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Abstract

Working memory capacity is pivotal for a broad specter of cognitive tasks and develops

throughout childhood. This must in part rely on development of neural connections and

white matter microstructure maturation, but there is scarce knowledge of specific relations

between this and different aspects of working memory. Diffusion tensor imaging (DTI)

enables us to study development of brain white matter microstructure. In a longitudinal DTI

study of 148 healthy children between 4 and 11 years scanned twice with an on average 1.6

years interval, we characterized change in fractional anisotropy (FA), mean (MD), radial

(RD) and axial diffusivity (AD) in 10 major white matter tracts hypothesized to be of impor-

tance for working memory. The results showed relationships between change in several

tracts and change in visuospatial working memory. Specifically, improvement in visuospatial

working memory capacity was significantly associated with decreased MD, RD and AD in

inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF) and uncinate

fasciculus (UF) in the right hemisphere, as well as forceps major (FMaj). No significant rela-

tionships were found between change in DTI metrics and change in verbal working memory

capacity. These findings yield new knowledge about brain development and corresponding

working memory improvements in childhood.

Introduction

Development of working memory underlies the emergence of several abilities that are consid-

ered hallmarks of mature, higher level cognitive functions [1–3]. Working memory capacity

develops throughout childhood [4, 5] along with a number of structural maturational
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processes in the brain [6–8]. A relationship between white matter microstructure, as derived

from diffusion tensor imaging (DTI), and working memory in adolescence has been suggested

by cross-sectional studies [9–15]. However, in order to establish the impact of development of

these brain substrates on the development of working memory, longitudinal investigations are

crucial. Of interest, a longitudinal study from the age of six years onwards demonstrated that

regional fractional anisotropy (FA) predicted future visuospatial working memory capacity

[16]. The relationships between white matter development in specific tracts and development

of visuospatial and verbal working memory have not to our knowledge been investigated lon-

gitudinally, and this is the goal of the present study.

Behavioral studies investigating components of working memory in children have indi-

cated that visuospatial and verbal working memory are relatively independent of one another

at 5 and 8 years of age [17], and at 11 and 14 years of age [18]. Hence, they may also have dif-

ferent neural substrates, which may develop differently during childhood.

It is known that white matter microstructure changes rapidly in infancy [19–22], and that

changes continue into early adulthood [12, 23, 24]. The development of white matter reflects a

variety of microstructural features such as myelination, whereby axons get insulated and able

to conduct action potentials at greater speeds and frequencies [24–26]. Longitudinal studies

show widespread white matter fractional anisotropy (FA) increases, and mean diffusivity

(MD) and radial diffusivity (RD) decreases through late childhood and adolescence, while the

results for axial diffusivity (AD) are less consistent [8, 27–29].

The present study allows us to uncover possible relations between development of struc-

tural brain connectivity in specific tracts and visuospatial and verbal working memory capac-

ity longitudinally. We recognize that a relatively wide set of tracts may potentially be of

interest based on the multiple brain regions involved in working memory. Based on available

cross-sectional studies, well-documented association tracts and major white matter bundles

were selected as tracts of interest (TOIs): inferior longitudinal fasciculus (ILF), inferior

fronto-occipital fasciculus (IFOF), superior longitudinal fasciculus (SLF), uncinate fasciculus

(UF), forceps minor (FMin) and forceps major (FMaj) [9–13, 30, 31]. ILF is an occipito-tem-

poral fiber bundle connecting occipital and temporal areas [32]. IFOF mediates a direct

communication between occipital and frontal lobes, and also connects the frontal lobe

with the posterior part of the parietal and temporal lobes [32, 33]. SLF is part of the fronto-

parietal-occipital network and projects to most lateral regions of the temporal lobe with

a characteristic C-shape [34, 35]. UF is part of a fronto-temporal connectivity and is con-

nected to the inferior frontal lobe [15, 33]. While FMin has been found to overlap with genu

of corpus callosum [34], FMaj connects the occipital lobes and crosses the midline via the

splenium of the corpus callosum [30, 34, 36]. fMRI studies have shown that right lateralized

networks are likely to underlie maintenance of visuospatial stimuli, while a left hemisphere

dominance is thought to represent maintenance of verbal stimuli [37–39]. However, the

added demand of manipulation of information maintained appears to require further bilat-

eral neural recruitment of functionally related areas for both visuospatial and verbal stimuli

[40, 41].

Based on previous empirical findings, we hypothesize that 1) visuospatial and verbal work-

ing memory development will be associated with longitudinal increase in FA and decrease in

MD, RD and AD in all TOIs [9–13], and 2) a somewhat greater relationship may be found for

verbal working memory in the left hemisphere, whereas visuospatial working memory may

relate more strongly to tracts in the right hemisphere [37–39].
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Methods

Participants

All participants were recruited from the Norwegian Mother and Child Cohort Study [42],

undertaken by the Norwegian Institute of Public Health, to the current project [43], run by the

Research Group for Lifespan Changes in Brain and Cognition (LCBC) at the Department of

Psychology, University of Oslo, Norway. The project was approved by the Regional Committee

for Medical and Health Research Ethics. Written informed consent was obtained from the par-

ent/guardian for all participants and oral assent was given by participants at both time points.

A parent of each participant completed a structured interview to ascertain participant eligi-

bility at both time points. Included participants were required to be fluent Norwegian speakers

and have normal or corrected-to normal vision and normal hearing. Exclusion criteria were

history of injury or disease known to affect central nervous system (CNS) function, including

neurological or psychiatric illness, serious head trauma such as been unconscious, being under

psychiatric treatment, use of psychoactive drugs known to affect CNS functioning, low birth

weight (< 2500 g), and MRI contraindications. All participants also had scans included for

neuroradiological evaluation, and these were examined by a neuroradiologist and required to

be deemed free of significant injuries or pathological conditions at both time points.

Two hundred and ninety-six children met the inclusion criteria (see below) and underwent

DTI scanning at time point 1 (tp1). Of these, 173 completed DTI scans at both time points,

yielding a total of 123 dropouts to time point 2 (tp2). The main reason for drop out was the

parent’s busy schedule (n = 45). Additionally, 21 children did not want to participate, 11 of the

families had moved, 10 parents did not want their child to undergo magnetic resonance imag-

ing (MRI) a second time, and 35 were not able to participate due to other circumstances.

Finally, one child did not participate due to undisclosed health reasons at tp2. Of the 173 that

had DTI scans at both time points, 14 participants (mean age = 5.5, SD = 1.0, 8 females) were

excluded based on motion artifacts (see section Correction for eddy currents and subject move-
ment): 10 of whom based on motion at tp1 and 4 based on motion at tp2.

To avoid possible effects of handedness, 11 left handed participants (8 females, mean

age = 6.5, SD = 1.2) were excluded from the current study and are not included in further anal-

ysis. One hundred and forty-eight participants (82 females) had longitudinal data and were

included. Participant characteristics for the final sample are provided in Table 1. At tp1 the age

range was from 4.2 to 9.3 (M = 6.2, SD = 1.1), and at tp2 the age ranged from 5.8 to 11.0

Table 1. Participant characteristics and working memory performance.

Mean SD Range

Age tp1 6.2 1.1 4.2–9.3

Age tp2 7.8 1.1 5.8–11.0

Interval years 1.6 0.1 1.3–2.2

Spatial Span Backwards tp1 a 3.3 1.4 0–7

Spatial Span Backwards tp2 b 4.4 1.0 2–7

Digit Span Backwards tp1c 2.7 1.1 0–5

Digit Span Backwards tp2d 3.4 0.9 2–6

Participant’s cognitive scores at time point 1 (tp1) and time point 2 (tp2). Number of participants;
a n = 148,
b n = 147,
c n = 145,
d n = 146.

https://doi.org/10.1371/journal.pone.0195540.t001
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(M = 7.8, SD = 1.1). Mean interval between scans was 1.6 years (SD = 0.1), ranging from 456

to 819 days. Interval between scans was not significantly correlated with age at tp1 (r = .13, p =

.124), but was at tp2 (r = .25, p = .002) where age increased with increasing interval, but was

not different for females and males (t = -1.52, p = .131).

Neurocognitive assessment

Visuospatial and verbal working memory were assessed with the Wechsler Memory Scale—

Third Edition (WMS-III) Spatial Span Backward and Digit Span Backward, respectively [44].

For the Spatial Span Backward participants retain information about the order and position of

blocks pointed at by the examiner and points to the same blocks in the reversed order, while

for the Digit Span Backward participants retain information about the order of a sequence of

numbers being read out loud and repeat the same digits but in reversed order. To ensure that

the included measures required manipulation of the retained information and active rehearsal

of the visuospatial/verbal sequence, measuring working memory, the current study focused on

backward sequences for both tests, and the number of items in the longest correctly recalled

trial was used as each participant´s raw score. 148 participants performed Spatial Span Back-

ward at tp1 (M = 3.3, SD = 1.4, range 0–7) and 147 participants at tp2 (M = 4.4, SD = 1.0,

range 2–7), and 145 participants performed Digit Span Backward at tp1 (M = 2.7, SD = 1.1,

range 0–5) and 146 participants at tp2 (M score = 3.4, SD = 0.9, range 2–6).

MRI acquisition

At tp1, all children underwent a practice session in a mock scanner to get familiarized with the

procedures, the small space and the sounds of the MRI-scanner. They were also shown an

illustration video recorded at Oslo University Hospital with a child going through each step of

the MRI session. This was also done at tp2 for the children that expressed concern related to

the MRI session.

All MRI data was collected using a 12-channel head coil on a 1.5 T Siemens Avanto scanner

(Siemens Medical Solutions) at Rikshospitalet, Oslo University Hospital. The same scanner,

head coil and sequences were used at both time-points, though with a software upgrade from

B17 to B19 for most participants at tp2 (n = 136). DTI was performed with the following

parameters: repetition time (TR) = 8200 ms; echo time (TE) = 81 ms; voxel size = 2.0 mm iso-

tropic; number of slices = 64; FOV = 128; matrix size = 128 x 128 x 64; b value = 700 s/mm;

number of diffusion weighted directions = 32; number of b0 images = 5 (the first 33 partici-

pants were scanned with b0 = 1); A GeneRalized Autocalibrating Partially Parallel Acquisition

(GRAPPA) factor of 2 was used. Acquisition time was 5 min 30 s.

Raw datasets were deidentified and transferred to Linux workstations for initial processing

at the Neuroimaging Analysis Laboratory, LCBC, University of Oslo. Further analysis was

conducted at the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain

(FMRIB), University of Oxford, and LCBC, University of Oslo.

Correction for eddy currents and subject movement

All included DTI scans were corrected for eddy current-induced distortions as described else-

where [45, 46]. In short, this procedure uses all diffusion weighted volumes to make a predic-

tion (based on a Gaussian Process) what each volume “should look like” and then registers the

observed volumes to that prediction using a rigid body model for the movements and assum-

ing a first order eddy current-induce field. In some of these data sets there was signal drop-

out. This is caused by a rotation (subject movement) coinciding exactly in time with the diffu-

sion encoding and shows itself as multiplicative signal dropout across the entire slice that was
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affected by the movement. It can also be caused by pulsatile movement leading to a local rota-

tion which will then manifest as a local dropout typically around the brain stem area. The eddy

current correction method described above has been extended to also detecting these dropouts

by comparing the observed slice to the predicted and deciding if the difference is large enough

to make it an outlier among all such differences [47]. If a slice is determined to constitute an

outlier it is removed and the prediction is recalculated without this slice and the new predic-

tion is inserted as a replacement for the removed slice. Based on the eddy outlier report, all vol-

umes with>10 slices of signal dropout detected by the eddy correction method were deemed

bad. For participants (n = 85) with 1–6 bad volumes, we excluded the bad volumes and re-cor-

rected for eddy current-induced distortions and subject movement. This was especially done

for participants with sudden motion in the scanner. Participants exceeding 6 bad volumes

(� 24 remaining volumes) were excluded from the study (see Participants section). Each DTI

sequence was visually inspected, and rated for movement and artifacts on a scale from 1 to 4

(1: excellent, 2: minor movement/artifacts, 3: some movement/artifacts, 4: major movement/

artifacts). Only participants with DTI scans rated excellent or had minor or some movement

at both time points were included in further analyses. The manual quality control was in accor-

dance with the eddy outlier report and no additional participants were excluded based on

manual checking. The DTI scan was acquired after T1-scans in the scanning protocol. For the

T1-weighted magnetization prepared rapid acquisition gradient echo (MP-RAGE) scans we

used a parallel imaging technique (iPAT), acquiring multiple T1-scans within a short scan

time (acquisition duration of 4 min 18 s.). If all T1-scans were deemed bad with major move-

ment, or the participant did not want to continue scanning, the DTI sequence was not run.

This explains the high success rate for inclusion of DTI scans in the current study.

MRI analysis

Analysis of DTI data was carried out using Tract-Based Spatial Statistics (TBSS; [48]), part of

FSL [49]. The gradient directions of each DWI volume were rotated according to the transfor-

mations applied during the eddy and motion correction steps [50]. After correction for eddy

currents and subject movement, as described in the previous section, the DTI images were

brain-extracted using BET [51]. Then, the FA and eigenvalue maps were computed by fitting a

tensor model to the diffusion data. All participants’ FA data were then aligned into a common

space using the nonlinear registration tool FNIRT in a process where every FA image was

aligned to every other one [52, 53], using a b-spline representation of the registration warp

field [54]. Next, the mean FA across participants and time points was created based on the par-

ticipant’s FA image, from the current sample, that had the smallest amount of average warping

when used as a target. The target was affine-aligned into MNI152 standard space and this tar-

get-to-MNI152 affine transform was combined with each participant’s nonlinear transform to

the target. This single transform was then applied to each subject’s FA image bringing each

image into standard space in one transformation. The resulting standard space FA images

were then averaged and thinned to create a mean FA skeleton which represents the centres of

all tracts common to the group. The threshold for the mean FA skeleton was set at 0.25 to

reduce the likelihood of partial voluming in the borders between tissue classes, yielding a mask

of 152284 white matter voxels. Each participant’s aligned FA data was then projected onto this

skeleton by searching perpendicular from the skeleton for maximum FA values. We calculated

maps of change between tp2 and tp1 (tp2—tp1), and the resulting data was fed into voxelwise

cross-subject statistics. The FA-derived nonlinear warps were applied to the MD, RD, and AD

change maps and values were projected onto the skeleton from the same voxels as in the FA

analysis (i.e. the voxel with highest FA perpendicular to each point on the skeleton). MD was
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defined as the mean of all three eigenvalues (λ1 +λ2 + λ3/ 3), RD as the mean of the second

and third eigenvalues (λ2 + λ3/ 2), and AD as the principal diffusion eigenvalue (λ1).

The probabilistic white matter tractography atlas (the Johns Hopkins University (JHU))

[55] provided with FSL was used to extract diffusivity tract values with a probability threshold

of 5%. The relatively liberal threshold was chosen to accommodate for the skeleton voxels to

intersect the correct tract appropriately [48]. DTI indices from the overlap between the FA

skeleton and the following tracts were extracted: left and right inferior longitudinal fasciculus

(ILF), left and right inferior fronto-occipital fasciculus (IFOF), left and right superior longitu-

dinal fasciculus (SLF), left and right uncinate fasciculus (UF), forceps major (FMaj) and for-

ceps minor (FMin). Longitudinal DTI changes across tracts with a larger sample are presented

elsewhere [56]. Most white matter tracts included in the current study showed linear develop-

ment. Non-linear trajectories were found for FA in left ILF, left IFOF, in left and right UF and

forceps minor, and for MD in left UF, all showing a deceleration of change with age.

Statistical analysis

We first tested whether significant change was observed in all measures of interest. In PASW

Statistics 22 (SPSS, Chicago, IL), we ran paired t-tests for Spatial Span Backward scores and

Digit Span Backward scores to test for differences in capacity between tp1 and tp2. Paired t-

tests were also run for FA, MD, RD and AD in TOIs to test for differences between tp1 and

tp2. In order to investigate to which extent development in the two cognitive measures was

related, partial correlations between Spatial Span Backward and Digit Span Backward change

scores were run, controlling for sex, age and interval. When controlling for age, this refers to

age at tp1 for all analyses. Hereafter, in using the term “age”, we refer to chronological age at

the time of scan tp1 and tp2, and “change” we refer to alteration between time points (tp2 –

tp1). For all analyses including Spatial Span Backward and Digit Span Backward change scores,

n = 147 and n = 143, respectively. Unless otherwise noted, all analyses were corrected for 10

comparisons (reflecting the 10 TOIs) using Bonferroni correction. The standard Bonferroni

correction procedure assumes independence between the tests, but the change for each tract

within each DTI metric are highly correlated. Therefore, the Bonferroni correction threshold

was adjusted for the mean correlation (r) between tract-wise change within each DTI metric

(http://www.quantitativeskills.com/sisa/calculations/bonfer.htm).

To illustrate change within individuals, spaghetti plots were created for Spatial Span Back-

ward and Digit Span Backward scores, for FA and MD in all TOIs, and for RD and AD in spe-

cific tracts. An assumption-free nonparametric general additive mixed model (GAMM) was

used to plot the data. As global fits, such as linear and quadratic models, may be affected by

irrelevant factors, such as the sampled age range [57], the smoothing spline (GAMM) was fit-

ted as a function of age to describe developmental trajectories across the studied age range.

Curve fitting was performed using functions freely available through the statistical environ-

ment R, version 3.0.1 (http://www.r-project.org/).

To investigate how white matter microstructure changes relate to working memory

changes, partial correlations were run between change in FA and MD in TOIs, and change in

Spatial Span Backward and Digit Span Backward scores, controlling for age, sex, interval and

motion at both time points. Motion was quantified by the eddy outlier report and motion at

both time points were used as covariates in all analyses. The analyses were first performed for

FA and MD in TOIs, based on these being the most general DTI metrics. The partial correla-

tions were repeated with RD and AD for tracts shown to be significant for FA and/or MD and

Spatial Span Backward or Digit Span Backward capacity. Further, to illustrate the significant

associations between TOI white matter microstructure development and working memory
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development, change values were z-transformed and FA, MD, RD and AD change were plot-

ted against Spatial Span Backward and Digit Span Backward change, using PASW Statistics 22

(SPSS, Chicago, IL). For each TOI change value, age, sex, interval and motion at both time

points were regressed out, and for working memory change values, age, sex and interval were

regressed out.

To quantify possible outlier values, Studentized Deleted Residuals (SDR) for Spatial Span

Backward change scores and Digit Span Backward change scores predicted by age were calcu-

lated. Additionally, SDR for each TOI for FA, MD, RD and AD shown to be significantly asso-

ciated with working memory were calculated.

In addition, to test for specificity in different tracts for each DTI metric when assessing the

relationship between change TOIs and change in Spatial Span Backward and Digit Span Back-

ward scores, partial correlations additionally controlling for mean change in FA, MD, RD and

AD were run. Differences between the correlations between change in FA, MD, RD and AD in

TOIs and change in Spatial Span Backward, and change in FA, MD, RD and AD in TOIs and

Digit Span Backward scores were also tested for (please see Lee and Preacher, 2013). Addition-

ally, to test the regional effect of change in Spatial Span Backward and Digit Span Backward on

change in FA, MD, RD and AD across the white matter skeleton, voxelwise statistics were per-

formed on change maps using “randomise” with 5000 permutations to control the family-wise

error rate [58]. The GLMs were run with age, sex, motion at both time points and interval as

covariates.

To make sure that the software upgrade at tp2 did not affect the results, the partial correla-

tion between change in MD in TOIs, and change in Spatial Span Backward and Digit Span

Backward scores was run with software upgrade as an additional covariate.

To test the effects of age and sex on change in working memory capacity, we ran a GLM

with age, sex and interval on Spatial Span Backward and Digit Span Backward change scores

separately. Additionally, to test the effects of age and sex on white matter microstructure

change, the GLM was repeated for all DTI change metrics in TOIs with age, sex, interval

and motion at both time points. To control for non-linear effects, the partial correlation

analyses, were repeated controlling for age, sex, interval, motion at both time points and

age2.

There was a drop out of children from tp1 to tp2. 114 participants performed Spatial Span

Backward at tp1 only (M = 3.0, SD = 1.4, range 0–7) and 112 participants performed Digit

Span Backward at tp1 only (M = 2.7, SD = 0.9, range 0–5). For the participants that were

scanned at tp1 only, new analyses of DTI data were conducted using the same FSL tool and

quality checking as described previously. 11 out of 114 participants were excluded based on

manual quality checking and the eddy outlier report, leaving us with 103 participants that had

DTI scans at tp1 only. To investigate potential drop out effects from tp1 to tp2, independent t-

tests were ran to compare cognitive scores and mean FA, MD, RD and AD for participants

tested at both time points and those only tested at tp1.

Results

Results showed significant positive change for both Spatial Span Backward scores (t = 8.93, p =

< .001) and Digit Span Backward scores (t = 3.91, p =< .001) across time. For white matter

microstructure change (see Table 2), FA showed significant increase in all TOIs, MD and RD

showed significant decrease in nine out of ten TOIs, and AD showed significant decrease in

four TOIs, significant increase in one TOI, and no significant change in five TOIs. Spatial

Span Backward and Digit Span Backward change scores were shown to correlate significantly

with each other (r = .21, p = .015). Mean r’s of change between TOIs, with Bonferroni adjusted
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alpha levels for FA/MD/RD/AD were: r = .79, p = .031/ r = .69, p = .025/ r = .72, p = .027/ r =

.65, p = .022, respectively.

Spaghetti plots of individual participant change from tp1 to tp2 for Spatial Span Backwards

and Digit Span Backwards scores are displayed in Fig 1, where both Spatial Span Backward

and Digit Span Backward showed non-linear development patterns, indicating deceleration of

change with increasing age. The DTI changes across tracts with a somewhat larger sample are

the topic of a separate paper [56], and the spaghetti plots of individual participant change for

each white matter tract for the current sample are presented as supplementary material (please

see S1 and S2 Figs).

Table 2. Change in DTI metrics of white matter microstructure.

Change (tp2 –tp1)

FA MD RD AD

Tracts Hemisphere t p t p t p t p

ILF left 11.43 <.001 -9.00 <.001 -11.28 <.001 -3.54 .001

right 7.03 <.001 -3.34 <.001 -4.92 <.001 .58 .565

IFOF left 12.06 <.001 -8.82 <.001 -11.33 <.001 -3.27 .001

right 8.03 <.001 -3.17 .002 -5.39 <.001 1.44 .153

SLF left 10.30 <.001 -7.91 <.001 -9.76 <.001 -3.74 <.001

right 6.01 <.001 -.87 .384 -1.41 .162 4.65 <.001

UF left 14.69 <.001 -10.86 <.001 -13.89 <.001 -4.64 <.001

right 11.15 <.001 -6.34 <.001 -9.23 <.001 -.68 .499

FMaj 7.10 <.001 -2.66 .009 -5.02 <.001 1.85 .067

FMin 9.79 <.001 -6.25 <.001 -8.70 <.001 -1.90 .059

Paired t-tests between DTI metrics at time point 1 and time point 2. ILF = Inferior longitudinal fasciculus, IFOF = Inferior fronto-occipital fasciculus, SLF = Superior

longitudinal fasciculus, UF = Uncinate fasciculus, FMaj = Forceps major and FMin = Forceps minor. Numbers in bold signify Bonferroni-corrected significance level p

< .031/.025/.027/.022 for FA, MD, RD and AD, respectively.

https://doi.org/10.1371/journal.pone.0195540.t002

Fig 1. Spatial Span Backward and Digit Span Backward scores with age. Spaghetti plots of individual participant

change in Spatial Span Backward and Digit Span Backward scores with age (years). Females are plotted in red and

males in blue. For each measure, an assumption-free general additive mixed model as a function of age was fitted to

accurately describe group-level changes across the age range.

https://doi.org/10.1371/journal.pone.0195540.g001
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Change in white matter tracts and working memory change

Partial correlations showed an association between change scores for Spatial Span Backward

and white matter microstructure change for FA increase in right IFOF (r = .17, p = .046), but

this association did not survive multiple comparison correction (see S1 Table), and corrected

significant relationships for MD decrease in four TOIs: right ILF, right IFOF, right UF and

FMaj (see Table 3). Post hoc analyses were performed to test which diffusion metrics that

underlie the observed effect on MD. The relationships between working memory capacity

change scores and change in RD and AD in the latter four TOIs were therefore investigated

(see Tables 4 and 5).

Significant associations (p< .05) between Spatial Span Backward change and RD decrease

change were found in all four TOIs: right ILF, right IFOF, right UF and FMaj, and significant

associations (p< .05) between Spatial Span Backward change and AD decrease change were

found in three TOIs: right ILF, right IFOF and FMaj. No significant relationships were found

between change in any DTI metrics and Digit Span Backward change.

Table 3. MD change in white matter tracts and working memory change.

Spatial Span Backward Digit Span Backward

Tract Hemisphere r p r p

ILF left -.10 .235 .01 .677

right -.22 .009 -.01 .985

IFOF left -.11 .177 .04 .418

right -.23 .007 .02 .782

SLF left -.05 .526 .07 .286

right -.12 .146 .04 .692

UF left -.08 .352 .05 .233

right -.20 .019 -.01 .883

FMaj -.24 .004 -.02 .977

FMin -.15 .077 .07 .257

Partial correlation between change in MD in specific white matter tracts and change in Spatial Span Backward and

Digits Span Backward scores, controlling for age, sex, interval and motion at both time points. ILF = Inferior

longitudinal fasciculus, IFOF = Inferior fronto-occipital fasciculus, SLF = Superior longitudinal fasciculus,

UF = Uncinate fasciculus, FMaj = Forceps major and FMin = Forceps minor. Numbers in bold signify Bonferroni-

corrected significance level p < .025.

https://doi.org/10.1371/journal.pone.0195540.t003

Table 4. RD change in white matter tracts and working memory change.

Spatial Span Backward Digit Span Backward

Tract Hemisphere r p r p

ILF right -.19 .021 .03 .754

IFOF right -.21 .013 .03 .713

UF right -.19 .020 .03 .771

FMaj -.22 .010 -.01 .919

Partial correlation between change in RD in specific white matter tracts and change in Spatial Span Backward scores,

controlling for age, sex, interval and motion at both time points. ILF = Inferior longitudinal fasciculus,

IFOF = Inferior fronto-occipital fasciculus, UF = Uncinate fasciculus and FMaj = Forceps major. Numbers in bold

signify Bonferroni-corrected significance level p < .05.

https://doi.org/10.1371/journal.pone.0195540.t004
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The main results are illustrated in Figs 2 and 3, where the relationships between change for

FA (in right IFOF and FMaj) and for MD, RD and AD (in right ILF, right IFOF, right UF and

FMaj) and visuospatial working memory change are shown. Overall, the plots showed increase

for FA and decrease for MD, RD and AD in TOIs in relation to improving visuospatial work-

ing memory.

No participants had SDR values for Spatial Span Backward or Digit Span Backward change

exceeding ±3 (SDR ranged from -2.86 to 2.93). Altogether, three participants had SDR exceed-

ing ±3 (SDR ranged from -5.56 to 7.41) in some TOIs for FA, MD, RD or AD change. The par-

tial correlations between change in the specific TOIs and visuospatial working memory

change were repeated without these three participants to examine potential outlier effects.

There were no major alterations in the results when excluding these participants (see S2

Table).

The correlations between change in FA, MD, RD and AD for TOIs and Spatial Span Back-

ward and Digit Span Backward change scores, additionally controlling for mean change in FA,

MD, RD and AD, indicates anatomic specificity for some TOIs. Meaning, a few of the correla-

tions between TOIs and working memory were stronger compared to the correlations not con-

trolling for mean change. This was especially found between Spatial Span Backward and FA

change in right IFOF, and Spatial Span Backward and MD/RD/AD change in right ILF and

right IFOF (see S3–S6 Tables).

Testing for significant differences between the correlations between TOIs and Spatial Span

Backward scores, and TOIs and Digit Span Backward scores, there was significant (p< .05)

difference in correlations between TOIs and Spatial Span Backward and TOIs and Digit Span

Backward for; FA in right ILF (z = 1.96, p = .050), FA in right IFOF (z = 1.97, p = .050), MD

in right IFOF (z = - 2.15, p = .031), AD in right IFOF (z = -1.98, p = .048), and AD in FMaj

(z = - 2.16, p = .031). Voxelwise analyses showed no significant effect of change in Spatial Span

Backward or Digit Span Backward on change in FA, MD, RD and AD, controlling for age, sex,

motion at both time points and interval as covariates. Results from the partial correlations

with software update as an additional covariate showed there was no substantial effect of soft-

ware update (see S7 Table).

Age, sex and hemisphere

GLMs testing the effect of age, showed a significant effect of age on change in Spatial Span

Backward (F = 11.68, p = < .001) and Digit Span Backward (F = 6.70, p = .011), controlling for

sex and interval. Significant effects of age on white matter microstructure change were found

for FA, MD, RD and AD in left UF (FA: F = 5.25, p = .023/ MD: F = 7.90, p = .006/ RD:

Table 5. AD change in white matter tracts and working memory change.

Spatial Span Backward Digit Span Backward

Tract Hemisphere r p r p

ILF right -.24 .004 -.05 .563

IFOF right -.22 .008 .01 .951

UF right -.16 .052 -.01 .923

FMaj -.24 .004 .01 .923

Partial correlation between change in AD in specific white matter tracts and change in Spatial Span Backward scores,

controlling for age, sex, interval and motion at both time points. ILF = Inferior longitudinal fasciculus,

IFOF = Inferior fronto-occipital fasciculus, UF = Uncinate fasciculus and FMaj = Forceps major. Numbers in bold

signify Bonferroni-corrected significance level p < .05.

https://doi.org/10.1371/journal.pone.0195540.t005
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Fig 2. FA or MD and change in visuospatial working memory. Scatterplots showing linear relationships between

change in FA or MD and change in visuospatial working memory. The plots show FA and MD in TOIs, plotted as z-

transformed change values. For Spatial Span Backward scores age, sex and interval are regressed out, and for each TOI

age, sex, interval and motion at both time points are regressed out. The partial correlation (r) between change in FA

and MD in specific white matter tracts and change in Spatial Span Backward scores, controlling for age, sex, interval

and motion at both time points are presented in each plot. The color-coded scatterplots represent the color of each

specific white matter tract. Color codes refer to: Yellow: Inferior fronto-occipital fasciculus (IFOF), Red: Forceps major

(FMaj), Light blue: Inferior longitudinal fasciculus (ILF) and Green: Uncinate fasciculus (UF). R = right.

https://doi.org/10.1371/journal.pone.0195540.g002
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Fig 3. RD or AD change in visuospatial working memory. Scatterplots showing linear relationships between change

in RD or AD change in visuospatial working memory in TOIs, plotted as z-transformed change values. For Spatial

Span Backward scores age, sex and interval are regressed out, and for each TOI age, sex, interval and motion at both

time points are regressed out. The partial correlation (r) between change in RD or AD and change in Spatial Span

Backward scores, controlling for age, sex, interval and motion at both time points are presented in each plot. The

color-coded scatterplots represent the color of each specific white matter tract. Color codes refer to: Light blue: Inferior

longitudinal fasciculus (ILF), Yellow: Inferior fronto-occipital fasciculus (IFOF), Red: Forceps major (FMaj) and

Green: Uncinate fasciculus (UF). R = right.

https://doi.org/10.1371/journal.pone.0195540.g003
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F = 7.45, p = .007/ AD: 6.28, p = .013), for FA, MD and RD in left IFOF (FA: F = 4.06, p = .046/

MD: F = 4.13, p = .044/ RD: F = 4.62, p = .033), for FA and RD in right UF (FA: F = 4.66, p =

.033/ RD: F = 4.20, p = .042), and MD in FMin (F = 4.08, p = .045), controlling for sex, interval

and motion. There was no significant (p< .05) effect of sex on working memory change

scores, or change in FA, MD, RD and AD. Results from partial correlation analyses between

change in non-linear tracts and change in working memory scores, controlling for age2 in

addition to age showed that there was no substantial effect of adding non-linear age effects (see

S8 Table).

When investigating potential drop out effects, results showed no significant difference

between the two groups (tested at both time points vs tp1) for Spatial Span Backward scores

(F = .044, p = .078), Digit Span Backward scores (F = 2.068, p = .821), mean FA (F = .035, p =

.755), mean MD (F = .303, p = .325), mean RD (F = .283, p = .396) and mean AD (F = .083, p =

.257).

Discussion

We found significant relations between change in visuospatial working memory and change in

microstructure in white matter tracts across childhood. Improvement in visuospatial working

memory capacity was associated with decrease in MD in four TOIs and a tendency of increase

in FA in one TOI. These relationships were driven by negative relationship between working

memory change and both RD and AD change. Importantly, these relationships between fiber

tract parameters and task performance did not appear to be mediated by chronological age,

which was modeled as a covariate in these analyses. Specifically, improving visuospatial work-

ing memory showed significant associations with decreased MD, RD and AD in right ILF,

right IFOF, right UF and FMaj, and AD in right ILF, right IFOF and FMaj. The results thus

indicate that visuospatial working memory change and white matter microstructure change in

part is related during childhood. No significant relationships between verbal working memory

capacity change and change in DTI measures were found.

White matter microstructure and working memory development

Cross-sectional studies have found higher FA and lower RD in IFOF to be associated with

higher visuospatial working memory functioning from eight years of age to early adulthood

[13]. IFOF mediates a direct communication between occipital and frontal lobes [32], suggest-

ing a role in visuospatial working memory. In adults, object working memory has also been

associated with FA in IFOF (Walsh et al., 2011). The presently observed longitudinal develop-

mental relationship between IFOF and visuospatial working memory change fits these previ-

ous observations. Left UF has been associated with verbal working memory in tumor patients

using three-dimensional fibre tracking [15]. UF plays an important role in recurrent mainte-

nance of information, and is connected to the inferior frontal lobe [33], but has not been stud-

ied in relation to working memory in development. The current results did show relationship

between right UF change and visuospatial working memory change. Nagy, Westerberg (10)

found positive relationships for FA in the left SLF, left ILF and genu of corpus callosum with

visuospatial working memory capacity between the age of 8 and 18, independent of the effect

of age. While FMin has been found to overlap with genu of corpus callosum [34], FMaj projec-

tions are interconnected with e.g. temporal, parietal and frontal cortical areas [36] which can

explain the observed associations between visuospatial working memory development and

increase for FA and decrease for MD, RD and AD in FMaj in the current study [30]. The few

developmental studies available in the literature exploring the relationships between white

matter tract microstructure and working memory show inconclusive results with regard to
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regional specificity. In accordance with our finding, Østby, Tamnes (9) found no relationship

between FA in SLF and verbal working memory using the same DTI measure and cognitive

task as in the current study. In contrast, Peters, Szeszko (12) found positive associations

between verbal working memory performance and FA in bilateral SLF, measuring white mat-

ter using a probabilistic tractography method and assessing the UMd letter-number span task.

Also for visuospatial working memory, an association with higher FA and lower RD in left SLF

has been found from seven years of age by using tract-based spatial statistics and assessing the

Cambridge Neuropsychological Test Automated Battery SWM [11]. The same trend was

found in our study, but the results were not significant. In contrast to our study, Short, Elison

[59] did not find FA and RD in ILF to be associated with visuospatial working memory in

12-month-old infants, measuring white matter using deterministic fiber tracking and assessing

a working memory task with infants sitting on their mothers’ laps engaging in 1–2 administra-

tions of a 12-trial hiding game. The age difference between the latter study and our sample

may explain the discrepancy in the results, as there are major changes in white matter micro-

structure during early childhood [60].

Most studies on the relationships between white matter tract microstructure and working

memory in developmental samples have been cross-sectional, but Darki and Klingberg (16)

showed in a longitudinal study that FA along the fronto-parietal and fronto-striatal white mat-

ter pathways was significantly correlated with visuospatial working memory two years later in

children from six years of age. In general, cognitive performance has been associated with

higher FA of white matter in cross-sectional studies, but to which extent this association is

driven by maturational processes or stable characteristics is not known [61]. In the present

study, we found that change over time in visuospatial working memory was associated with

change in microstructural characteristics of relevant major tracts, suggesting that maturational

processes and improvement in working memory seen during childhood may be related. Thus,

although correlational in nature, these results go one step further in illuminating possible asso-

ciations between structural brain substrates and visual working memory development. The

voxelwise analysis showed no relation between changes in DTI metrics and verbal working

memory development.

Hemisphere differences

It was hypothesized that a somewhat stronger relationship would be found for verbal working

memory in left hemisphere, whereas visuospatial working memory would relate more strongly

to right hemisphere, in line with previous functional imaging studies [37–39].

However, we find little evidence for hemispheric differences in white matter maturation

being of importance for visual vs. verbal working memory development. Also, the backward

sequence for both Spatial Span and Digit Span require manipulation of the retained informa-

tion, and this has been found to require bilateral neural recruitment of functionally related

areas for verbal and visuospatial working memory tasks [40, 41].

Possible neurobiological mechanisms underlying the observed relations

Within the field of neuroscience, development and maturation are highly intertwined pro-

cesses. Maturation might consist of biological unfolding, physical growth and is influenced by

genetics (Morishita and Hensch, 2008, Tau and Peterson, 2009, Chen et al., 2011, Chen et al.,

2013). Development has been defined as the combined work of gens and environment (Berardi

et al., 2015). The relevance of white matter pathways for efficient working memory perfor-

mance may reflect the need for speeded and robust communication between distant brain
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regions. One of the underlying biological processes in white matter development is myelina-

tion, whereby axons get insulated and able to conduct action potentials at greater speeds and

frequencies [24, 26]. Animal studies indicate that RD is partly related to myelination and axo-

nal packing [25, 62]. FA and MD reflect a variety of microstructural features, including the rel-

ative alignment of individual axons, their diameter and thickness of the myelin sheath, as well

as axonal density [25]. AD might reflect axonal injury and crossing fibers [63]. The relation-

ships between increased FA and decreased MD, RD and AD in TOIs with improving working

memory performance may possible be partly related to increased myelination. Still, care

should be taken when considering underlying biological processes. Other processes, such as

axonal alignment, axonal density and axon circumference [64] are likely also important.

Visuospatial and verbal working memory

By investigating two different working memory functions we were able to demonstrate that

development of specific white matter tracts were associated with development of visuospatial

working memory, while no associations with development of verbal working memory were

found. However, when tested statistically, there was no significant difference between the rela-

tion between change in white matter tracts and visuospatial working memory and verbal

working memory. The weak correlation between the visuospatial and verbal working memory

change measures are consistent with the hypothesis that the phonological loop and the visuo-

spatial sketchpad components of working memory might not depend on a single storage and

are somewhat independent of each other [4, 65, 66]. Behavioral studies investigating compo-

nents of working memory in children have indicated that visuospatial and verbal working

memory are relatively independent of one another from the age of five [17, 18]. The working

memory model has been further supported by neuroimaging and neuropsychological studies

that have identified distinct neuroanatomical loci for working memory systems, described in a

review by Henson [67]. Still, the lack of relationship between change in verbal working mem-

ory and change in DTI metrics was not expected. Verbal working memory had a lower vari-

ability than visuospatial working memory, and this may potentially influence the results. These

differences between verbal and visual working memory need to be specifically addressed in

future studies.

Effects of age

The results did show effects of age for visuospatial and verbal working memory change scores

indicating more improvement in working memory capacity for the youngest participants. This

was also evident from the nonparametric GAMM age functions for visuospatial and verbal

working memory showing non-linear developmental trajectories. In the literature, both visuo-

spatial and verbal working memory have shown broadly similar developmental functions, with

performance increasing non-linearly from four years and leveling off around fourteen years

[4, 68]. Although differences in strategy contribute to the improved performance in early

childhood [69], further working memory development has been described as a quantitative

change in capacity, rather than a change in strategy [68]. Taken together, the results indicate

that the basic modular structure of working memory is present from four years of age, with

each component undergoing sizable expansion in functional capacity throughout the early

and middle school years to early adolescence.

Also for white matter microstructure, significant effects of age were found for change in

FA/MD/RD/AD in left UF and for FA/MD/RD in left IFOF and right UF, and MD in FMin.

These white matter tracts were also the tracts showing non-linear trajectories in the GAMM
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age functions. In this study, we controlled for the effect of age in all analyses. In addition, age2

was controlled for. However, adding non-linear age effects did not affect our main findings.

There were no significant differences in working memory scores or white matter micro-

structure between participants that were tested at both time points and those only tested at

tp1. Because their parents accompany them to testing, the drop out may be more dependent

on the guardian than the child itself. This could explain why there are no significant difference

between the children that have been tested at one time point and those that were also tested at

tp2.

Limitations and future directions

Some limitations must be noted. Participants generally performed above average on tests of

cognitive functioning, and may not be representative of the general population. Possible learn-

ing effects and being familiar with the test situation may also influence results. The advantage

of using Spatial Span and Digit Span tasks is that we could administer the same tests to all par-

ticipants ranging from 4 to 11 years of age with no ceiling effect for the older children. In the

current study, the threshold for the mean FA skeleton was set at 0.25. Manual checking of the

FA skeleton across all participants showed that the nonlinear alignment successfully excluded

voxels that were primarily grey matter. However, there are limitations regarding partial volum-

ing in the borders between tissue classes [48]. Further, the white matter tracts were created

with a probability threshold of 5% [70]. Care must be taken though, as there is some overlap,

such as for the well-documented association tracts: SLF, ILF, IFOF and UF. ILF and IFOF

share most of the projections at the posterior temporal and occipital lobes, while the UF and

IFOF share the projections at the frontal lobe (Wakana et al., 2004). However, all WM tracts

were manually checked and deemed anatomically correct.

Conclusions

This longitudinal study gives moderate support for the hypothesis that development of white

matter microstructure in specific tracts is related to development of working memory. Rela-

tions found for visuospatial, but not verbal working memory, suggest that improvement in

visuospatial working memory capacity across childhood is associated with development of

white matter connections between distributed brain regions, and that the increased efficiency

of those connections and the rate of cognitive development may be related.

Supporting information

S1 Fig. FA and MD in specific tracts with age. Spaghetti plots of individual participant

change in FA and MD in specific tracts with age (years). Females are plotted in red and males

in blue. For each measure, an assumption-free general additive mixed model as a function of

age was fitted to accurately describe change across the age range. Three-dimensional render-

ings illustrate ten atlas-based probabilistic tracts from the Mori atlas in anterior, left, and dor-

sal views, displayed on a semitransparent template brain. The color-coded titles for each

scatterplot represent the color of each specific white matter tract. Color codes refer to: Light

blue: Inferior longitudinal fasciculus (ILF), Yellow: Inferior fronto-occipital fasciculus (IFOF),

Red: Forceps major (FMaj), Blue: Superior longitudinal fasciculus (SLF), Green: Uncinate fas-

ciculus (UF), and Purple: Forceps minor (FMin). The 3D figures were made by the use of Slicer

(http://www.slicer.org/). L = left and R = right.

(TIF)
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S2 Fig. RD and AD in specific tracts with age. Spaghetti plots of individual participant

change in RD and AD in specific tracts with age (years). Females are plotted in red and males

in blue. For each measure, an assumption-free general additive mixed model as a function of

age was fitted to accurately describe change across the age range. Three-dimensional render-

ings illustrate ten atlas-based probabilistic tracts from the Mori atlas in anterior, left, and dor-

sal views. The color-coded titles for each scatterplot represent the color of each specific white

matter tract. Color codes refer to: Yellow: Inferior fronto-occipital fasciculus (IFOF), Light

blue: Inferior longitudinal fasciculus (ILF), Green: Uncinate fasciculus (UF) and Red: Forceps

major (FMaj). The 3D figures were made by the use of Slicer (http://www.slicer.org/). L = left

and R = right.

(TIF)

S1 Table. FA change in white matter tracts and working memory change. Partial correlation

between change in FA in specific white matter tracts and change in Spatial Span Backward and

Digits Span Backward scores, controlling for age, sex, interval and motion at both time points.

ILF = Inferior longitudinal fasciculus, IFOF = Inferior fronto-occipital fasciculus, SLF = Supe-

rior longitudinal fasciculus, UF = Uncinate fasciculus, FMaj = Forceps major and FMin = For-

ceps minor.

(DOCX)

S2 Table. DTI change in white matter tracts and visuospatial working memory change

after excluding outliers (for each TOI). Partial correlations between change in FA, MD, RD

and AD in specific white matter tracts and change in Spatial Span Backward scores, controlling

for age, sex, interval and motion at both time points after excluding three participants with

SDR exceeding ±3 in some TOIs for FA, MD, RD and AD predicted by age. ILF = Inferior lon-

gitudinal fasciculus, IFOF = Inferior fronto-occipital fasciculus, UF = Uncinate fasciculus and

FMaj = Forceps major. Numbers in bold signify Bonferroni-corrected significance level p<

.031/.025/.027/.022 for FA, MD, RD and AD, respectively.

(DOCX)

S3 Table. FA change in white matter tracts and working memory change, controlling for
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