PI3K/Akt 
signaling pathway via COL1A1 (57). SESN3, induced by 
ROS and activated through forkhead box O (FoxO), has 
an undefined mechanism in NSCLC that warrants further 
investigation (58). BTK mediates the stemness and epithelial 
mesenchymal transition characteristics of NSCLC, and its 
inhibition augments the efficacy of gefitinib and osimertinib 
in TKI-resistant NSCLC cells (59).

In the present study, we explored the potential mechanism 
through which 11 prognostic-related ROS markers 
influence the development of NSCLC. We discovered 
that risk scores based on these genes exhibited significant 
differences according to T stage, N stage, and sex, suggesting 
an association with higher clinical stages and increased 
mortality. Subsequent GSVA revealed significant enrichment 
of BPs and signaling pathways, such as the p53 signaling 
pathway, which are involved in the cell cycle, in the high-
risk group. The p53 gene, a critical tumor suppressor, has its 
transcriptional activity influenced by ROS (60). ROS and p53 
are linked through a mutation in the 8-oxoG gene, typically 
a response to ROS. The presence of 8-oxoG recruits the 
p53 protein and engages two base excision repair pathways 
(i.e., hOGG1 and APE). The interaction with p53 markedly 
enhances the combined activity of APE and hOGG1, 
enabling effective excision of the 8-oxoG residue (61). In 
addition, the interplay between p53 and ROS extends to p53-
regulated metabolism. A balance between optimal p53 levels 
and elevated ROS can be maintained through p53-regulated 
antioxidant products. P53mitigates ROS by promoting 
antioxidant activity through the regulation of antioxidant and 
metabolic genes, rather than genes associated with cell-cycle 
and apoptosis, potentially leading to a more favorable tumor 
status (62,63). These observations suggest that prognosis 
ROS genes may regulate the onset and progression of 
NSCLC through various pathways. ROS has also been 
shown to inactivate PI3K/Akt phosphatase, thus facilitating 
the transduction of the PI3K/Akt signal. Beyond inducing 
proliferation and tumor cell survival, the PI3K/Akt signaling 
pathway is also implicated in chemotherapy resistance and 
the inhibition of cell death (64).
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Numerous predictive models exist for tumor drug 
sensitivity for tumor drug sensitivity, yet the absence of 
efficacy tests curtails their clinical application. Given the 
high genetic congruence between organoids and their 
source tumor tissues, the drug sensitivity results from 
organoids closely align with those derived from tumor 
tissues (65). Therefore, it is feasible to use organoid to 
validate the therapeutic effect of chemotherapeutic drugs. In 
this study, organoid-based drug sensitivity tests confirmed 
that patients with low-risk scores experienced more 
favorable outcomes from chemotherapy, thereby validating 
the effectiveness of our model.

We also investigated the relationship between the 
prognostic ROS genes and tumor microenvironment, 
findings significant differences in immune infiltration 
cells between high- and low-risk groups, with the risk 
score strongly correlating with the immune score. 
Notably, the low-risk group appeared more responsive 
to immunotherapy. Given the critical role of the tumor 
immune microenvironment in the response to ICIs 
and the prognosis of NSCLC patients, we speculate 
that the expression of these genes may affect the tumor 
microenvironment, ultimately determining the immune 
specificity of tumors. Tumor infiltrating lymphocytes 
(TILs), including DCs, macrophages, natural killer cells, 
and B cells, are known to affect tumor progression and 
responses to immunotherapy (66). CD8+ T cells, recognized 
as primary anti-tumor immune effectors, can specifically 
recognize tumor-associated antigens presented by major 
histocompatibility complex (MHC) I and bind to tumor 
cells, releasing perforin and other cytotoxins that destroy 
cancer cells. However, CD8+ T cells that recognize antigen 
epitopes within tumors or the peripheral blood of the 
tumor microenvironment are often exhausted (67). CD4+ T 
cells contribute to anti-tumor immunity by assisting CD8+ 
T cells or by directly eliminating tumor cells as cytotoxic 
T cells (68). B cells are humoral immune cells that play 
a role in the adaptive immune system. A previous study 
revealed that the formation of tertiary lymphoid structures 
and the coexistence of CD20+ B cells and CD8+ T cells in 
tumors are associated with improved survival in patients 
with metastatic melanoma and can predict clinical outcomes 
in treatments involving ICIs (69). TAMs in the tumor 
microenvironment typically exhibit an M2 phenotype, 
characterized by elevated expression of anti-inflammatory 
cytokines, clearance receptors, angiogenic factors, and 
proteases, with M2-type macrophages predominating 
over M1-type. These anti-inflammatory cytokines foster 

an immunosuppressive tumor microenvironment that 
promotes tumor progression (70). Additionally, CAFs 
secrete numerous cytokines through paracrine pathways 
to activate tumor cells. CAFs also facilitate tumor cell 
invasion and metastasis by promoting extracellular matrix 
remodeling, angiogenesis, and immunosuppression (71).

This study acknowledges its limitations, including the 
inability to establish an organoid system for assessing the 
efficacy of immunotherapeutic drugs and the need for further 
investigation into the molecular mechanisms underlying our 
findings. Additionally, the study’s limitations are evident in 
the lack of validation for the proposed signature within a 
larger clinical NSCLC sample cohort, a shortcoming that 
will be addressed in future, more comprehensive research.

Conclusions

This study identified 11 ROS-related genes that are 
significantly associated with prognosis in NSCLC, and 
established a model that accurately predict the therapeutic 
responses to chemotherapeutic drugs. Our findings 
underscore the pivotal role of ROS-related genes in 
modulating the efficacy of drug therapy in NSCLC, 
suggesting potential pathways for the development of 
precise and personalized treatment strategies for patients 
with this malignant disease.
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