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A B S T R A C T

The growing understanding of the molecular mechanisms underlying epithelial-to-mesenchymal
transition (EMT) may represent a potential source of clinical markers. Despite EMT drivers have not yet
emerged as candidate markers in the clinical setting, their association with established clinical markers
may improve their specificity and sensitivity. Mass spectrometry-based platforms allow analyzing
multiple samples for the expression of EMT candidate markers, and may help to diagnose diseases or
monitor treatment efficiently. This review highlights proteomic approaches applied to elucidate the
differences between epithelial and mesenchymal tumors and describes how these can be used for target
discovery and validation.
ã 2016 The Authors. Published by Elsevier B.V. on behalf of European Proteomics Association (EuPA). This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. The EMT process

A major concern in the management of tumor patients is the
presence of metastatic cells in distant organs. Activation of the
epithelial-to-mesenchymal transition (EMT) program is commonly
observed in human cancers and is closely related to tumor
progression and resistance to standard chemotherapeutic drugs
and targeted agents. This model proposes morphological changes
in the structural organization of epithelial cells, with epithelial
polarized cells that lose their apical-basal organization and acquire
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a fibroblast-like shape, as well as fundamental changes at different
genetic and epigenetic levels that can initiate and sustain the
process [1].

EMT is a dynamic process that does not occur homogenously
across the whole tumor. This is supported by the observation that
inside the tumor mass, cells with mesenchymal features reside
predominantly at the invasive front at the tumor-stroma interface
[2]. Within a tumor, epithelial and mesenchymal cells coexist and
cooperate, by direct cell-cell interactions or by diffusible factors,
allowing epithelial cells to undergo EMT and increase their ability
to locally invade into the surrounding tissues and intravasate into
the blood vessels, initiating their spreading to distant organs [3].

After disseminating through the circulation, circulating tumor
cells (CTCs) maintain the expression of mesenchymal markers and
a molecular profiling of these cells may be carried out to predict
disease progression [4,5]. Although antibodies against epithelial
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cell adhesion molecule (EpCAM) and Cytokeratins (CK-8, CK-18,
CK-19) have been widely used to isolate CTCs, more recent and
sensitive methods that include a cocktail of antibodies against
mesenchymal markers have been developed [6,8]. This approach
demonstrated clinical validity by its ability to predict more
accurately breast cancer patients with a worse prognosis than
the evaluation of epithelial antigens [5]. This was also confirmed in
other studies where a higher numbers of mesenchymal CTCs were
identified in patients in the metastatic stage of the disease in a
variety of tumor types [6]. For this reason, multiple devices were
developed and functionalized not only with epithelial markers but
also with mesenchymal markers combined with cancer-associated
antigens, such as HER2 (EGFR2/ERBB2), and epithelial growth
factor receptor (EGFR) [4]. Moreover, together with the detection
of commonly used EMT molecules, there is also a need to identify
new specific CTCs markers. To address this issue, protein-based
technologies that rely on specific markers that are not down-
regulated during EMT and absent in blood cells were also described
and validated [9].

At present, one of the key questions is whether epithelial or
mesenchymal detection methods are able to capture the entire
spectrum of CTCs. It should be noted that the detection of CTCs
based on the expression of a specific set of markers should require
an assumption about the nature of these cells, and considering the
heterogeneity of CTCs, this cannot be easily predicted. As the EMT
features of CTCs can evolve in a spectrum of different phenotypic
phases during disease progression or treatment, current efforts to
characterise simultaneously CTCs with epithelial and mesenchy-
mal features might be the key not only to improve CTCs capture
efficiency but also to increase prognostic and predictive informa-
tion [7].

At the metastatic site, a reversion to an epithelial morphology,
also known as mesenchymal-to-epithelial transition (MET), has
been postulated and proposed to be essential for disseminated
tumor cells to re-enter a proliferative state and give rise to
macrometastatic nodules [10]. The mechanisms underlying this
process are still poorly understood. However, an explanation of this
process was proposed by Brabletz and involves the differentiated
vs undifferentiated status of primary tumors. The dynamic EMT-
MET interconversion is an important determinant of metastases
characterised by differentiated cells [11]. In this model, cancer cells
in primary tumors acquire EMT to increase their metastatic
potential, maintain the EMT status in circulation, and undergo a
MET at the secondary metastatic sites to promote metastatic
colonization. In contrast to the EMT-MET model, undifferentiated
metastases derived from primary tumors with intrinsic genetic
alterations are in a permanent EMT state and only a weak
redifferentiation is necessary to support their growth [11].

When considering the contribution of EMT in cancer progres-
sion, it is important to address its role during the first steps of
cancer initiation. Although EMT may be principally ascribed to
later stages of carcinoma progression, evidences that EMT may
occur earlier and be detectable in precancerous lesions are
reported. In a mouse model of pancreatic cancer, EMT was
identified in premalignant lesions and cells with mesenchymal
features were present in the circulation of mice prior to the
development of a detectable malignancy [12].

The EMT process has been characterized in different cancer
types including breast [13], lung [14], ovarian [15], prostate [16],
and liver [17] cancers. The mechanisms by which an epithelial cell
is able to acquire a mesenchymal phenotype include the
diminished expression of cell–cell adhesion components, elevated
expression of proteins involved in cytoskeleton remodeling, and
increased motility (Fig. 1). Such mechanisms have important
implication for the identification of a set of EMT markers that can
be clinically useful to characterize the process. Depending of their
specific role, EMT driving factors can be involved in transcriptional
regulation, maintenance of epithelial integrity and metabolism.

2. Factors driving EMT activation

EMT results from the coordinated regulation of transcriptional,
post-transcriptional, translational and post-translational events.
At the transcriptional level, EMT is regulated by several transcrip-
tion factors including zinc-finger proteins (SNAI1/2 and ZEB1/2)
and basic helix-loop-helix proteins (TWIST1/2). Overexpression of
these factors has been shown to be sufficient to act as a trigger of
the EMT program, increasing cell migration and invasiveness of
tumor cells [18].

In addition to the contribution of this transcriptional program,
small-non coding RNAs or microRNAs (miRNA or miR) have been
found to play a critical role in EMT regulation [19]. MiRNAs can
either promote or repressing the EMT program, depending on the
different cell contexts. MiR-200 family acts by targeting the EMT
factors Zeb1 and Zeb2, thus preventing E-cadherin down-regula-
tion [20,21]. However, members of this family are also required to
promote EMT and metastatization [22]. MiRNAs can cooperate
with different EMT-controlling signaling networks. In ovarian
cancer, miR-181a can modulate tumor growth factor-b (TGF-b)
signaling, increasing cell survival, drug resistance, and tumor
dissemination [23]. In breast cancer, ectopic overexpression of
miR-374a promoted EMT and metastasis both in vitro and in vivo by
targeting several negative regulators of the Wnt/b-catenin
signaling cascade [24]. Taken together, miRNAs may regulate
EMT working in close collaboration with transcriptional factors or
reinforcing EMT signaling network.

Tumor microenvironment including immune cells, tumor
stroma, and extracellular matrix can participate in the regulation
of EMT through a direct cell contact or by secreting signaling
factors such as TGF-b, epidermal growth factor (EGF) or platelet-
derived growth factor (PDGF), and hormones [25]. Cancer-
associated fibroblasts (CAFs) can promote EMT, by releasing
CXCL12 or by activating specific collagen receptors that regulate
the stability of EMT transcription factors, respectively [26,27]. The
crucial role of the microenvironment during EMT is also supported
by the observation that circulating tumor cells can undergo EMT in
response to a physical interaction with platelets. Platelet-derived
TGF-b triggers EMT through the synergistic activation of TGF-b
and nuclear factor-kB (NF-kB) pathways [28].

TGF-b pathway promotes EMT and also enhances the migratory
and invasive properties of cancer cells. The latter events are
transiently active only in a small population of cells throughout the
tumor where activation of TGF-b signaling drives the expression of
genes that promote single cell motility [29]. Proteomic studies
provided a systemic view of TGF-b action. The process is regulated
via the activation of ECM-receptor interaction, focal adhesion, and
actin cytoskeleton proteins and the down-regulation of proteins
related to cell cycle inhibition, nucleic acid metabolism, transcrip-
tion, and regulation of DNA replication and repair. Important
effectors of these modifications include the transcriptional
regulators SMAD2, SMAD3, SNAIL2, SMAD7, and c-MYC [30].

EMT is regulated by the interplay of different signaling
networks, with multiple points of regulation, feedback and
cross-talk. Canonical EMT pathways include Ras/MAPK, PI3 K/
Akt/GSK, and Wnt/b-catenin. ERK is critical for EMT induction by
the hepatocyte growth factor (HGF) [31], TGF-b [32], or EGF [33].
In melanoma cell lines, increased Twist1 mRNA/protein expression
was shown to be dependent on the ERK signaling thus promoting
invasion, and matrix metalloproteinase-1 expression [34]. Activa-
tion of the PI3K and MAPK pathways can also regulate EMT by the
suppression of GSK-3b activity and stabilization of Snail. GSK, by
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phosphorylating Snail at two consensus motifs, regulates Snail
degradation and subcellular localization [35].

The Akt family of kinases, comprising Akt-1, Akt-2 and Akt-3, is
a major effector of tumor growth and metastasis. Although the
signaling through Akt is essential to promote EMT, the functional
role and relative contribution of the three different isoforms is still
controversial [36]. In breast cancer samples, the ratio of Akt-1 to
Akt-2 and the abundance of miR-200 and of the mRNA encoding E-
cadherin revealed that the miR-200-E-cadherin axis is under the
control of Akt pathway. The comparison of cells reconstituted with
Akt-1, or Akt-2 demonstrated that miR-200 family expression
appears to depend on the balance between Akt-1 and Akt-2. Akt-
1 may regulate Akt2 or it may interfere with the Akt-2-mediated
decrease in miR-200 abundance downstream of Akt-2. Akt-
1 knockdown, but not down-regulation of Akt-2 or of Akt-1 plus
Akt-2, contributes to the activation of EMT induced by TGF-b by
decreasing the abundance of the miR-200 family [36]. Activation of
Akt drives the acquisition of a mesenchymal phenotype in
squamous cell carcinoma lines promoting tissue invasion and
metastasis [37]. Hepatocellular carcinoma cells exposure to
hypoxic conditions increased HIF-1a expression and induced
EMT through a pathway that involves PI3K/Akt [38]. In vivo, high
levels of Akt were found to correlate with high levels of
Twist1 Ser42 phosphorylation with subsequent decrease of
p53 levels and the inhibition of cell cycle arrest and apoptosis
[39]. Akt can also regulate EMT through NF-kB. Akt induces NF-kB
activity, its nuclear translocation and Snail activation with the
consequent repression of the CDH1 gene encoding E-cadherin [40].

Connections between Wnt signaling and EMT is supported by
several studies. In the canonical WNT signaling, the binding of
Fig. 1. Cellular modifications associated with EMT program. After the activation of the EM
cadherin and Cytokeratins, and turn on mesenchymal markers, including N-cadherin and
into epithelial structures by mesenchymal-epithelial transition. Depending on the tissu
show some epithelial and mesenchymal properties; this can be considered as a partial
WNT ligands to the Frizzled family of protein receptors results in
the inhibition of GSK3b activity leading to stabilization of Snail and
Slug expression [41,42]. During EMT, Wnt signaling is implicated in
the reprogramming and maintenance of a cancer stem cell (CSC)
state. This is obtained through the association of Twist1 with Wnt
signaling-related molecules. In particular, EMT activation in tumor
cells induces a switch from the b-catenin/E-cadherin/
Sox15 complex to the b-catenin/Twist1/TCF4 complex enhancing
the transcriptional activity of this group of proteins including the
binding to cancer stem cell genes related promoters. Immunohis-
tochemical analysis of lung cancer samples correlated the specific
protein signature identified in vitro (nuclear b-cateninHigh/nuclear
Twist1High/E-cadherinLow/Sox15Low/CD133High) with clinical fea-
tures including tumor progression and metastasis. These data
indicated the potential role of these proteins as predictors for poor
overall patient survival [43].

3. Immune response and EMT

A link between EMT and immunoediting was described and
several mechanisms proposed. Tumor cells that evade immu-
noediting often activate EMT signaling pathways such as BRAF-
MAPK, STAT3, and Wnt/b-catenin which trigger multiple
immunosuppressive cascades that result in the production of
immunosuppressive molecules (e.g., TGF-b, IL-10, IL-6, VEGF, and
CCL2) and induction of immunosuppressive immune cells (e.g.,
regulatory T cells, tolerogenic dendritic cells, and myeloid-derived
suppressor cells) [44–46]. Moreover, during EMT, tumor cells
evade the immuno-recognition through the down-regulation of
immune receptor ligands that directly stimulate immune cells. In
T program epithelial cells switch off the expression of epithelial markers, such as E-
 Fibronectin. After metastatic dissemination mesenchymal cells can redifferentiate
e and signaling context, epithelial cells may lose only some characteristics or may
 EMT.
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colorectal cancer, the plasma membrane receptor natural killer
group 2 member D (NKG2D) expressed in natural killer (NK) and T
cells which is involve to recognize malignant cells is under the
control of an immunological checkpoint that relies on NKG2D-
mediated immune responses in EMT [47]. We demonstrated the
down-regulation of Human leukocyte antigen class I antigens
(HLA-I) in serous ovarian cancer, which is essential in immune
response by presenting antigenic peptides to cytotoxic T
lymphocytes. This is done by cleavage of the immunoproteasome
11S [48]. Cleavage of PSME1 (proteasome activator complex
subunit 1, 11S regulator complex [syn: PA28 alpha]), an antigen
processing machinery, into the Reg-alpha fragment could lead to
default self-antigen presentation [48,49]. Our data describe a high
expression level of PA28 in early and late stages ovarian
carcinomas, and proposed a role for this protein as a marker for
monitoring patient response during therapy [49]. Its alteration by
cleavage in ovarian carcinomas may be a mechanism to evade
immune recognition. Similar hypothesis has already been
proposed in the case of APM chaperones such as TAP, LMP2,
LMP10, and tapasin in colon carcinoma, small cell lung carcinoma,
and pancreatic carcinoma cell lines. In fact, IFN-ã treatment of
these carcinoma cell lines corrects the TAP, LMP, and tapasin
deficiencies and enhances PA28<LMP7, calnexin and calreticulin
expression, which is accompanied by increased levels of MHC class
1 antigens. Recently, the PA28 fragment was detected in a MALDI
MSI multicentric study and correlated to stroma activation in
breast cancer samples [50].

There are data to support the role of soluble molecules
expressed or secreted in the tumor microenvironment in the
regulation of EMT and immunoediting. Recent data suggest that
TGF-b and EGF play a role in regulating HLA-I. The treatment of
prostate cancer cells with TGF-b and EGF induced and EMT
program and significantly decreased HLA-I expression. This
attenuated the cytotoxic T cell mediated lysis of tumor cells
through a pathway that involve the up-regulation of Snail [51].
Taken together, it is clear that in EMT hallmarks the immune
response take a major place as a therapeutic target.

4. Clinical relevance of genes/proteins associated with EMT

In support to the relevance of EMT, histological analysis of
tumor samples suggested that EMT occurs in vivo promoting
cancer progression and chemoresistance.

Loss of cell polarity is a main event in several epithelial tumor
types, as loss of the junctions mediating tissue architecture could
contribute to the formation of tumor masses in vivo [52], or
promote the expansion of pre-neoplastic cell [53]. One fundamen-
tal event of EMT is the decrease of E-cadherin expression, an
adherent junction protein implicated in cell–cell adhesion of
epithelial tissues. There are multiple mechanisms by which E-
cadherin influences tumor progression, including inhibition of EGF
receptor signaling and maintenance of cell–cell adhesion and
epithelial cell polarity [54]. Reduced E-cadherin expression is often
associated with the release of b-catenin into the cytosol and
potentially into the nucleus [54]. Immunohistochemical analysis of
breast cancer samples revealed that this association is a
characteristic of tumors of triple-negative and basal-like pheno-
type [55].

Several studies have correlated the down-regulation of E-
cadherin with clinicopathological parameters of several human
tumor types. In a cohort of squamous cell lung carcinoma patients,
high E-cadherin expression can be a positive indicator for overall
survival (OS) and disease-free survival (DFS) [56]. Increased
cytoplasmic ALCAM/E-cadherin loss was found to represent the
most significant adverse prognostic factors for oral squamous cell
carcinoma (OSCC) patients [57].
A meta-analysis of 24 studies and 2961 cases suggested that E-
cadherin expression is significantly associated with poorer
differentiation degree in esophageal cancer [58]. Moreover,
abnormal E-cadherin expression emerged as a strong independent
prognostic factor for overall survival of gastric cancer patients [59].

Stable loss of E-cadherin can occur through different molecular
mechanisms, including promoter hypermethylation and transcrip-
tional control. The transcriptional repressors of E-cadherin
expression, Snail, Slug and Twist, are involved in the activation
of EMT by binding to E-box elements in the E-cadherin promoter.
These factors can regulate EMT in vitro through the repression of E-
cadherin, the up-regulation of mesenchymal markers, and the
acquisition of stem cell properties [18]. Knockdown of these
transcription factors restores the expression of E-cadherin and
induces an epithelial phenotype [60]. Although these EMT
regulators are thought to function in a redundant manner, several
studies reported unique functions suggesting a differential
participation in the EMT process [61] with a precise spatial and
temporal regulation [61,64]. In breast cancer patients, Snail levels
in the primary tumor predicted for metastasis, while Twist levels
and the Twist/Snail ratio in bone marrow micrometastatic tumor
cells were found to be highly predictive for distant relapses [62]. In
a cohort of patients with invasive ductal carcinoma, Snail
expression correlated with b-catenin cytoplasmic and nuclear
levels, while Slug correlated with N-cadherin and vimentin protein
expression [63]. In melanoma cells, the expression of EMT factors is
under the control of oncogenic signaling pathways. During
melanomagenesis Snail2 and Zeb2 behave as onco-suppressive
proteins in the melanocytic differentiation program, whereas, in
response to MEK-ERK pathway activation, Zeb1 and Twist1 are up-
regulated promoting dedifferentiation and neoplastic transforma-
tion of melanocytes [64].

Snail, Slug and Twist are expressed in the nuclear and
cytoplasmic fraction of tumor samples, and correlated with
advanced stage, and poor survival in several cancer types
[65,66]. Moreover, there is some evidence of a positive staining
of these transcription factors in tumor microenvironment of tumor
samples with a worse outcome [67].

High expression of nuclear Snail predicts poor survival in
nasopharyngeal carcinoma and basal-like breast cancer [65,66].
Twist over-expression was observed in patients with head and
neck squamous cell carcinoma, clear cell carcinoma of the ovary,
advanced oral squamous cell carcinoma, colorectal carcinoma,
breast carcinoma and associated with aggressive tumor properties
and poor survival [68–71]. The prognosis of patients with Twist
and Snail co-expression is worse in tumor samples compared with
samples where only one marker is expressed, supporting the
hypothesis that these two transcription factors may cooperate to
promote EMT [72].

N-cadherin up-regulation frequently follows E-cadherin down-
regulation with a concomitant increase of cell motility and
migration [73]. N-cadherin over-expression stimulates mammary
tumor metastasis in the MMTV-NeuNT mouse model, and induces
up-regulation of FGFR expression and phosphorylation, and of
Snail and Slug expression in a FGFR-dependent manner [74]. N-
cadherin expression is positively correlated with clinical param-
eters in several cancer types. In lung cancer tissues, overexpression
of N-cadherin is associated with advanced TNM stage, poor
differentiation and reduced overall survival. Moreover, a signifi-
cant correlation was found between Twist and N-cadherin
expression by Spearman correlation analysis [75]. Moreover, N-
cadherin expression was found to correlate with superficial
urothelial tumor progression and with poor histological differen-
tiation of oral squamous cell carcinomas [76,77].

Vimentin is the major intermediate filament protein of
mesenchymal/stromal cells, including fibroblasts, endothelial cells
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and peripheral blood mononuclear cells [78]. High-throughput
approaches reported altered expression levels for vimentin in
numerous cancer types, correlating its overexpression with the
aggressive behavior and metastatic potential of these tumors [79–
86]. In epithelial tumors, expression of vimentin alone or in
combination with other mesenchymal markers is a useful
predictor of cancer progression, chemoresistance, high histological
grade, and in general associated with poor prognosis. Vimentin
immunoreactivity has been observed in both stromal and tumor
cells where it is expressed at the invasive front [85].

High expression of vimentin was observed in triple-negative
breast cancer compared with other breast tumour subtypes, and
correlated with younger age, high nuclear grade, high
Ki67 expression, and poor prognosis in terms of both recur-
rence-free survival and overall survival [87,88]. Vimentin is a
predictive biomarker in patients with non-small cell lung cancer
treated with Erlotinib as second- or third-line therapy [89], and a
negative indicator for overall survival in squamous cell lung
carcinoma patients [56].

4.1. Clinical significance of combined detection of FDA serum tumor
markers and EMT markers

The potential uses of cancer markers are for screening,
diagnosis, prognosis, prediction of response to therapy, monitoring
of patients with diagnosed disease. Since EMT markers have
demonstrated clinical value in detection and monitoring of a
disease, their expression may improve the sensibility and
specificity of most traditionally used clinical markers. Moreover,
despite their prevalent tissue-based location, EMT markers can
also be found in other biological fluids, including serum, increasing
their potential clinical utility. So far, only few EMT markers have
been proposed in correlation with US Food and Drug Administra-
tion (FDA)-approved biomarkers.

Alpha-fetoprotein (AFP) is an indicator of several malignant and
chronic conditions, including hepatocellular carcinoma (HCC) [90].
The expression of AFP in HCC models is regulated by the miR122
[91], which is associated with EMT and spontaneous HCC
formation [92]. Reduced expression of miR122 in HCC cells
contributes to elevated AFP expression through a pathway
involving CUX1/miR214/ZBTB20; this evidence suggests that
serum AFP levels in HCC patients may be a surrogate marker for
deregulated intracellular miR122-dependent signaling pathways
in HCC tissues.

Vimentin is an EMT markers consistently over-expressed in
HCCs compared to cirrhotic and normal liver tissues [93]. This
over-abundance was more marked in smaller carcinomas (�2 cm).
In the serum of HCC patients, vimentin expression as detected by
ELISA described a significant difference between non-neoplastic
controls and HCCs of all sizes and a specificity of 87.5% (95% CI:
76.85–94.45%) in separating non-neoplastic subjects from those
with HCCs of small size. Importantly, vimentin was proposed as a
better marker compared with the conventional serum AFP for
detecting small tumors and that when combined with AFP, this
detection sensitivity and specificity can be considerably enhanced.

Mucins are a large family of transmembrane glycoproteins, and
are frequently over-expressed and aberrantly glycosylated in
cancer. Mucins are secreted from and/or localized to the apical
borders of normal epithelial cell sheets. Over-expression of MUC1,
MUC4, and MUC16 has diagnostic and prognostic significance in
different cancer types [94].

MUC16 is a high molecular weight membrane associated-
mucin, which is over-expressed in advanced serous epithelial
ovarian cancers [95]. CA125 is a marker that allows the detection of
circulating MUC16 antigen, which is increased in approximately
80% of all epithelial ovarian cancers (EOC) and in only 50% of stage I
EOC and associated with a significantly longer progression-free
survival and overall survival [96]. CA125 serum levels directly
correlate with the levels of protein production in tumor cells
suggesting that the up-regulation of this protein at the tissue level
may have a role in promoting cancer progression and recurrence.
Knockdown of MUC16 decreased the ability of tumor cells to form
colony in soft agar and prevented the formation of subcutaneous
tumors in nude mice. In contrast, tumor cells with an ectopic
expression of MUC16 showed a decrease of E-cadherin and a gain
of N-cadherin and vimentin expression together with an enhanced
tumorigenic phenotype [97]. Although this data suggests a
functional role of MUC16 in regulating EMT, results from another
study report an inverse correlation between CA125 serum levels
and the expression of mesenchymal markers at tissue level. The
study of Tothill et al. described that preoperative serum
CA125 levels are lower in ovarian cancer tissues with a
mesenchymal gene signature compared with tissues characterized
by a different genomic profile [98]. These data suggest that
MUC16 expression may be needed to promote the onset of EMT but
not to maintain a mesenchymal phenotype.

MUC1 is approved as a biomarker for breast cancer in
combination with diagnostic imaging, patient history, and physical
examination during active cancer therapy to monitor metastatis
[99]. Two serum assays, CA15.3 and CA27.29, were approved by the
FDA for the detection of secreted MUC1 in breast cancer patients.
Moreover, MUC1 is aberrantly over-expressed in greater than 95%
of metastatic pancreatic cancer and associated with poor prognosis
[100]. Over-expression of MUC1 can induce EMT by b-catenin-
MUC1 interaction and translocation to the nucleus, leading to
activation of Snail and Slug [101]. Moreover, MUC1 stimulates the
over-expression of Zeb1 and the down-regulation of miR-200c,
with consequent induction of EMT [102].

In 1965, the oncofetal antigen carcinoembryonic antigen (CEA)
was found for the first time in extracts of colonic adenocarcinomas
[103]. CEA belongs to a large family of carcinoembryonic antigen
cell adhesion molecules (CEACAMs) proteins that mediate
homophilic and heterophilic cellular interactions [104]. The
utilization of CEA in clinical applications is mainly aimed at the
management of gastrointestinal malignancies, especially colorec-
tal carcinomas. It is also detected in various epithelial tumors such
as lung, small cell lung cancer, pancreas, gallbladder, urinary
bladder, mucinous ovarian, and endometrium [105]. In a cohort of
99 pancreatic tumor samples, CEACAM6 (CD66c) expression was
correlated with clinicopathological characteristics including tumor
differentiation and lymph node status, and inversely correlated
with E-cadherin expression. Silencing of CEACAM6 in pancreatic
CFPAC-1 cells led to a transition from mesenchymal to epithelial
morphology with a concomitant up-regulation of E-cadherin and
down-regulation of vimentin [106]. In breast cancer samples, the
combined analysis of CEA and E-cadherin expression showed a
3.6 times higher risk of relapse for patients with elevated
expression of CEA, regardless of E-cadherin expression, compared
with patients with below-median CEA and above-median E-
cadherin tumour expression [107].

5. EMT markers in biological fluids

Despite extensive investigations, there are no currently
approved applications for canonical EMT markers in the clinical
setting. This is in contrast with the importance of EMT in the
context of cancer biology and with their correlation with a series of
clinical variables as supported by recent experimental studies.

There are multiple reasons why EMT markers have not gone
through the clinic and they are to some extent related to the
dynamic nature of the process. As described above, primary
tumors are characterized by the expression of EMT markers whose
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detection is complicated by a specific spatio-temporal regulation.
Hence, only a particular marker may be expressed at any time point
with the unavoidable consequence that tissue slices should be
probed with several different antibodies, which may lead to an
increase of healthcare cost.

The detection of tumor markers in the blood is a highly active
area of research that will extend the use of EMT markers in the
clinic providing a shift from the classical histological diagnosis
based on the anatomical site. A proteomic signature of breast
cancer biomarkers released in proximal fluids was assessed by
liquid chromatography mass spectrometry (LC–MS/MS). Authors
analysed the proximal fluids of seven breast cancer cell lines with
different EMT features, and identified a group of proteins whose
expression varied significantly among cell models [108]. A set of
three markers, cathepsin D, fructose 1,6-bisphosphate aldolase,
and keratin 19, was required to categorize breast models as
HER2 positive, HER2 negative and hormone receptor positive, and
triple negative. Other authors investigated by 2DE-DIGE and LC–
MS/MS the secretome of MDCK and Ras transformed MDCK cells
[109]. Ras transformed cells exhibit typical EMT features including
an increased migratory capacity and an up-regulation of extracel-
lular proteases and factors promoting migration. Among the
proteins identified, kallikrein 6 (KLK6) was six folds up-regulated
in the secretome of Ras transformed MDCK cells. KLK6 may
represent a promising biomarker, because this protein belongs to a
family of serine proteases, which includes also the clinical
biomarker KLK3 (known as prostate-specific antigen, PSA).
However, its role in the EMT scenario is not totally clear, because
a recent study unrevealed an inhibitory function of KLK6 on tumor
cell proliferation and mobility and an inverse correlation to EMT
[110].

6. Using proteomics to dissect EMT complexity

A differential proteomic analysis was performed to investigate
the proteome modifications after the induction or knockdown of
EMT markers, or to compare cell and tissue models with different
EMT features. Other approaches have been used to expand the
information about EMT markers including immunoprecipitation of
protein complexes followed by MS/MS.

Advances in MS-based proteomics provided a systems view of
functional networks modified after EMT induction [111]. To
address this issue and to enable the study of global proteome
modifications, different fractionation methods were used. This
approach includes the analysis of membrane, cytosol, and nuclear
proteins, and the isolation of phosphopeptides that were enriched
by direct affinity chromatography. This strategy was evaluated in
an inducible model of EMT that was obtained using tumor cell lines
in which the expression of Snail and Zeb1 was under the control of
a doxycycline inducible promoter. Cells were treated with TGF-b
for one week, and lysed to fractionate cellular specific components
that were analysed by LC–MS/MS. High-throughput proteomics
revealed modifications in a wide range of cellular networks and
alterations in the expression of cell–cell junctional proteins, an
increased production of proteases, an up-regulation of proin-
flammatory cytokines, and a reduced need of metabolic pathways
required for macromolecular biosynthesis. These modifications
correlate with the modulation of specific transcription nodes
including NFkB2/RelA, ATF3/ATF2, Myc, FOXA1 and 2, ETS1,
NFE2L2/L3, MEF2C, Snail/Slug, and Zeb1 and 2.

As discussed above, several signaling pathways can induce EMT
and many EMT inducers have been identified including HGF.
Shotgun proteomics combined with SILAC, for the quantitative
comparison of proteomic differences, was applied to identify HGF-
induced expression changes in MDCK cells. Six protein clusters
modified their expression in a time-dependent manner after
different time points of stimulation. In particular, the expression of
proteins that regulate cell cycle, cell migration, integrin signaling,
ubiquitination, and transcription increased over 24 h of HGF
exposure, in contrast, metabolic enzymes, pro-apoptotic, and
transcriptional suppressors decreased over the same period.
Moreover, members of HIPPO/MST2 and ISG15 pathways were
modified after HGF-treatment at the protein level by ubiquitin
ligases. Modulation of these pathways seems to have a major role
in regulating cell scattering and morphology [112].

Cells undergoing EMT acquire resistance to anticancer agents
and contribute in vivo to the generation of chemoresistant
metastasis [113,114]. In pancreatic adenocarcinoma, intrinsic
gemcitabine-resistant and -sensitive human cell lines were
compared by a label free quantification strategy to identify an
EMT-proteomic signature associated with the resistant phenotype
[115]. The list of identified proteins includes the EMT markers
ANPEP, ALCAM, DSG3, DSG2, KRT14, KRT19, KRT8, CLDN1, VIM,
CDH1, SDC1, CD44, ITGB1, NT5E, and DSP, suggesting that the
acquisition of a mesenchymal phenotype is involved in gemcita-
bine resistance. As many of these proteins are closely associated
with cytoskeletal reorganization, the acquisition of a more
aggressive and invasive phenotype may be important in conferring
drug resistance against gemcitabine.

Breast cancer models have been widely used to study EMT.
Based on the established molecular classification, breast tumors
can be divided into several subtypes with specific epithelial and
mesenchymal features. In this classification, triple-negative breast
cancers (TNBC), represent a specific group enriched for the
expression of mesenchymal markers. Compared to HER2 cancer
samples, TNBC display a proteomic profile characterised by the
over-expression of breast cancer stem cells markers, such as
ALDH1A1, and drug-resistance proteins including Hsp70, Periostin
precursor, RhoA, Actinin a4, and Annexin1 [116]. Annexins belong
to a family of calcium/phospholipids-binding and actin regulatory
proteins, and play an important role in the regulation of EMT. In
mesenchymal breast cancer cells, Annexin1 was found differen-
tially expressed at protein and mRNA level [117], and identified as a
marker for breast cancer outcome prediction and treatment
response [118]. Recently, the deeper proteomic classification
performed by Lawrence and colleagues highlighted the remarkable
differences between TNBC and luminal tumors. This result
supported the metastatic potential of mesenchymal tumors, which
express high level of signaling proteins associated with metastasis,
including ECM receptor interaction, cell adhesion, and angiogene-
sis [119].

A hallmark of EMT is the down-regulation of cell–cell junctions,
including adherens junctions. In our group we used a proteomic
approach to identify proteins modified after the knockdown of E-
cadherin in breast cancer cells. Experimental data were obtained
from two different models, MCF-7 and MDA-415 cells stably
infected with a lentivirus for the expression of specific E-cadherin
shRNAs. Bioinformatics analysis of this protein dataset revealed
that different protein networks were modified after E-cadherin
knockdown, including cell invasion, viability, survival, and
metabolism [120]. This expands the role of E-cadherin to a
possible regulation of other pathways not strictly related to cell
adhesion, and highlights the complexity of the E-cadherin
interactome. Immunoprecipation experiments using MS provided
a sensitive way of characterising specific molecules that directly
are influenced by E-cadherin. One of these methodologies relies on
the application of biotin-streptavidin affinity chromatography and
LC–MS/MS to identify proteins associated with an engineered form
of E-cadherin, which expresses a biotin ligase to biotinylate
proteins based on its proximity [121]. Biotinylated proteins were
then isolated by streptavidin affinity chromatography, digested
into peptides, and analyzed by high-resolution MS. In the



Table 1
Proteomic studies applied to study the EMT complexity.

Technical platform Quantification Comments Main results Ref.

LC–MS/MS Label-free
quantification by
MaxQuant, SILAC
analysis of
phosphopeptides

Analysis of the proteomic and phosphoproteomic
changes of cultured human keratinocytes undergoing
EMT in response to stimulation with TGF-b. Authors
quantified significant changes in 2079 proteins and
2892 phosphorylation sites regulated by TGF-b

Authors performed a networks and pathways analysis
of TGF-b regulated proteins which revealed significant
differences in the abundance of proteins associated
with EMT and cell proliferation. A set of upstream
transcription regulators induced by TGF-b treatment
was also identified

[30]

LC–MS/MS Label-free
quantification by
Scaffold software

Authors identified and characterized the most
abundant secreted proteins from a panel of cancer
human cell lines: HER2 positive, HER2 negative and
hormone receptor positive and triple negative
(HER2�, ER�, PR�)

Bioinformatics analysis classified HER2 positive,
HER2 negative and triple negative models based on
the expression of only two proteins, muscle fructose
1,6-bisphosphate aldolase and keratin 19

[108]

2-D DIGE and LC–MS/
MS

2-DE image analysis
software and mRNA and
western blot validation

Authors compared the secretome of MDCK cells that
undergo EMT following transformation with
oncogenic Ras

DIGE analysis identified 47 proteins differentially
regulated in MDCK cells after Ras-induced EMT.
Proteins involved in cell migration and matrix
degradation were enriched in this network

[109]

LC–MS/MS iTRAQ EMT was induced in a tumor cell model stably
transfected with doxycycline-inducible Zeb1 or Snail
cDNAs or after the exposed to exogenous TGF-b�
Proteomic changes were investigated after cellular
fractionation of membrane, nuclear, and cytosolic
proteins. Phosphopeptides were also isolated by
directed affinity chromatography

Four functional groups of proteins were modified after
EMT activation: cell adhesion and migration,
metabolism, transcription nodes and proliferation/
survival networks

[111]

LC–MS/MS SILAC Authors performed a quantitative proteomic analysis
of MDCK cells treated with HGF at different time
points

After HGF exposure, MDCK cells expressed higher
levels of proteins associated with the ubiquitination
machinery, whereas expression of proteins regulating
apoptotic pathways was suppressed. Hippo/MST2 and
ISG15 pathways are key determinants of HGF-induced
EMT alterations

[112]

LC–MS/MS Label-free
quantification by
Scaffold software

Authors performed a comparative proteomic analysis
of pancreatic cancer cell lines with a different
sensitivity to gemcitabine

Bioinformatics analysis identified 13 EMT-related
proteins that were closely associated with drug
resistance including CAV1, IQGAP1, ITGB4, ITGA6,
CTNNB1, ACTN4, FLNA, FLNB, KRT18, MYH14, MYH9,
MYL6, and PXN

[115]

LC–MS/MS Label-free
quantification by
Scaffold software

Authors performed a comparative proteomic profiling
of HER2 positive and triple negative breast cancer
tissues

Galectin-3-binding protein and ALDH1A1 were found
preferentially elevated in TNBC, whereas CK19,
transferrin, transketolase, and thymosin b4 and
b10 were elevated in HER2-positive cancers

[116]

2-DE and TOF/TOF 2-DE image analysis
software and mRNA and
western blot validation

In this paper authors performed a comparative
proteomic analysis of two breast cancer cell lines with
epithelial and mesenchymal features

28 proteins were identified as significantly up- and
down-regulated. Proteins that were differentially
expressed by these cell lines were enriched for
metabolic, mobility, and signaling functions

[117]

LC–MS/MS iBAQ approach This paper is a large-scale proteomic characterization
of triple negative breast cancer cell lines and tissues
using MS. Results of this study are freely available at
the website (https://zucchini.gs.washington.edu/
BreastCancerProteome/)

PCA analysis classified tumor samples into different
groups. Luminal-like cells expressed higher levels of
pathways associated with proliferation, such as cell
cycle, growth factor signaling, metabolism, and DNA
damage repair mechanisms. TNBC cell types,
expressed higher levels of pathways associated with
metastasis, such as ECM-receptor interaction, cell
adhesion, and angiogenesis

[119]

2-DE and TOF/TOF 2-DE image analysis
software and western
blot validation

Proteomic analysis of breast cancer cell lines after
shRNA knockdown of E-cadherin

81 spots differentially expressed between scramble
and shEcad cells, 54 proteins identified by MS/MS.
Proteins involved in the regulation of actin
cytoskeleton and cellular metabolism were enriched
in this dataset

[120]

Immunoprecipitation
and LC–MS/MS

iBAQ approach Authors used immunoprecipitation and LC–MS/MS to
identify 561 E-cadherin interactome components

More than 50% of the 561 identified proteins belong to
six main groups including adaptor proteins,
transmembrane proteins, guanosine triphosphatase
(GTPase) regulators, kinases and phosphatases, actin
dynamics regulators, and cytoskeleton structural and
motor proteins

[121]
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immunoprecitated of E-cadherin, 561 proteins were identified and
classified in different functional categories based on their gene
ontology. The largest group was that of adaptor proteins, the
remaining categories included transmembrane proteins and
proteins involved in transcription, translation, trafficking, proteol-
ysis and metabolism.

7. Conclusions

Data discussed in the above sections describe the biological
complexity of EMT and report the role of high-throughput
technologies to provide insight into this complexity (Table 1).
Although the molecular details that underlie the process still need
to be completely clarified, these results highlight how EMT takes
advantage by the activation of different cellular pathways that
work in coordination to sustain cells adaptation to a different
molecular program. Besides the role of classical EMT markers such
as cell–cell adhesions proteins and transcription factors, other
potential markers were identified by proteomics. Considering the
patient-to-patient biological variation, large multi-center studies
are required to prove the validity of these molecules as clinical
biomarkers. Moreover, extensive experimental evidence indicates

http://https://zucchini.gs.washington.edu/BreastCancerProteome/
http://https://zucchini.gs.washington.edu/BreastCancerProteome/
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the need to shift the focus from a single or few biomarkers towards
large panels of EMT markers that can better describe the molecular
dynamism of a tumor. In this direction, the usefulness of EMT
markers alone or in combinations still remains to be determined,
although initial studies using with multi-marker combinations are
promising [122]. To achieve this goal, proteomics technologies can
now support the screening of a large set of samples with great
sensitivity also in combination with targeted data acquisition
strategy. An example of this approach was recently carried out for
the discovery and validation of breast cancer biomarkers. In this
work, a list of N-glycosylated proteins was obtained from breast
cancer samples with different clinical features. Then, a list of
putative biomarkers was selected and quantified by LC-SRM
(single reaction monitoring) leading to the validation of 10 proteins
differentially expressed in tumor samples [123]. More recently,
analyses performed on quadrupole-orbitrap mass spectrometers
operated in hyper reaction monitoring (HRM) enables compre-
hensive recording of a large number of peptide ions with high
precision and reproducibility bypassing the drawbacks associated
with SRM [124]. The approach was used to investigate the effect of
acetaminophen (APAP) on the proteome of liver microtissues
generating a spectral library of more than 22.454 peptides [125].
This further expands the role of proteomics in the clinical
investigation and validation of biomarkers, with new opportu-
nities also in the field of EMT.

Conflict of interest

All authors have contributed to, and read, the paper and have
given permission for their name to be included as a co-author. The
manuscript, including figures and tables, has not been previously
published and is not under consideration elsewhere.

Authors declare that there is no conflict of interest.

Acknowledgements

We are grateful to the managers of ASL_LE, Dr. Giovanni
Gorgoni, Dr. Antonio Sanguedolce, and Dr. Vito Gigante for their
support to the Lab of Clinical Proteomics. This work was supported
by the PON project 254/Ric. “Implementation of human and
environment health research center” cod. PONa3_00334,
PONa3_00334 “Research Center for Environment and Human
health”, PRIN 2010FPTBSH “NANO Molecular tEchnologies for Drug
delivery—NANOMED”.

We gratefully acknowledge funding from the Apulia Regional
Cluster project SISTEMA.

References

[1] J.P. Thiery, H. Acloque, R.Y. Huang, M.A. Nieto, Epithelial-mesenchymal
transitions in development and disease, Cell 139 (November (5)) (2009) 871–
890.

[2] A. Nassar, A. Radhakrishnan, I.A. Cabrero, G.A. Cotsonis, C. Cohen,
Intratumoral heterogeneity of immunohistochemical marker expression in
breast carcinoma: a tissue microarray-based study, Appl. Immunohistochem.
Mol. Morphol. 18 (October (5)) (2010) 433–441.

[3] T. Celià-Terrassa, O. Meca-Cortés, F. Mateo, A.M. de Paz, N. Rubio, A. Arnal-
Estapé, B.J. Ell, R. Bermudo, A. Díaz, M. Guerra-Rebollo, J.J. Lozano, C. Estarás,
C. Ulloa, D. Álvarez-Simón, J. Milà, R. Vilella, R. Paciucci, M. Martínez-Balbás,
A.G. de Herreros, R.R. Gomis, Y. Kang, J. Blanco, P.L. Fernández, T.M. Thomson,
Epithelial-mesenchymal transition can suppress major attributes of human
epithelial tumor-initiating cells, J. Clin. Invest. 122 (May (5)) (2012) 1849–
1868.

[4] M. Yu, A. Bardia, B.S. Wittner, S.L. Stott, M.E. Smas, D.T. Ting, S.J. Isakoff, J.C.
Ciciliano, M.N. Wells, A.M. Shah, K.F. Concannon, M.C. Donaldson, L.V.
Sequist, E. Brachtel, D. Sgroi, J. Baselga, S. Ramaswamy, M. Toner, D.A. Haber,
S. Maheswaran, Circulating breast tumor cells exhibit dynamic changes in
epithelial and mesenchymal composition, Science 339 (February (6119))
(2013) 580–584.

[5] A. Gradilone, C. Raimondi, C. Nicolazzo, A. Petracca, O. Gandini, B. Vincenzi, G.
Naso, A.M. Aglianò, E. Cortesi, P. Gazzaniga, Circulating tumour cells lacking
cytokeratin in breast cancer: the importance of being mesenchymal, J. Cell.
Mol. Med. 15 (May (5)) (2011) 1066–1070.

[6] S. Wu, S. Liu, Z. Liu, J. Huang, X. Pu, J. Li, D. Yang, H. Deng, N. Yang, J. Xu,
Classification of circulating tumor cells by epithelial-mesenchymal transition
markers, PLoS One 10 (April (4)) (2015) e0123976.

[7] S. de Wit, G. van Dalum, A.T. Lenferink, A.G. Tibbe, T.J. Hiltermann, H.J. Groen,
C.J. van Rijn, L.W. Terstappen, The detection of EpCAM(+) and EpCAM(?)
circulating tumor cells, Sci. Rep. 5 (July) (2015) 12270.

[8] E.A. Punnoose, S.K. Atwal, J.M. Spoerke, H. Savage, A. Pandita, R.F. Yeh, A.
Pirzkall, B.M. Fine, L.C. Amler, D.S. Chen, M.R. Lackner, Molecular biomarker
analyses using circulating tumor cells, PLoS One 5 (September (9)) (2010)
e12517.

[9] T. Yokobori, H. Iinuma, T. Shimamura, S. Imoto, K. Sugimachi, H. Ishii, M.
Iwatsuki, D. Ota, M. Ohkuma, T. Iwaya, N. Nishida, R. Kogo, T. Sudo, F. Tanaka,
K. Shibata, H. Toh, T. Sato, G.F. Barnard, T. Fukagawa, S. Yamamoto, H.
Nakanishi, S. Sasaki, S. Miyano, T. Watanabe, H. Kuwano, K. Mimori, K. Pantel,
M. Mori, Plastin3 is a novel marker for circulating tumor cells undergoing the
epithelial-mesenchymal transition and is associated with colorectal cancer
prognosis, Cancer Res. 73 (April (7)) (2013) 2059–2069.

[10] J.H. Tsai, J.L. Donaher, D.A. Murphy, S. Chau, J. Yang, Spatiotemporal regulation
of epithelial-mesenchymal transition is essential for squamous cell
carcinoma metastasis, Cancer Cell. 22 (December (6)) (2012) 725–736.

[11] T. Brabletz, To differentiate or not–routes towards metastasis, Nat. Rev.
Cancer 12 (May (6)) (2012) 425–436.

[12] A.D. Rhim, E.T. Mirek, N.M. Aiello, A. Maitra, J.M. Bailey, F. McAllister, M.
Reichert, G.L. Beatty, A.K. Rustgi, R.H. Vonderheide, S.D. Leach, B.Z. Stanger,
EMT and dissemination precede pancreatic tumor formation, Cell 148
(January (1–2)) (2012) 349–361.

[13] C. Foroni, M. Broggini, D. Generali, G. Damia, Epithelial-mesenchymal
transition and breast cancer: role, molecular mechanisms and clinical
impact, Cancer Treat Rev. 38 (October (6)) (2012) 689–697.

[14] M. Sato, D.S. Shames, Y. Hasegawa, Emerging evidence of epithelial-to-
mesenchymal transition in lung carcinogenesis, Respirology 17 (October (7))
(2012) 1048–1059.

[15] D. Vergara, B. Merlot, J.P. Lucot, P. Collinet, D. Vinatier, I. Fournier, M. Salzet,
Epithelial-mesenchymal transition in ovarian cancer, Cancer Lett. 291 (May
(1)) (2010) 59–66.

[16] J.T. Nauseef, M.D. Henry, Epithelial-to-mesenchymal transition in prostate
cancer: paradigm or puzzle? Nat. Rev. Urol. 8 (June (8)) (2011) 428–439.

[17] O.O. Ogunwobi, C. Liu, Therapeutic and prognostic importance of epithelial-
mesenchymal transition in liver cancers: insights from experimental models,
Crit. Rev. Oncol. Hematol. 83 (September (3)) (2012) 319–328.

[18] W.L. Tam, H. Lu, J. Buikhuisen, B.S. Soh, E. Lim, F. Reinhardt, Z.J. Wu, J.A. Krall,
B. Bierie, W. Guo, X. Chen, X.S. Liu, M. Brown, B. Lim, R.A. Weinberg, Protein
kinase C a is a central signaling node and therapeutic target for breast cancer
stem cells, Cancer Cell. 24 (September (3)) (2013) 347–364.

[19] M.D. Bullock, A.E. Sayan, G.K. Packham, A.H. Mirnezami, MicroRNAs: critical
regulators of epithelial to mesenchymal (EMT) and mesenchymal to
epithelial transition (MET) in cancer progressiono, Biol. Cell 104 (January (1))
(2012) 3–12.

[20] S.M. Park, A.B. Gaur, E. Lengyel, M.E. Peter, The miR-200 family determines
the epithelial phenotype of cancer cells by targeting the E-cadherin
repressors ZEB1 and ZEB2, Genes Dev. 22 (April (7)) (2008) 894–907.

[21] E.L. Paterson, J. Kazenwadel, A.G. Bert, Y. Khew-Goodall, A. Ruszkiewicz, G.J.
Goodall, Down-regulation of the miRNA-200 family at the invasive front of
colorectal cancers with degraded basement membrane indicates EMT is
involved in cancer progression, Neoplasia 15 (February (2)) (2013) 180–191.

[22] Y. Peng, Y.M. Liu, L.C. Li, L.L. Wang, X.L. Wu, microRNA-503 inhibits gastric
cancer cell growth and epithelial-to-mesenchymal transition, Oncol. Lett. 7
(April (4)) (2014) 1233–1238.

[23] A. Parikh, C. Lee, P. Joseph, S. Marchini, A. Baccarini, V. Kolev, C. Romualdi, R.
Fruscio, H. Shah, F. Wang, G. Mullokandov, D. Fishman, M. D’Incalci, J.
Rahaman, T. Kalir, R.W. Redline, B.D. Brown, G. Narla, A. Difeo, microRNA-
181a has a critical role in ovarian cancer progression through the regulation
of the epithelial-mesenchymal transition, Nat. Commun. 7 (January (5))
(2014) 2977.

[24] J. Cai, H. Guan, L. Fang, Y. Yang, X. Zhu, J. Yuan, J. Wu, M. Li, MicroRNA-374a
activates Wnt/b-catenin signaling to promote breast cancer metastasis, J.
Clin. Invest. 123 (February (2)) (2013) 566–579.

[25] Y. Jing, Z. Han, S. Zhang, Y. Liu, L. Wei, Epithelial-mesenchymal transition in
tumor microenvironment, Cell Biosci. 1 (August (1)) (2011) 29.

[26] Y. Jung, J.K. Kim, Y. Shiozawa, J. Wang, A. Mishra, J. Joseph, J.E. Berry, S. McGee,
E. Lee, H. Sun, J. Wang, T. Jin, H. Zhang, J. Dai, P.H. Krebsbach, E.T. Keller, K.J.
Pienta, R.S. Taichman, Recruitment of mesenchymal stem cells into prostate
tumours promotes metastasis, Nat. Commun. 4 (2013) 1795.

[27] K. Zhang, C.A. Corsa, S.M. Ponik, J.L. Prior, D. Piwnica-Worms, K.W. Eliceiri, P.J.
Keely, G.D. Longmore, The collagen receptor discoidin domain receptor
2 stabilizes SNAIL1 to facilitate breast cancer metastasis, Nat. Cell Biol. 15
(June (6)) (2013) 677–687.

[28] M. Labelle, S. Begum, R.O. Hynes, Direct signaling between platelets and
cancer cells induces an epithelial-mesenchymal-like transition and promotes
metastasis, Cancer Cell. 20 (November (5)) (2011) 576–590.

[29] S. Giampieri, C. Manning, S. Hooper, L. Jones, C.S. Hill, E. Sahai, Localized and
reversible TGFbeta signalling switches breast cancer cells from cohesive to
single cell motility, Nat. Cell Biol. 11 (November (11)) (2009) 1287–1296.

http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0005
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0005
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0005
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0010
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0010
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0010
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0010
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0015
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0015
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0015
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0015
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0015
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0015
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0015
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0020
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0020
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0020
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0020
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0020
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0020
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0025
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0025
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0025
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0025
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0030
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0030
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0030
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0035
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0035
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0035
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0040
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0040
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0040
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0040
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0045
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0045
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0045
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0045
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0045
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0045
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0045
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0050
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0050
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0050
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0055
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0055
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0060
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0060
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0060
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0060
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0065
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0065
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0065
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0070
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0070
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0070
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0075
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0075
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0075
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0080
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0080
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0085
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0085
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0085
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0090
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0090
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0090
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0090
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0095
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0095
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0095
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0095
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0100
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0100
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0100
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0105
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0105
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0105
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0105
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0110
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0110
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0110
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0115
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0115
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0115
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0115
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0115
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0115
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0120
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0120
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0120
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0125
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0125
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0130
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0130
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0130
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0130
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0135
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0135
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0135
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0135
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0140
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0140
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0140
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0145
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0145
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0145


V. Daniele et al. / EuPA Open Proteomics 10 (2016) 31–41 39
[30] R.C. D’Souza, A.M. Knittle, N. Nagaraj, M. van Dinther, C. Choudhary, P. ten
Dijke, M. Mann, K. Sharma, Time-resolved dissection of early
phosphoproteome and ensuing proteome changes in response to TGF-b, Sci.
Signal. 7 (July (335)) (2014) rs5.

[31] T. Tanahashi, S. Osada, A. Yamada, J. Kato, K. Yawata, R. Mori, H. Imai, Y. Sasaki,
S. Saito, Y. Tanaka, K. Nonaka, K. Yoshida, Extracellular signal-regulated
kinase and Akt activation play a critical role in the process of hepatocyte
growth factor-induced epithelial-mesenchymal transition, Int. J. Oncol. 42
(February (2)) (2013) 556–564.

[32] L. Xie, B.K. Law, A.M. Chytil, K.A. Brown, M.E. Aakre, H.L. Moses, ation of the
Erk pathway is required for TGF-beta1-induced EMT in vitro, Neoplasia 6
(September–October (5)) (2004) 603–610.

[33] D. Vergara, C.M. Valente, A. Tinelli, C. Siciliano, V. Lorusso, R. Acierno, G.
Giovinazzo, A. Santino, C. Storelli, M. Maffia, Resveratrol inhibits the
epidermal growth factor-induced epithelial mesenchymal transition in MCF-
7 cells, Cancer Lett. 310 (November (1)) (2011) 1–8.

[34] M.B. Weiss, E.V. Abel, M.M. Mayberry, K.J. Basile, A.C. Berger, A.E. Aplin,
TWIST1 is an ERK1/2 effector that promotes invasion and regulates MMP-
1 expression in human melanoma cells, Cancer Res. 72 (December (24))
(2012) 6382–6392.

[35] B.P. Zhou, J. Deng, W. Xia, J. Xu, Y.M. Li, M. Gunduz, M.C. Hung, Dual regulation
of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-
mesenchymal transition, Nat. Cell Biol. 6 (October (10)) (2004) 931–940.

[36] D. Iliopoulos, C. Polytarchou, M. Hatziapostolou, F. Kottakis, I.G. Maroulakou,
K. Struhl, P.N. Tsichlis, MicroRNAs differentially regulated by Akt isoforms
control EMT and stem cell renewal in cancer cells, Sci. Signal. 2 (October (92))
(2009) ra62.

[37] S.J. Grille, A. Bellacosa, J. Upson, A.J. Klein-Szanto, F. van Roy, W. Lee-Kwon, M.
Donowitz, P.N. Tsichlis, L. Larue, The protein kinase Akt induces epithelial
mesenchymal transition and promotes enhanced motility and invasiveness
of squamous cell carcinoma lines, Cancer Res. 63 (May (9)) (2003) 2172–2178.

[38] M. Jiao, K.J. Nan, Activation of PI3 kinase/Akt/HIF-1a pathway contributes to
hypoxia-induced epithelial-mesenchymal transition and chemoresistance in
hepatocellular carcinoma, Int. J. Oncol. 40 (February (2)) (2012) 461–468.

[39] A. Vichalkovski, E. Gresko, D. Hess, D.F. Restuccia, B.A. Hemmings, PKB/AKT
phosphorylation of the transcription factor Twist-1 at Ser42 inhibits
p53 activity in response to DNA damage, Oncogene 29 (June (24)) (2010)
3554–3565.

[40] S. Julien, I. Puig, E. Caretti, J. Bonaventure, L. Nelles, F. van Roy, C. Dargemont,
A.G. de Herreros, A. Bellacosa, L. Larue, Activation of NF-kappaB by Akt
upregulates Snail expression and induces epithelium mesenchyme
transition, Oncogene. 26 (November (53)) (2007) 7445–7456.

[41] J.I. Yook, X.Y. Li, I. Ota, E.R. Fearon, S.J. Weiss, Wnt-dependent regulation of
the E-cadherin repressor snail, J. Biol. Chem. 280 (March (12)) (2005) 11740–
11748.

[42] Z.Q. Wu, X.Y. Li, C.Y. Hu, M. Ford, C.G. Kleer, S.J. Weiss, Canonical Wnt signaling
regulates Slug activity and links epithelial-mesenchymal transition with
epigenetic Breast cancer 1, early onset (BRCA1) repression, Proc. Natl. Acad.
Sci. U. S. A. 109 (October (41)) (2012) 16654–16659.

[43] Y.W. Chang, Y.J. Su, M. Hsiao, K.C. Wei, W.H. Lin, C.L. Liang, S.C. Chen, J.L. Lee,
Diverse targets of b-catenin during the epithelial-mesenchymal transition
define cancer stem cells and predict disease relapse, Cancer Res. 75 (August
(16)) (2015) 3398–3410.

[44] T. Iwata-Kajihara, H. Sumimoto, N. Kawamura, R. Ueda, T. Takahashi, H.
Mizuguchi, M. Miyagishi, K. Takeda, Y. Kawakami, Enhanced cancer
immunotherapy using STAT3-depleted dendritic cells with high Th1-
inducing ability and resistance to cancer cell-derived inhibitory factors, J.
Immunol. 187 (July (1)) (2011) 27–36.

[45] T. Yaguchi, Y. Goto, K. Kido, H. Mochimaru, T. Sakurai, N. Tsukamoto, C. Kudo-
Saito, T. Fujita, H. Sumimoto, Y. Kawakami, Immune suppression and
resistance mediated by constitutive activation of Wnt/b-catenin signaling in
human melanoma cells, J. Immunol. 189 (September (5)) (2012) 2110–2117.

[46] D. Oosterhoff, S. Lougheed, R. van de Ven, J. Lindenberg, H. van Cruijsen, L.
Hiddingh, J. Kroon, A.J. van den Eertwegh, B. Hangalapura, R.J. Scheper, T.D. de
Gruijl, Tumor-mediated inhibition of human dendritic cell differentiation
and function is consistently counteracted by combined p38 MAPK and
STAT3 inhibition, Oncoimmunology 1 (August (5)) (2012) 649–658.

[47] A. López-Soto, L.H. Zapico, A. Acebes-Huerta, L. Rodrigo, S. Gonzalez,
Regulation of NKG2D signaling during the epithelial-to-mesenchymal
transition, Oncoimmunology 2 (September (9)) (2013) e25820.

[48] R. Lemaire, A. Desmons, J.C. Tabet, R. Day, M. Salzet, I. Fournier, Direct analysis
and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections, J.
Proteome Res. 6 (April (4)) (2007) 1295–1305.

[49] R. Longuespée, C. Boyon, C. Castellier, A. Jacquet, A. Desmons, O. Kerdraon, D.
Vinatier, I. Fournier, R. Day, M. Salzet, The C-terminal fragment of the
immunoproteasome PA28S (Reg alpha) as an early diagnosis and tumor-
relapse biomarker: evidence from mass spectrometry profiling, Histochem.
Cell Biol. 138 (July (1)) (2012) 141–154.

[50] T.J. Dekker, B.D. Balluff, E.A. Jones, C.D. Schöne, M. Schmitt, M. Aubele, J.R.
Kroep, V.T. Smit, R.A. Tollenaar, W.E. Mesker, A. Walch, L.A. McDonnell,
Multicenter matrix-assisted laser desorption/ionization mass spectrometry
imaging (MALDI MSI) identifies proteomic differences in breast-cancer-
associated stroma, J. Proteome Res. 13 (November (11)) (2014) 4730–4738.

[51] X.H. Chen, Z.C. Liu, G. Zhang, W. Wei, X.X. Wang, H. Wang, H.P. Ke, F. Zhang, H.
S. Wang, S.H. Cai, J. Du, TGF-b and EGF induced HLA-I downregulation is
associated with epithelial-mesenchymal transition (EMT) through
upregulation of snail in prostate cancer cells, Mol. Immunol. 65 (May (1))
(2015) 34–42, doi:http://dx.doi.org/10.1016/j.molimm.2014.12.017.

[52] C. Royer, X. Lu, Epithelial cell polarity: a major gatekeeper against cancer?
Cell Death Differ. 18 (September (9)) (2011) 1470–1477.

[53] C.T. Leung, J.S. Brugge, Outgrowth of single oncogene-expressing cells from
suppressive epithelial environments, Nature 482 (February (7385)) (2012)
410–413.

[54] A. Jeanes, C.J. Gottardi, A.S. Yap, Cadherins and cancer: how does cadherin
dysfunction promote tumor progression? Oncogene 27 (November (55))
(2008) 6920–6929.

[55] F.C. Geyer, M. Lacroix-Triki, K. Savage, M. Arnedos, M.B. Lambros, A. MacKay,
R. Natrajan, J.S. Reis-Filho, b-Catenin pathway activation in breast cancer is
associated with triple-negative phenotype but not with CTNNB1 mutation,
Mod. Pathol. 24 (February (2)) (2011) 209–231.

[56] H. Zhang, J. Liu, D. Yue, L. Gao, D. Wang, H. Zhang, C. Wang, Clinical
significance of E-cadherin, b-catenin, vimentin and S100A4 expression in
completely resected squamous cell lung carcinoma, J. Clin. Pathol. 66
(November (11)) (2013) 937–945.

[57] J. Kaur, M. Sawhney, S. DattaGupta, N.K. Shukla, A. Srivastava, P.G. Walfish, R.
Ralhan, Clinical significance of altered expression of b-catenin and E-
cadherin in oral dysplasia and cancer: potential link with ALCAM expression,
PLoS One 8 (June (6)) (2013) e67361.

[58] X.L. Xu, Z.Q. Ling, S.Z. Chen, B. Li, W.H. Ji, W.M. Mao, The impact of E-cadherin
expression on the prognosis of esophageal cancer: a meta-analysis, Dis.
Esophagus 27 (January (1)) (2014) 79–86.

[59] Y. Li, C.Q. Chen, Y.L. He, S.R. Cai, D.J. Yang, W.L. He, J.B. Xu, W.H. Zan, Abnormal
expression of E-cadherin in tumor cells is associated with poor prognosis of
gastric carcinoma, J. Surg. Oncol. 106 (September (3)) (2012) 304–310.

[60] J.1 Fu, L. Qin, T. He, J. Qin, J. Hong, J. Wong, L. Liao, J. Xu, The TWIST/Mi2/NuRD
protein complex and its essential role in cancer metastasis, Cell Res. 21
(February (2)) (2011) 275–289.

[61] G. Moreno-Bueno, E. Cubillo, D. Sarrió, H. Peinado, S.M. Rodríguez-Pinilla, S.
Villa, V. Bolós, M. Jordá, A. Fabra, F. Portillo, J. Palacios, A. Cano, Genetic
profiling of epithelial cells expressing E-cadherin repressors reveals a distinct
role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition,
Cancer Res. 66 (October (19)) (2006) 9543–9556.

[62] D.D. Tran, C.A. Corsa, H. Biswas, R.L. Aft, G.D. Longmore, Temporal and spatial
cooperation of Snail1 and Twist1 during epithelial-mesenchymal transition
predicts for human breast cancer recurrence, Mol. Cancer Res. 9 (December
(12)) (2011) 1644–1657.

[63] S. Dubois-Marshall, J.S. Thomas, D. Faratian, D.J. Harrison, E. Katz, Two
possible mechanisms of epithelial to mesenchymal transition in invasive
ductal breast cancer, Clin. Exp. Metastasis 28 (December (8)) (2011) 811–818.

[64] J. Caramel, E. Papadogeorgakis, L. Hill, G.J. Browne, G. Richard, A. Wierinckx,
G. Saldanha, J. Osborne, P. Hutchinson, G. Tse, J. Lachuer, A. Puisieux, J.H.
Pringle, S. Ansieau, E. Tulchinsky, A switch in the expression of embryonic
EMT-inducers drives the development of malignant melanoma, Cancer Cell
24 (October (4)) (2013) 466–480.

[65] W.R. Luo, S.Y. Li, L.M. Cai, K.T. Yao, High expression of nuclear Snail, but not
cytoplasmic staining, predicts poor survival in nasopharyngeal carcinoma,
Ann. Surg. Oncol. 19 (September (9)) (2012) 2971–2979.

[66] S. Muenst, S. Däster, E.C. Obermann, R.A. Droeser, W.P. Weber, U. von Holzen,
F. Gao, C. Viehl, D. Oertli, S.D. Soysal, Nuclear expression of snail is an
independent negative prognostic factor in human breast cancer, Dis. Markers
35 (5) (2013) 337–344.

[67] A. Jouppila-Mättö, M. Närkiö-Mäkelä, Y. Soini, M. Pukkila, R. Sironen, H.
Tuhkanen, A. Mannermaa, V.M. Kosma, Twist and snai1 expression in
pharyngeal squamous cell carcinoma stroma is related to cancer progression,
BMC Cancer 11 (August) (2011) 350.

[68] D. Gasparotto, J. Polesel, A. Marzotto, R. Colladel, S. Piccinin, P. Modena, A.
Grizzo, S. Sulfaro, D. Serraino, L. Barzan, C. Doglioni, R. Maestro,
Overexpression of TWIST2 correlates with poor prognosis in head and neck
squamous cell carcinomas, Oncotarget 2 (December (12)) (2011) 1165–1175.

[69] S.D. da Silva, M.A. Alaoui-Jamali, F.A. Soares, D.M. Carraro, H.P. Brentani, M.
Hier, S.R. Rogatto, L.P. Kowalski, TWIST1 is a molecular marker for a poor
prognosis in oral cancer and represents a potential therapeutic target, Cancer
(October) (2013), doi:http://dx.doi.org/10.1002/cncr.28404.

[70] I. Gomez, C. Peña, M. Herrera, C. Muñoz, M.J. Larriba, V. Garcia, G. Dominguez,
J. Silva, R. Rodriguez, A. Garcia de Herreros, F. Bonilla, J.M. Garcia, TWIST1 is
expressed in colorectal carcinomas and predicts patient survival, PLoS One 6
(March (3)) (2011) e18023.

[71] A. Wushou, J. Hou, Y.J. Zhao, Z.M. Shao, Twist-1 up-regulation in carcinoma
correlates to poor survival, Int. J. Mol. Sci. 15 (November (12)) (2014) 21621–
21630.

[72] A. Jouppila-Mättö, M. Närkiö-Mäkelä, Y. Soini, M. Pukkila, R. Sironen, H.
Tuhkanen, A. Mannermaa, V.M. Kosma, Twist and snai1 expression in
pharyngeal squamous cell carcinoma stroma is related to cancer progression,
BMC Cancer 11 (August) (2011) 350.

[73] U. Cavallaro, G. Christofori, Cell adhesion and signalling by cadherins and Ig-
CAMs in cancer, Nat. Rev. Cancer 4 (February (2)) (2004) 118–132.

[74] X. Qian, A. Anzovino, S. Kim, K. Suyama, J. Yao, J. Hulit, G. Agiostratidou, N.
Chandiramani, H.M. McDaid, C. Nagi, H.W. Cohen, G.R. Phillips, L. Norton, R.B.
Hazan, N-cadherin/FGFR promotes metastasis through epithelial-to-
mesenchymal transition and stem/progenitor cell-like properties, Oncogene
33 (June (26)) (2014) 3411–3421, doi:http://dx.doi.org/10.1038/onc.2013.310.

http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0150
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0150
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0150
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0150
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0155
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0155
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0155
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0155
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0155
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0160
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0160
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0160
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0165
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0165
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0165
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0165
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0170
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0170
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0170
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0170
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0175
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0175
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0175
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0180
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0180
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0180
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0180
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0185
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0185
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0185
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0185
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0190
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0190
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0190
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0195
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0195
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0195
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0195
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0200
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0200
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0200
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0200
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0205
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0205
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0205
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0210
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0210
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0210
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0210
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0215
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0215
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0215
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0215
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0220
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0220
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0220
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0220
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0220
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0225
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0225
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0225
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0225
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0230
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0230
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0230
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0230
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0230
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0235
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0235
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0235
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0240
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0240
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0240
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0245
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0245
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0245
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0245
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0245
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0250
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0250
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0250
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0250
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0250
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0255
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0255
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0255
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0255
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0255
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0260
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0260
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0265
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0265
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0265
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0270
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0270
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0270
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0275
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0275
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0275
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0275
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0280
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0280
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0280
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0280
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0285
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0285
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0285
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0285
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0290
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0290
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0290
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0295
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0295
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0295
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0300
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0300
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0300
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0305
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0305
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0305
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0305
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0305
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0310
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0310
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0310
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0310
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0315
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0315
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0315
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0320
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0320
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0320
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0320
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0320
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0325
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0325
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0325
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0330
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0330
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0330
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0330
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0335
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0335
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0335
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0335
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0340
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0340
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0340
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0340
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0345
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0345
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0345
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0345
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0350
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0350
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0350
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0350
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0355
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0355
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0355
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0360
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0360
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0360
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0360
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0365
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0365
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0370
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0370
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0370
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0370
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0370


40 V. Daniele et al. / EuPA Open Proteomics 10 (2016) 31–41
[75] L. Hui, S. Zhang, X. Dong, D. Tian, Z. Cui, X. Qiu, Prognostic significance of twist
and N-cadherin expression in NSCLC, PLoS One 8 (April (4)) (2013) e62171.

[76] I. Lascombe, A. Clairotte, S. Fauconnet, S. Bernardini, H. Wallerand, B.
Kantelip, H. Bittard, N-cadherin as a novel prognostic marker of progression
in superficial urothelial tumors, Clin. Cancer Res. 12 (May (9)) (2006) 2780–
2787.

[77] D.I. Domenico M, G.M. Pierantoni, A. Feola, F. Esposito, L. Laino, D.E. Rosa, A.
Rullo, M. Mazzotta, M. Martano, F. Sanguedolce, L. Perillo, L. D'Angelo, S.
Papagerakis, S. Tortorella, P. Bufo, L. Lo Muzio, G. Pannone, A. Santoro,
Prognostic significance of N-cadherin expression in oral squamous cell
carcinoma, Anticancer Res. 31 (December (12)) (2011) 4211–4218.

[78] D. Vergara, F. Chiriacò, R. Acierno, M. Maffia, Proteomic map of peripheral
blood mononuclear cells, Proteomics 8 (May (10)) (2008) 2045–2051.

[79] S. Singh, S. Sadacharan, S. Su, A. Belldegrun, S. Persad, G. Singh,
Overexpression of vimentin: role in the invasive phenotype in an androgen-
independent model of prostate cancer, Cancer Res. 63 (May (9)) (2003) 2306–
2311.

[80] V. Vasko, A.V. Espinosa, W. Scouten, H. He, H. Auer, S. Liyanarachchi, A. Larin,
V. Savchenko, G.L. Francis, A. de la Chapelle, M. Saji, M.D. Ringel, Gene
expression and functional evidence of epithelial-to-mesenchymal transition
in papillary thyroid carcinoma invasion, Proc. Natl. Acad. Sci. U. S. A. 104
(February (8)) (2007) 2803–2808.

[81] R.A. Craven, A.J. Stanley, S. Hanrahan, J. Dods, R. Unwin, N. Totty, P. Harnden, I.
Eardley, P.J. Selby, R.E. Banks, Proteomic analysis of primary cell lines
identifies protein changes present in renal cell carcinoma, Proteomics 6 (May
(9)) (2006) 2853–2864.

[82] M. Wu, X. Bai, G. Xu, J. Wei, T. Zhu, Y. Zhang, Q. Li, P. Liu, A. Song, L. Zhao, C.
Gang, Z. Han, S. Wang, J. Zhou, Y. Lu, D. Ma, Proteome analysis of human
androgen-independent prostate cancer cell lines: variable metastatic
potentials correlated with vimentin expression, Proteomics 7 (June (12))
(2007) 1973–1983.

[83] M. El Ayed, D. Bonnel, R. Longuespée, C. Castelier, J. Franck, D. Vergara, A.
Desmons, A. Tasiemski, A. Kenani, D. Vinatier, R. Day, I. Fournier, M. Salzet,
MALDI imaging mass spectrometry in ovarian cancer for tracking,
identifying, and validating biomarkers, Med. Sci. Monit. 16 (August (8))
(2010) BR233–45.

[84] S. Otsuki, M. Inokuchi, M. Enjoji, T. Ishikawa, Y. Takagi, K. Kato, H. Yamada, K.
Kojima, K. Sugihara, Vimentin expression is associated with decreased
survival in gastric cancer, Oncol. Rep. 25 (May (5)) (2011) 1235–1242.

[85] A. Satelli, S. Li, Vimentin in cancer and its potential as a molecular target for
cancer therapy, Cell. Mol. Life Sci. 68 (September (18)) (2011) 3033–3046.

[86] L.K. Liu, X.Y. Jiang, X.X. Zhou, D.M. Wang, X.L. Song, H.B. Jiang, Upregulation of
vimentin and aberrant expression of E-cadherin/beta-catenin complex in
oral squamous cell carcinomas: correlation with the clinicopathological
features and patient outcome, Mod. Pathol. 23 (February (2)) (2010) 213–224.

[87] N. Yamashita, E. Tokunaga, H. Kitao, Y. Hisamatsu, K. Taketani, S. Akiyoshi, S.
Okada, S. Aishima, M. Morita, Y. Maehara, Vimentin as a poor prognostic
factor for triple-negative breast cancer, J. Cancer Res. Clin. Oncol. 139 (May
(5)) (2013) 739–746.

[88] P. Karihtala, P. Auvinen, S. Kauppila, K.M. Haapasaari, A. Jukkola-Vuorinen, Y.
Soini, Vimentin, zeb1 and Sip1 are up-regulated in triple-negative and basal-
like breast cancers: association with an aggressive tumour phenotype, Breast
Cancer Res. Treat. 138 (February (1)) (2013) 81–90.

[89] F. Richardson, G.D. Young, R. Sennello, J. Wolf, G.M. Argast, P. Mercado, A.
Davies, D.M. Epstein, B. Wacker, The evaluation of E-Cadherin and vimentin
as biomarkers of clinical outcomes among patients with non-small cell lung
cancer treated with erlotinib as second- or third-line therapy, Anticancer Res.
32 (February (2)) (2012) 537–552.

[90] P.J. Johnson, W.M. Melia, M.K. Palmer, B. Portmann, R. Williams, Relationship
between serum alpha-foetoprotein, cirrhosis and survival in hepatocellular
carcinoma, Br. J. Cancer 44 (October (4)) (1981) 502–505.

[91] K. Kojima, A. Takata, C. Vadnais, M. Otsuka, T. Yoshikawa, M. Akanuma, Y.
Kondo, Y.J. Kang, T. Kishikawa, N. Kato, Z. Xie, W.J. Zhang, H. Yoshida, M.
Omata, A. Nepveu, K. Koike, MicroRNA122 is a key regulator of a-fetoprotein
expression and influences the aggressiveness of hepatocellular carcinoma,
Nat. Commun. 2 (June) (2011) 338.

[92] W.C. Tsai, S.D. Hsu, C.S. Hsu, T.C. Lai, S.J. Chen, R. Shen, Y. Huang, H.C. Chen, C.
H. Lee, T.F. Tsai, M.T. Hsu, J.C. Wu, H.D. Huang, M.S. Shiao, M. Hsiao, A.P. Tsou,
MicroRNA-plays a critical role in liver homeostasis and
hepatocarcinogenesis, J. Clin. Invest. 122 (August (8)) (2012) 2884–2897.

[93] S. Sun, R.T. Poon, N.P. Lee, C. Yeung, K.L. Chan, I.O. Ng, P.J. Day, J.M. Luk,
Proteomics of hepatocellular carcinoma: serum vimentin as a surrogate
marker for small tumors (< or = 2 cm), J. Proteome Res. 9 (April (4)) (2010)
1923–1930.

[94] D.W. Kufe, Mucins in cancer: function, prognosis and therapy, Nat. Rev.
Cancer 9 (December (12)) (2009) 874–885.

[95] R.C. Bast Jr., T.L. Klug, E. St John, E. Jenison, J.M. Niloff, H. Lazarus, R.S.
Berkowitz, T. Leavitt, C.T. Griffiths, L. Parker, V.R. Zurawski Jr., R.C. Knapp, A
radioimmunoassay using a monoclonal antibody to monitor the course of
epithelial ovarian cancer, N. Engl. J. Med. 309 (October (15)) (1983) 883–887.

[96] V.R. Zurawski Jr., R.C. Knapp, N. Einhorn, P. Kenemans, R. Mortel, K. Ohmi, R.C.
Bast Jr., R.E. Ritts Jr., G. Malkasian, An initial analysis of preoperative serum CA
125 levels in patients with early stage ovarian carcinoma, Gynecol. Oncol. 30
(May (1)) (1988) 7–14.

[97] C. Thériault, M. Pinard, M. Comamala, M. Migneault, J. Beaudin, I. Matte, M.
Boivin, A. Piché, C. Rancourt, MUC16 (CA125) regulates epithelial ovarian
cancer cell growth, tumorigenesis and metastasis6 (CA125) regulates
epithelial ovarian cancer cell growth, tumorigenesis and metastasis, Gynecol.
Oncol. 121 (June (3)) (2011) 434–443.

[98] R.W. Tothill, A.V. Tinker, J. George, R. Brown, S.B. Fox, S. Lade, D.S. Johnson, M.
K. Trivett, D. Etemadmoghadam, B. Locandro, N. Traficante, S. Fereday, J.A.
Hung, Y.E. Chiew, I. Haviv, Australian Ovarian Cancer Study Group, D. Gertig,
A. DeFazio, D.D. Bowtell, Novel molecular subtypes of serous and
endometrioid ovarian cancer linked to clinical outcome, Clin. Cancer Res. 14
(August (16)) (2008) 5198–5208.

[99] A.S. Mall, Analysis of mucins: role in laboratory diagnosis, J. Clin. Pathol. 1
(September (9)) (2008) 1018–1024.

[100] S. Wang, X. Chen, M. Tang, Quantitative assessment of the diagnostic role of
MUC1 in pancreatic ductal adenocarcinoma, Tumour Biol. 35 (September (9))
(2014) 9101–9109.

[101] L.D. Roy, M. Sahraei, D.B. Subramani, D. Besmer, S. Nath, T.L. Tinder, E. Bajaj, K.
Shanmugam, Y.Y. Lee, S.I. Hwang, S.J. Gendler, P. Mukherjee, MUC1 enhances
invasiveness of pancreatic cancer cells by inducing epithelial to
mesenchymal transition, Oncogene 30 (March (12)) (2011) 1449–1459.

[102] H. Rajabi, M. Alam, H. Takahashi, A. Kharbanda, M. Guha, R. Ahmad, D. Kufe,
MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and
epithelial-mesenchymal transition, Oncogene 33 (March (27)) (2014) 1680–
1689.

[103] P. Gold, S.O. Freedman, Demonstration of tumor-specific antigens in human
colonic carcinomata by immunological tolerance and adsorption techniques,
J. Exp. Med. 121 (March (1)) (1965) 439–462.

[104] N. Beauchemin, A. Arabzadeh, Carcinoembryonic antigen-related cell
adhesion molecules (CEACAMs) in cancer progression and metastasis, Cancer
Metastasis Rev. 32 (December (3–4)) (2013) 643–671.

[105] S. Hammarström, The carcinoembryonic antigen (CEA) family: structures,
suggested functions and expression in normal and malignant tissues, Semin.
Cancer Biol. 9 (April (2)) (1999) 67–81.

[106] J. Chen, Q. Li, Y. An, N. Lv, X. Xue, J. Wei, K. Jiang, J. Wu, W. Gao, Z. Qian, C. Dai, Z.
Xu, Y. Miao, CEACAM6 induces epithelial-mesenchymal transition and
mediates invasion and metastasis in pancreatic cancer, Int. J. Oncol. 43
(September (3)) (2013) 877–885.

[107] S. Saadatmand, E.M. de Kruijf, A. Sajet, N.G. Dekker-Ensink, J.G. van Nes, H.
Putter, V.T. Smit, C.J. van de Velde, G.J. Liefers, P.J. Kuppen, Expression of cell
adhesion molecules and prognosis in breast cancer, Br. J. Surg. 100 (January
(2)) (2013) 252–260.

[108] S.A. Whelan, J. He, M. Lu, P. Souda, R.E. Saxton, K.F. Faull, J.P. Whitelegge, H.R.
Chang, Mass spectrometry (LC–MS/MS) identified proteomic biosignatures
of breast cancer in proximal fluid, J. Proteome Res. 11 (October (10)) (2012)
5034–5045.

[109] R.A. Mathias, B. Wang, H. Ji, E.A. Kapp, R.L. Moritz, H.J. Zhu, R.J. Simpson,
Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals
extracellular modulators of epithelial-mesenchymal transition, J. Proteome
Res. 8 (June (6)) (2009) 2827–2837.

[110] C.H. Schrader, M. Kolb, K. Zaoui, C. Flechtenmacher, N. Grabe, K.J. Weber, T.
Hielscher, P.K. Plinkert, J. Hess, Kallikrein-related peptidase 6 regulates
epithelial-to-mesenchymal transition and serves as prognostic biomarker for
head and neck squamous cell carcinoma patients, Mol. Cancer 14 (May (1))
(2015) 107.

[111] S. Thomson, F. Petti, I. Sujka-Kwok, P. Mercado, J. Bean, M. Monaghan, S.L.
Seymour, G.M. Argast, D.M. Epstein, J.D. Haley, A systems view of epithelial-
mesenchymal transition signaling states, Clin. Exp. Metastasis 28 (February
(2)) (2011) 137–155.

[112] J. Farrell, C. Kelly, J. Rauch, K. Kida, A. García-Muñoz, N. Monsefi, B. Turriziani,
C. Doherty, J.P. Mehta, D. Matallanas, J.C. Simpson, W. Kolch, A. von
Kriegsheim, HGF induces epithelial-to-mesenchymal transition by
modulating the mammalian hippo/MST2 and ISG15 pathways, J. Proteome
Res. 13 (June (6)) (2014) 2874–2886.

[113] K.R. Fischer, A. Durrans, S. Lee, J. Sheng, F. Li, S.T. Wong, H. Choi, T. El Rayes, S.
Ryu, J. Troeger, R.F. Schwabe, L.T. Vahdat, N.K. Altorki, V. Mittal, D. Gao,
Epithelial-to-mesenchymal transition is not required for lung metastasis but
contributes to chemoresistance, Nature (November) (2015), doi:http://dx.
doi.org/10.1038/nature15748.

[114] X. Zheng, J.L. Carstens, J. Kim, M. Scheible, J. Kaye, H. Sugimoto, C.C. Wu, V.S.
LeBleu, R. Kalluri, Epithelial-to-mesenchymal transition is dispensable for
metastasis but induces chemoresistance in pancreatic cancer, Nature
(November) (2015), doi:http://dx.doi.org/10.1038/nature16064.

[115] Y. Kim, D. Han, H. Min, J. Jin, E.C. Yi, Y. Kim, Comparative proteomic profiling of
pancreatic ductal adenocarcinoma cell lines, Mol. Cells 37 (December (12))
(2014) 888–898.

[116] J. He, S.A. Whelan, M. Lu, D. Shen, D.U. Chung, R.E. Saxton, K.F. Faull, J.P.
Whitelegge, H.R. Chang, Proteomic-based biosignatures in breast cancer
classification and prediction of therapeutic response, Int. J. Proteomics 2011
(2011) 896476.

[117] D. Vergara, P. Simeone, P. del Boccio, C. Toto, D. Pieragostino, A. Tinelli, R.
Acierno, S. Alberti, M. Salzet, G. Giannelli, P. Sacchetta, M. Maffia,
Comparative proteome profiling of breast tumor cell lines by gel
electrophoresis and mass spectrometry reveals an epithelial mesenchymal
transition associated protein signature, Mol. Biosyst. 9 (June (6)) (2013)
1127–1138.

[118] M. Sobral-Leite, J. Wesseling, V.T. Smit, H. Nevanlinna, M.H. van Miltenburg, J.
Sanders, I. Hofland, F.M. Blows, P. Coulson, G. Patrycja, J.H. Schellens, R.
Fagerholm, P. Heikkilä, K. Aittomäki, C. Blomqvist, E. Provenzano, H.R. Ali, J.

http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0375
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0375
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0380
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0380
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0380
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0380
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0385
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0385
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0385
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0385
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0385
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0390
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0390
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0395
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0395
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0395
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0395
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0400
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0400
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0400
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0400
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0400
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0405
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0405
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0405
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0405
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0410
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0410
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0410
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0410
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0410
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0415
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0415
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0415
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0415
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0415
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0420
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0420
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0420
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0425
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0425
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0430
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0430
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0430
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0430
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0435
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0435
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0435
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0435
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0440
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0440
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0440
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0440
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0445
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0445
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0445
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0445
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0445
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0450
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0450
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0450
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0455
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0455
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0455
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0455
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0455
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0460
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0460
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0460
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0460
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0465
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0465
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0465
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0465
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0470
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0470
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0475
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0475
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0475
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0475
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0480
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0480
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0480
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0480
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0485
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0485
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0485
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0485
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0485
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0490
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0490
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0490
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0490
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0490
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0490
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0495
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0495
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0500
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0500
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0500
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0505
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0505
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0505
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0505
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0510
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0510
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0510
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0510
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0515
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0515
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0515
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0520
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0520
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0520
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0525
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0525
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0525
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0530
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0530
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0530
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0530
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0535
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0535
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0535
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0535
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0540
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0540
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0540
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0540
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0545
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0545
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0545
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0545
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0550
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0550
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0550
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0550
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0550
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0555
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0555
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0555
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0555
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0560
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0560
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0560
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0560
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0560
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0565
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0565
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0565
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0565
http://dx.doi.org/10.1038/nature15748
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0570
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0570
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0570
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0570
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0575
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0575
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0575
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0580
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0580
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0580
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0580
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0585
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0585
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0585
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0585
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0585
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0585
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0590
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0590
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0590


V. Daniele et al. / EuPA Open Proteomics 10 (2016) 31–41 41
Figueroa, M. Sherman, J. Lissowska, A. Mannermaa, V. Kataja, V.M. Kosma, J.
M. Hartikainen, K.A. Phillips, kConFab/AOCS Investigators, F.J. Couch, J.E.
Olson, C. Vachon, D. Visscher, H. Brenner, K. Butterbach, V. Arndt, B.
Holleczek, M.J. Hooning, A. Hollestelle, J.W. Martens, C.H. van Deurzen, B. van
de Water, A. Broeks, J. Chang-Claude, G. Chenevix-Trench, D.F. Easton, P.D.
Pharoah, M. García-Closas, M. de Graauw, M.K. Schmidt, Annexin
A1 expression in a pooled breast cancer series: association with tumor
subtypes and prognosis, BMC Med. 13 (July) (2015) 156.

[119] R.T. Lawrence, E.M. Perez, D. Hernández, C.P. Miller, K.M. Haas, H.Y. Irie, S.I.
Lee, C.A. Blau, J. Villén, The proteomic landscape of triple-negative breast
cancer, Cell Rep. 11 (April (4)) (2015) 630–644.

[120] D. Vergara, P. Simeone, D. Latorre, F. Cascione, S. Leporatti, M. Trerotola, A.M.
Giudetti, L. Capobianco, P. Lunetti, A. Rizzello, R. Rinaldi, S. Alberti, M. Maffia,
Proteomics analysis of E-cadherin knockdown in epithelial breast cancer
cells, J. Biotechnol. 202 (May) (2015) 3–11.

[121] Z. Guo, L.J. Neilson, H. Zhong, P.S. Murray, S. Zanivan, R. Zaidel-Bar, E-cadherin
interactome complexity and robustness resolved by quantitative proteomics,
Sci. Signal. 7 (December (354)) (2014) rs7.
[122] T.Z. Tan, Q.H. Miow, Y. Miki, T. Noda, S. Mori, R.Y. Huang, J.P. Thiery, Epithelial-
mesenchymal transition spectrum quantification and its efficacy in
deciphering survival and drug responses of cancer patients, EMBO Mol. Med.
6 (September (10)) (2014) 1279–1293.

[123] M. Sjöström, R. Ossola, T. Breslin, O. Rinner, L. Malmström, A. Schmidt, R.
Aebersold, J. Malmström, E. Niméus, A Combined shotgun and targeted mass
spectrometry strategy for breast cancer biomarker discovery, J. Proteome Res.
14 (July (7)) (2015) 2807–2818.

[124] K.P. Law, Y.P. Lim, Recent advances in mass spectrometry: data independent
analysis and hyper reaction monitoring, Expert Rev. Proteomics 10
(December (6)) (2013) 551–566.

[125] R. Bruderer, O.M. Bernhardt, T. Gandhi, S.M. Miladinovi�c, L.Y. Cheng, S.
Messner, T. Ehrenberger, V. Zanotelli, Y. Butscheid, C. Escher, O. Vitek, O.
Rinner, L. Reiter, Extending the limits of quantitative proteome profiling with
data-independent acquisition and application to acetaminophen-treated
three-dimensional liver microtissues, Mol. Cell. Proteomics 14 (May (5))
(2015) 1400–1410.

http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0590
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0590
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0590
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0590
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0590
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0590
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0590
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0590
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0595
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0595
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0595
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0600
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0600
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0600
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0600
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0605
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0605
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0605
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0610
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0610
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0610
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0610
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0615
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0615
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0615
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0615
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0620
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0620
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0620
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0625
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0625
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0625
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0625
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0625
http://refhub.elsevier.com/S2212-9685(16)30003-4/sbref0625

	Translating epithelial mesenchymal transition markers into the clinic: Novel insights from proteomics
	1 The EMT process
	2 Factors driving EMT activation
	3 Immune response and EMT
	4 Clinical relevance of genes/proteins associated with EMT
	4.1 Clinical significance of combined detection of FDA serum tumor markers and EMT markers

	5 EMT markers in biological fluids
	6 Using proteomics to dissect EMT complexity
	7 Conclusions
	Conflict of interest
	Acknowledgements
	References


