
RESEARCH ARTICLE

Is Beak Morphology in Darwin’s Finches
Tuned to Loading Demands?
Joris Soons1*, Annelies Genbrugge1,2, Jeffrey Podos3, Dominique Adriaens2,
Peter Aerts4,5, Joris Dirckx1, Anthony Herrel4,6

1 Laboratory of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen,
Belgium, 2 Evolutionary Morphology of Vertebrates, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent,
Belgium, 3 Department of Biology, 221 Morrill Science Center, University of Massachusetts, Amherst,
Massachusetts, 01003, United States of America, 4 Department of Biology, University of Antwerp,
Universiteitsplein 1, 2610, Antwerpen, Belgium, 5 Department of movement and sports sciences, University
of Ghent, Watersportlaan 2, 9000, Gent, Belgium, 6 Département d’Ecologie et de Gestion de la Biodiversité,
Museum National d’Histoire Naturelle, 57 rue Cuvier, Case postale 55, 75231, Paris, Cedex 5, France

* joris.soons@ua.ac.be

Abstract
One of nature's premier illustrations of adaptive evolution concerns the tight correspon-

dence in birds between beak morphology and feeding behavior. In seed-crushing birds,

beaks have been suggested to evolve at least in part to avoid fracture. Yet, we know little

about mechanical relationships between beak shape, stress dissipation, and fracture avoid-

ance. This study tests these relationships for Darwin's finches, a clade of birds renowned

for their diversity in beak form and function. We obtained anatomical data from micro-CT

scans and dissections, which in turn informed the construction of finite element models of

the bony beak and rhamphotheca. Our models offer two new insights. First, engineering

safety factors are found to range between 1 and 2.5 under natural loading conditions, with

the lowest safety factors being observed in species with the highest bite forces. Second,

size-scaled finite element (FE) models reveal a correspondence between inferred beak

loading profiles and observed feeding strategies (e.g. edge-crushing versus tip-biting), with

safety factors decreasing for base-crushers biting at the beak tip. Additionally, we identify

significant correlations between safety factors, keratin thickness at bite locations, and beak

aspect ratio (depth versus length). These lines of evidence together suggest that beak

shape indeed evolves to resist feeding forces.

Introduction
The often tight correspondence between bird beaks and plant morphology well-illustrates the
power and precision of natural selection [1]. Within bird populations, subtle variations in beak
morphology can affect foraging efficiency [2], and in some cases tip the balance between sur-
vival and starvation [3]. For seed-crushing birds, however, analyses of feeding capacity require
a broader view than just beak morphology per se. This is because a bird’s ability to crush seeds
is determined mainly by bite force capacity, which in turn depends primarily on the orientation
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and cross sectional area of the jaw closer muscles [4–6]. These muscles, situated at the back of
the head, generate crushing forces that are transferred to food by means of the upper and lower
beak through a complex kinetic beak apparatus [6–11]. Beak morphology, by contrast, likely
evolves to facilitate successful food manipulation and song production. However, beaks also
need to avoid structural failure during loading [4]. The loading regime itself presumably varies
with food manipulation strategies (e.g. tip biting versus base crushing) and may thus drive the
evolution of beak shape [12].

We here test, in Darwin’s finches of the Galápagos Islands, the hypothesis that beak mor-
phology provides structural integrity, i.e., that it evolves to resist feeding forces and avoid frac-
ture [13]. Beaks in Darwin’s finches are known to vary broadly across and within species, and
to evolve via natural selection as a response to variation in food type, food availability, and in-
terspecific competition [3,10,14–18]. Our main approach is to develop and apply finite element
(FE) models of the upper beak. FE models enable exploration of the effect of complex shape
variation on stress magnitude and distribution [19–21], and allows us to draw inferences about
patterns of loading during biting. We include here 13 species and incorporate data into our
models for the bones, the jaw closer muscles, and the keratinous rhamphotheca that encapsu-
lates the beak. Including the rhamphotheca in the model allows us to provide a more realistic
estimate of stresses incurred during biting [22,23] that we achieved in previous studies [24,25].

The goal of this paper is twofold. First we examine how natural loadings are reflected in
safety factors for a subset of species for which physiological FE models could be created (i.e. for
which data on muscles could be obtained). Second, we created models of all 13 species scaled to
a common surface area to muscle ratio [26]. This allows us to test whether variation in beak
shape matches differences in food handling behavior. We predict that species will have beak
shapes that allow them to minimize peak stresses during those feeding behaviors most com-
monly employed. In particular, we predict that base-crushing species should show the lowest
stresses when biting at the base of the beak, that tip-biting species should show the lowest
stresses during tip-biting, and that probing beaks should show higher stresses during both tip-
and base crushing compared to those species specialized for these behaviors.

Materials and Methods

Specimen collection and CT scanning
No animals were killed for the purpose of this study. Road-killed specimens were collected dur-
ing February-March of 2005 and 2006 on the main road connecting the airport on Baltra with
Puerto Ayora, Santa Cruz Island. Specimens were collected under a salvage permit provided by
the Galápagos National Park Service. Intact specimens were collected and preserved in a 10%
aqueous formaldehyde solution for 24 h, rinsed and transferred to a 70% aqueous ethanol solu-
tion. One individual of Geospizia fortis, Geospizia fuliginosa, Geospizia scandens, Platyspiza
crassirostris, Certhidea olivacea, and Camarhynchus parvulus were scanned at the UGCT scan-
ning facility (www.ugct.ugent.be), using a micro-focus directional type X-ray tube, set at a volt-
age of 80 kV and a spot size of 10 mm. Specimens were mounted on a controllable rotating
table (MICOS, UPR160F-AIR). For each specimen, a series of 1000 projections of 940 by 748
pixels were recorded covering 360 degrees.

Museum specimens of Geospizia magnirostris, Geospizia difficilis, Pinaroloxias inornata,
Cactospiza pallida, Camarhynchus psittacula, Geospiza conirostris, and Camarhynchus pauper
from the collections of the California Academy of Sciences maintained in a 70% aqueous etha-
nol solution were scanned at the Harvard CNS facility using an X-Tek XRA-002 micro-CT im-
aging system set at 75 kV. Specimens were mounted on a rotating table and a series of 3142
projections of 2000 by 2000 pixels covering 360 degrees was recorded. The voxel size of the
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scans was dependent on the specimen size and ranged from 2.96 μm for the smallest species to
47.00 μm for the larger species. As such, the bone shell of the bony core was represented by
multiple voxels, and details within the bony beak were visible.

Muscle data
Muscle data were available for five of the species collected in the field as road-killed specimens:
G. fortis, G. fuliginosa, G. scandens, C. olivacea and C. parvulus; data for three additional species
were derived through dissection of museum specimens from the California Academy of Sci-
ences (G.magnirostris, G. conirostris, and G. difficilis). These species were dissected and all
muscle bundles of the jaw removed individually [27]. Muscles were blotted dry and weighed on
a Mettler microbalance (±0.01mg). Next, muscles were transferred individually to Petri dishes
and submerged in a 30% aqueous nitric acid solution for 18 h to dissolve all connective tissue
[28]. After removal of nitric acid, muscles were transferred to a 50% aqueous glycerol solution
and fibers were teased apart using blunt-tipped glass needles. Thirty fibers were selected from
each muscle bundle (Table 1) and drawn using a binocular scope with attached camera lucida.
A background grid was also drawn in each image to provide an object for scaling. Drawings
were scanned and fiber lengths determined using imageJ (freely available at http://rsb.info.nih.
gov/ij/).

Based on muscle mass and fiber length, the physiological cross-sectional area of each muscle
bundle was estimated assuming a muscle density of 1036kg/m3 [29]. Since pennate muscles
were separated into their individual bundles, no additional correction for pennation angle was
included. Corresponding force-generation capacities for each muscle were calculated assuming
a muscle stress of 30N/cm2 [30]. As the external adductor and pseudotemporalis muscles act
only indirectly on the upper mandible [6,9,10,31], the component of the muscle force trans-
ferred to the upper mandible was calculated taking into account the position of the muscles
and their angles relative to the jugal bone (which transfers the forces from the lower jaw and
the quadrate to the upper beak by pulling the beak downward when quadrate is rotated back-
ward during jaw closing). The pterygoid muscle bundles act directly on the upper mandible
[6,9,10,31], and muscle forces are directly transmitted through the pterygoid/palatine complex.
The combined muscle forces applied to the model are shown in Table 2.

Segmentation and FE modelling
The segmentation of the bony core and the keratin layer (Amira 4.1 64-bit version, TGS sys-
tems) was done for all species. The tetrahedral grid construction [32], the assigned material
properties (homogenuous and isotropic linear elastic with Ekeratin = 1.7 GPa and Ebone = 7.3
GPa) [22] and the boundary conditions are similar to those reported previously [22–24, 33].
Convergence testing on the results, namely the von Mises (vM) stresses and the bite forces, was
conducted so they change less than 5% when doubling mesh size. The final FE grids of approxi-
mately 2–3 million 4-noded linear tetrahedral elements were obtained. Consequently, multiple
layers of elements were available to model the thin bony walls.

For every specimen, a FE model for base and tip loading was established. In this study we
were only interested in the stresses on the upper beak, and as such elements were fully con-
strained (in all 6 degrees of freedom) at the back of the beak at the neurocranium. Hinging of
the upper beak is possible due to bending of the thin bone (BA in Fig 1). In order to avoid sin-
gularities around point constraints, we constrained elements (in x, y and z direction, no rota-
tion) at the ventral surface of the rhamphotheca simulating the bite constraint (T and Bs in Fig
1); the calculated reaction force of these elements is the bite force which is of equal magnitude
yet of opposite sign as the seed reaction force. Bite positions were estimated using in vivo
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Table 2. Von Mises stress for different loading conditions (LC) for 13 Darwin’s finches (PB: physiological base biting; PT: physiological tip biting;
FB: base biting scaled to fortis; FT: tip biting scaled to fortis).

Species LC Fj Fp vM1 vM2 vM3 GV1 GV2 GV3 F Vbone Vker

G. fortis PB 11.9 10.9 21 19 29 0.83 0.98 0.81 30.4 104 128

G. fortis PT 11.9 10.9 47 36 41 0.78 0.95 0.82 21.5 104 128

G. magnirostris PB 23.0 21.9 35 24 40 0.86 0.97 0.77 57.9 232 195

G. magnirostris PT 23.0 21.9 66 35 46 0.62 0.98 0.81 41.6 232 195

G. magnirostris FB 11.9 10.9 22 16 26 0.86 0.97 0.77 29.3 157 131

G. magnirostris FT 11.9 10.9 43 23 30 0.62 0.98 0.81 20.9 157 131

G. fuliginosa PB 2.2 3.2 18 15 18 0.74 0.93 0.85 7.1 24 35

G. fuliginosa PT 2.2 3.2 24 28 27 0.60 0.88 0.84 4.6 24 35

G. fuliginosa FB 11.9 10.9 29 23 28 0.74 0.93 0.85 29.2 115 164

G. fuliginosa FT 11.9 10.9 35 41 42 0.60 0.88 0.84 19.0 115 164

G. conirostris PB 5.4 5.3 16 25 42 0.86 0.85 0.76 15.3 76 82

G. conirostris PT 5.4 5.3 25 40 47 0.98 0.83 0.70 10.4 76 82

G. conirostris FB 11.9 10.9 25 33 67 0.86 0.85 0.76 32.3 112 121

G. conirostris FT 11.9 10.9 45 63 67 0.98 0.83 0.70 18.8 112 121

G. scandens PB 3.2 4.5 20 15 23 0.67 0.92 0.74 8.9 59 56

G. scandens PT 3.2 4.5 17 33 35 0.88 0.95 0.82 6.1 59 56

G. scandens FB 11.9 10.9 40 28 43 0.67 0.92 0.74 26.2 126 119

G. scandens FT 11.9 10.9 30 60 63 0.88 0.95 0.82 17.9 126 119

G. difficilis PB 1.5 1.6 14 12 21 0.87 1.00 0.97 3.6 22 30

G. difficilis PT 1.5 1.6 18 19 18 0.73 0.98 0.98 2.4 22 30

G. difficilis FB 11.9 10.9 38 24 51 0.87 1.00 0.97 26.1 86 116

G. difficilis FT 11.9 10.9 50 56 53 0.73 0.98 0.98 16.7 86 116

P. inornata FB 11.9 10.9 55 32 59 0.66 0.95 0.85 26.2 109 96

P. inornata FT 11.9 10.9 76 67 61 0.71 1.00 0.83 13.8 109 96

C. olivacea PB 0.9 1.0 23 31 45 0.50 0.84 0.81 2.0 9 9

C. olivacea PT 0.9 1.0 23 32 22 1.00 1.00 0.94 1.0 9 9

C. olivacea FB 11.9 10.9 58 66 100 0.50 0.84 0.81 24.4 99 100

C. olivacea FT 11.9 10.9 58 78 59 1.00 1.00 0.94 12.3 99 100

C. pallida FB 11.9 10.9 59 33 80 0.77 0.71 0.88 25.4 68 101

C. pallida FT 11.9 10.9 38 46 64 0.67 0.87 0.89 15.1 68 101

C. parvulus PB 1.3 1.3 22 12 20 0.57 0.94 0.61 3.3 11 18

C. parvulus PT 1.3 1.3 13 19 25 0.66 0.82 0.58 2.2 11 18

C. parvulus FB 11.9 10.9 47 26 43 0.57 0.94 0.61 29.6 88 143

C. parvulus FT 11.9 10.9 29 41 55 0.66 0.82 0.58 19.5 88 143

C. pauper FB 11.9 10.9 23 17 37 0.60 0.94 0.52 31.2 118 163

C. pauper FT 11.9 10.9 19 25 35 0.82 0.99 0.75 19.4 118 163

C. psittacula FB 11.9 10.9 39 24 33 0.46 0.88 0.90 30.5 93 127

C. psittacula FT 11.9 10.9 25 28 35 0.71 0.63 0.90 21.9 93 127

P. crassirostris FB 11.9 10.9 21 21 31 0.84 0.93 0.81 32.1 138 152

P. crassirostris FT 11.9 10.9 25 32 43 0.82 0.97 0.90 21.7 138 152

Model input forces (= muscle forces) for jugal (Fj) and palatine (Fp) are given in N. von Mises stresses are given in MPa for three positions indicated in Fig

1 (vM1: on top of bone, near bite position; vM2: on top of the nasal hinge; vM3: nasal bone ipsilateral side for base biting, both sides for tip biting). Gray

values in CT-stack for the same positions are given (0 black, 1 white). The resulting (model) biting force (F)is given in N; the volume of keratin and bone

(Vker and Vbone) are given in mm3.

doi:10.1371/journal.pone.0129479.t002
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observations of animals cracking or manipulating seeds in the field [13]. Elements were con-
strained for a central tip bite close to the tip of the bony core, as birds are never seen to bite at
the very tip in the wild (T in Fig 1). For an unilateral base bite we used a point at one fourth of
the total length of the rhamphotheca, close to the edge of the bony core (Bs in Fig 1), hence cre-
ating homologous bite points across species. The available muscle forces (Table 2) estimated
through dissection were applied to rigid elements at the end of the jugal and pterygoid bones in
the direction of these bones (J and P in Fig 1). This resulted in physiological FE models, for
both base and tip loading, for eight species (16 models). In addition we developed scaled FE
models for all 13 species. We therefore measured the beak surface of all beaks and scaled them
in such a way that they have the same surface area as G. fortis. Next we applied the muscle
force of G. fortis to these size-scaled beaks. G. fortis was chosen because we had muscle data
and scans available for multiple individuals of this species [27], but we could have picked one
of the other 7 finches. As such, the effects of size are eliminated and the effect of beak shape
variation on the mechanical behavior of the beak can be isolated for the 13 species of Darwin’s
finches included here [26].

Bite force and maximum vM stress were obtained for all 40 FE models (Table 2): 16 physio-
logical models (tip and base loading for 8 beaks with available muscle data) and 24 models (tip
and base loading for all 13 beaks size-scaled to G. fortis, minus G. fortis, see Table 2). Maximum
vM stress was taken according to Saint-Venant's Principle over three different locations dis-
playing the highest stresses on the bony core, away from areas influenced by model constraints
(Figs 1 and 2, Table 2). We used 98th percentile to select maximum vM stresses presented in
Fig 3 and Table 2. In these locations, the gray values of the corresponding CT images were also
recorded. It has been shown [34–36] that the strength of bone increases with density. Scan pa-
rameters were optimized for each CT scan and no calibration was performed, making it impos-
sible to obtain the density directly from these gray values. Consequently, gray values were
transferred to a qualitative linear scale, where 0 represents the least dense bone in the sample
and 1 the densest. vM stresses on the keratin layer were not taken into account and are not dis-
played in Figs 2 and 4. Nevertheless, a correct modeling of the rhamphotheca is important
since it has a significant influence on the stress distribution and magnitude in the bony core
[23].

During base loading vM stresses are not recorded for the contralateral side of the nasal
bone, because a bird could decrease this stress by reducing the bite force at that side. As a con-
sequence, the resulting reaction force on the contralateral side will be lower. It is, however, very
complex to introduce this bite force tuning into our models and as such is ignored here. To

Fig 1. Schematic representation of our multi-layered (bone: B, keratin: K) finite element modeling
approach, for the medium ground finchGeospiza fortis. Bending area (Ba) and bite position (base: Bs, or
tip: T) were constrained in our models for translation and rotation, and muscle forces were applied in our
models via the jugal (J) and palatine (P) jaw bones (black elements are constrained). Locations of vM Stress
recordings are indicated with transparant ellipses (1b: on top of bone, near base bite position; 1t: on top of
bone near tip bite position; 2: on top of the beak near the nasal hinge; 3: nasal bone).

doi:10.1371/journal.pone.0129479.g001
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quantify a birds’ risk of beak fracture during biting, we calculated safety factors for each species’
beak, by dividing bone strength by peak stress. Values for bone strength were obtained using
the linear relationship of Fyhrie and Vashishth, bone strength = 0.0061 EBone [37]. In this study
we used 45 MPa for a experimentally obtained Young’s modulus of 7.3 GPa for finch beak
bone [22,23]. Finally keratin thickness on top and bottom of the beak, and beak dimensions

Fig 2. Physiological Finite Element Model results, side view, for 4 selected Darwin’s finch species
known to use their beaks in different ways during feeding [10, 49]:G. fortis (base crushing beak),G.
scandens (probing and crushing beak),C. olivacea (probing beak), andC. parvulus (tip biting beak).
Results are shown for both base (1st column) and tip (2nd column) biting simulations. Arrows indicate the
location and magnitude of the calculated seed reaction forces. Warmer colors represent higher von Mises
stresses. Additional FE models for the eight finches for which muscle data were available are presented in S2
and S3 Figs.

doi:10.1371/journal.pone.0129479.g002

Fig 3. Peak vM stress for physiological FEmodels (tip and base loading, eight species with available
muscle data) and for scaled FEmodels (tip and base loading, scaled to same size asG. fortis and with
the samemuscle forces) for thirteen species of Darwin’s finch (* = juvenile).

doi:10.1371/journal.pone.0129479.g003
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(depth and width relative to length) were measured and are reported for four functional groups
(Table 3), and Pearson’s correlations (with Bonferroni correction) of these values compared to
the SFs are shown in Table 4.

Results
The calculated von Mises stresses for the physiological boundary conditions in different Dar-
win’s finches are presented in Figs 2, 3, S2 and S3 (see also Table 2). The force vectors repre-
senting bite forces (Figs 2, S2 and S3) correspond well with field-measured in vivo bite forces
(Table 5) [4, 5, 25]. Note, however, that in vivo bite forces reported here differ proportionally
from those reported previously [25], as in that study the bite forces were not corrected for the

Fig 4. Top view of scaled FEmodels of the upper beaks of 13 species of Darwin’s finches. All beaks were scaled to same size and muscle force asG.
fortis, with stresses calculated for both base (left) and tip (right) biting. Warmer colors represent higher vM stresses. Note how stresses are lower during the
behaviors typically employed by each species, with base crushers showing the lowest stress values during base-loading and tip crushers during tip-loading.
Species with probing beaks show generally high stresses under both loading conditions. Top and side views of scaled FE models are presented in S4 and S5
Figs.

doi:10.1371/journal.pone.0129479.g004

Table 3. Characterization of keratin thickness and beak dimensions (relative to beak length) in the different functional groups.

bottom keratin thickness / beak
length

top keratin thickness / beak
length

beak depth / beak
length

beak width / beak
length

Crush (N = 3) 0.095 ± 0.015 0.023 ± 0.005 0.22 ± 0.03 0.406 ± 0.010

Probe and Base
(N = 3)

0.067 ± 0.007 0.0205 ± 0.0013 0.161 ± 0.013 0.35 ± 0.02

Probe (N = 2) 0.029 ± 0.005 0.018 ± 0.007 0.120 ± 0.006 0.304 ± 0.003

Tip (N = 5) 0.08 ± 0.03 0.035 ± 0.011 0.22 ± 0.05 0.44 ± 0.07

Table entries are means ± standard deviations.

doi:10.1371/journal.pone.0129479.t003
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lever arms of the bite force set-up. Among finches that crush seeds at the base of their beaks,
safety factors varied between 0.7 and 2.5 (Table 5). Moreover, safety factors during natural
loading regimes (i.e. base biting) generally decrease as bite force increases. Importantly, safety
factors are lower during tip loading behaviors suggesting that beaks in these species are not op-
timized for tip biting. For other species, safety factors varied between 1 and 2.3 and were gener-
ally more similar between the two loading conditions.

Density variation in bone can be expected and might result in a locally higher strength at high
stress locations as suggested by our preliminary data. Indeed, the gray values (Table 2) at high
vM stress locations were all higher than 0.5 (0 indicates the least dense bone in the sample, 1 indi-
cates the densest bone). For these natural loading conditions, higher relative bone densities are
thus observed at locations with higher stresses which can lead to increased safety factors.

The von Mises’ (vM) stresses for the 13 size-scaled models are presented in Figs 3, 4, S4 and
S5 (also see Table 2). The maximum vM stress in the size-scaled models differs broadly across
different species (Table 2). For example, the beaks of C. olivacea and P. inornata in our scaled
models show highest peak vM stresses of up to 100 MPa, indicating that these shapes are not
suited to withstand loading regimes similar to those observed for G. fortis. The deep and wide
seed crushing beaks of G.magnirostris, G. fortis and G. fulignosa, show lower stresses under
base loading (below 30 MPa) than under tip loading, consistent with these birds’ emphasis on
base biting strategies in nature and again in accordance with our predictions. One can also ob-
serve moderate peak stresses for the tip biting beaks (P. crassirostris, C. pauper, C. psittacula,

Table 4. Pearson correlation and p-values between beak dimensions corrected for beak length and safety factors extracted from the different
models.

bottom keratin thickness / beak
length

top keratin thickness / beak
length

beak depth / beak
length

beak width / beak
length

safety factor base
biting

0.80 (p = 0.001) 0.25 (p = 0.40) 0.71 (p = 0.006) 0.68 (p = 0.011)

safety factor tip biting 0.90 (p < 0.001) 0.65 (p = 0.015) 0.88 (p < 0.001) 0.88 (p < 0.001)

Bold values illustrate significant correlations (p<0.05/4, Bonferroni correction) between safety factors and anatomical features.

doi:10.1371/journal.pone.0129479.t004

Table 5. In vivomeasured bite force (6 species, means ± standard deviations, N = number of specimens) compared with the model bite force and
the model safety factors (SF).

behavior Measured force at
base (N)

Measured force at
tip (N)

Model force at
base (N)

Model force at
tip (N)

Model base
biting SF

Model tip
biting SF

G. fortis Base crush 23 ± 9 (N = 382) 19 ± 7 (N = 382) 30 22 1.6 1.0

G. magnirostris
(N = 29)

Base crush 65 ± 17 (N = 29) 44 ± 10 (N = 29) 58 42 1.1 0.7

G. fuliginosa
(N = 115)

Base crsuh 5.5 ± 1.9 (N = 115) 4.6 ± 1.6 (N = 115) 7.1 4.6 2.5 1.6

G. conirostris (*) Probe &
crush

15 10 1.1 1.0

G. scandens
(N = 64)

Probe &
crush

10 ± 3 (N = 64) 7 ± 3 (N = 64) 8.9 6.1 2.0 1.3

G. difficilis Probe &
crush

3.6 2.4 2.1 2.3

C. olivacea
(N = 18)

Probe 2.0 ± 0.5 (N = 18) 1.2 ± 0.4 (N = 18) 2.0 1.0 1.0 1.4

C. parvulus
(N = 29)

Tip crush 5.6 ± 1.3 (N = 29) 4.2 ± 1.2 (N = 29) 3.4 2.2 2.1 1.8

(* Juvenile data)

doi:10.1371/journal.pone.0129479.t005
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except C. parvulus), ranging from 31 MPa to 39 MPa. The probe and crush beaks (G. scandens,
G. difficilis) show higher stresses, however, ranging from 43 to 51 MPa. Finally, comparatively
low maximum stresses are found during tip loading for species that use the tips of their beak
during foraging and have beaks with high curvature, as predicted (e.g. Camarhynchus pauper
and C. psittacula, 35 MPa). The crushing beaks (G. fortis, G. fuliginosa, G.magnirostris) on the
other hand have higher stresses (42 to 47 MPa, SF = ±1) under these loading conditions. The
main exceptions to the otherwise rather precise tuning of beak strength and feeding mode con-
cerns relatively high stresses observed for G. conirostris (67 MPa), C. parvulus (55 MPa), and
Cactospiza pallida (80 MPa) under different loading regimes.

The rhamphotheca was thinnest in the probers (Table 3). Base crushers have a thicker kera-
tin layer on the bottom of the beak than tip biters, and tip biters have thicker keratin on the top
of the beak. The size scaled models show a strong correlation between the beak safety factor
and the thickness of the keratin at the base of the beak (Table 4). It is also interesting to note
that base and tip biters seem to have similar aspect ratios of the beak (depth and width relative
to length), and that these ratios are lower in the probers (Table 3). Moreover, we observe a
strong and positive correlation between aspect ratio and beak safety factor (Table 4).

Discussion
For all species, the estimated maximum vM stresses, particularly near the nasal hinge, were
4–44% lower than maximum vM stresses calculated in prior models that did not take into ac-
count the keratinous rhamphotheca [24]. An earlier study on Padda oryzivora [23] showed
that changing the bone modulus value also had a linear effect, albeit small, on safety factor val-
ues (SFs changed from 2.5 to 3.0 if bone modulus changed from 6.7 to 7.9 GPa). Also, variation
in the keratin modulus within its measured interval (Eker = 1.3 till 2.1 GPa) had a little effect
on SF. However, if we decreased the keratin modulus below this, a profound effect was ob-
served (for Eker of 1.7 GPa the SF = 2.8, while for Eker = 0.5 GPa the SF = 1.8), indicating the
importance of incorporating the keratin layer in the models. Models that integrate information
about multiple layers ideally consider well-defined material properties for each constituent ma-
terial. These parameters were obtained on a different species of finch (Padda oryzivora) since
experiments cannot be conducted with Darwin’s finches due to the protected status of these
birds. Stress regimes for multi-layered beaks using these experimentally-obtained elastic mod-
uli of keratin and bone had been modeled with success previously for Padda oryzivora and
then validated using digital speckle pattern interferometry [22,23].

Keratin itself is also a multi-layered structure [38,39] that typically shows an anisotropic
mechanical behavior, with preferential directions of failure depending on cell orientation [38].
The mechanical behavior of keratin also depends on its hydration state [22,40]. However, in
living animals the hydration state of the keratin is controlled to the underlying living tissues
(epidermis and dermis). In birds specifically, the beak consists of four distinct layers: a layer of
dead epidermal cells (stratum corneum), a series of living epidermal cells, the dermis, and final-
ly the bony beak [41]. Keratin cells typically orient such that they are aligned with the principal
deformation [41]. In contrast to bone, which is a stiff mineralized tissue prone to fracture, kera-
tin often shows local failure which does not penetrate the entire structure due to the organiza-
tion of the cells in the different layers of the structure. Moreover, keratin is abrasion resistant
and worn layers are shed and renewed by the addition of new layers of the stratum corneum
through deposition from the living epidermal cells. As such the keratinous rhamphotheca is a
continuously growing structure where damaged cells are shed and replaced. Consequently, we
here decided to focus on the mechanical behavior of the underlying bony beak while taking
into account the mechanical behavior of the keratinous rhamphoteca.
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We found that the beaks of different finch species operate within a range of safety factors be-
tween 0.7 and 2.5 (Table 5). From an engineering perspective this range cannot be regarded as
narrow, although from a biological perspective it is rather narrow if one takes into account the
large variation finches express in bite forces (1N to 65N), beak sizes (1cm to 2cm), shapes, and
biological uses. The in vivo realistic range of applicable safety factors is likely even narrower
than this, given that the 0.7 value was calculated for a behavior rarely observed in nature: tip-
biting in the largest species, G.magnirostris. A safety factor lower than 1 implies that the beak
would break if the bird would use its full muscle strength while biting at the tip. This is, howev-
er, a biting strategy rarely observed in this base-biting bird (note that this species displays a
safety factor of 1.1 for base loading). Moreover, bone remodeling could further increase safety
factors by decreasing vM stresses in highly loaded areas, a statement supported by the higher
grayscale values in these regions. In future modeling, density dependent elastic moduli and
strength could be used to provide further insights in this material tuning. Nevertheless, calcu-
lated safety factors imply that beaks can withstand loading under normal conditions, although
the exceptional jaw muscle hypertrophy of the ground finches [27], particularly G.magnirostris
(S1 Fig), introduces risks to the beak’s structural integrity during tip biting.

As a further caveat, the magnitude of the safety factors given here should be interpreted as
relative only when comparing different species, since our measures for the Young’s modulus
were based on data for a different species (P. oryzivora). Moreover, we used the linear approxi-
mation of Fyhrie and Vashishth [37]. Indeed, a wide range of strengths for denser bone,
ranging from 106 to 224 MPa [42–44] is available in literature and Darwin’s finches could
potentially have evolved denser bone with a higher strength. Moreover, stress magnitudes are
sensitive to changes in material properties [23,45–48]. Another assumption we make in calcu-
lating the safety factors is that the beaks of Darwin’s finches have similar material properties as
those measured for P. oryzivora. We are, however, unable to test this directly since the preser-
vation of the tissues can have a major impact on the mechanical properties of bone and keratin.
In addition, freshly killed animals cannot be obtained.

A unique advantage of FE models, applied in our study, is that they can be size-scaled, thus
allowing a size-independent view on the structural merits of different beak shapes. In our set of
FE models, for which we scaled the beaks of all Darwin’s finches to the same size and applied
identical muscle forces [26], our primary result is that maximum vM stresses differ broadly
across different species, in ways that align with the different species feeding strategies (Table 2).
For example, the beaks of C. olivacea and P. inornata show highest peak vM stresses in our
models (up to 100 MPa). This suggests that their beak shape is not suited to crack very hard
seeds. Indeed, these birds use their beaks almost exclusively to capture insects, rather than to
crush or manipulate hard objects [49].

The high stresses for G. conirostris observed in our models might be explained by the fact that
the geometry included in our study was that from a juvenile, while the applied muscle forces on
this juvenile geometry were those from an adult. Likely, ontogenetic changes in shape and ossifica-
tion take place to optimize the beak for adult loading conditions [50] as previously demonstrated
for G. fortis. Results for C. parvulus and C. pallida remain puzzling, but suggest that these species
may be functionally constrained in the use of their beak when applying large muscle forces.

We observed a thicker rhamphotheca in base crushing and tip-biting birds compared to
birds that probe and bite, as well as dedicated probers (Table 3). Moreover, the keratin thick-
ness at the bottom of the beak was strongly correlated to the beak safety factor indicating that
thicker keratin helps protect the beak and increase its safety factor (Table 4). Interestingly, the
thicker top keratin for tip biters matches the patterns of stress generated during tip loading,
suggesting that in both ecotypes keratin is an important part of the stress mitigation strategy.
In addition, positive and high correlations between beak aspect ratio and beak safety factor
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indicate that birds with relatively deeper and wider beaks have higher safety factors (Table 4)
and are thus better equipped to withstand loading due to biting. This provides evidence that
beak shape affects the risk of failure.

In summary, our FE models demonstrate that beak shapes are generally well-suited for miti-
gating risk of fracture in accordance with a species’ predominant feeding habitat. Understand-
ing how beaks evolve to reduce risk of fracture may help to explain patterns of selection on
beak size and shape in natural populations, and ultimately should be considered as one of the
axes of adaptation and specialization in the Darwin’s finch radiation.

Data availability
Data is available from biomesh.org.

Supporting Information
S1 Fig. Muscle mass and tip bite force compared to the body mass of finches.Note how G.
magnirostris and G. fortis have an exceptionally high muscle mass and bite force for their size.
(DOCX)

S2 Fig. Top and side view for physiological FE models of upper beak during base biting for
8 Darwin finches.
(DOCX)

S3 Fig. Top and side view for physiological FE models of upper beak during tip biting for 8
Darwin finches.
(DOCX)

S4 Fig. Top and side view for scaled FE models of upper beak during base biting for 13 Dar-
win finches.
(DOCX)

S5 Fig. Top and side view for scaled FE models of upper beak during tip biting for 13 Dar-
win finches.
(DOCX)
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