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Abstract
Researchers are seeking cost-effective solutions for management and analysis of large-scale genotypic and phenotypic data. Open-source
software is uniquely positioned to fill this need through user-focused, crowd-sourced development. Tripal, an open-source toolkit for developing
biological data web portals, uses the GMOD Chado database schema to achieve flexible, ontology-driven storage in PostgreSQL. Tripal also aids
research-focused web portals in providing data according to findable, accessible, interoperable, reusable (FAIR) principles. We describe here a
fully relational PostgreSQL solution to handle large-scale genotypic and phenotypic data that is implemented as a collection of freely available,
open-source modules. These Tripal extension modules provide a holistic approach for importing, storage, display and analysis within a relational
database schema. Furthermore, they embody the Tripal approach to FAIR data by providing multiple search tools and ensuring metadata is fully
described and interoperable. Our solution focuses on data integrity, as well as optimizing performance to provide a fully functional system that
is currently being used in the production of Tripal portals for crop species. We fully describe the implementation of our solution and discuss why
a PostgreSQL-powered web portal provides an efficient environment for researcher-driven genotypic and phenotypic data analysis.

Introduction
The critical relationship between genotype and phenotype
has been understood since the birth of the field of genet-
ics. The advent of genome-wide association studies (GWAS)
has allowed researchers to build entire catalogues of single
nucleotide polymorphisms (SNPs) that can be associated with
various traits of interest. The deluge of genotypic and phe-
notypic data that researchers currently have to deal with
demands a single ‘data warehouse’ for fast, efficient analysis
and storage. There have been multiple efforts to success-
fully manage large data systems (1–6), but many are at the
expense of normalization of data or scalability. In particular,
Morales et al. (6) propose an open-source PostgreSQL solu-
tion that links relational phenotypic data with non-relational
genotypic data in a single database. However, a limitation
of their solution is lengthy query times if a particular query
has not been executed before. We have been unable to find
an optimal open-source solution that relies primarily on the
relational database model for both storage and querying of
large-scale biological datasets generated fromGWAS, without
compromising either performance or data integrity.

Unlike genotypic data, phenotypic data that are captured
by individual data collectors can be diverse in terms of assign-
ing values and preferred data formats. While we may be
tempted to constrain data collection to ensure consistency of
format and use of ontologies, this could result in less accu-
rate trait descriptions and methodology. Therefore, a balance
between flexible data input, maximum metadata collection
and consistent formats is needed so data can be reusable in

the future. Methods for recording phenotypic data collection
are continually evolving, ranging from a physical notebook
to web applications on a phone or tablet. In the case of
plant breeding, one option is Field Book (7), an open-source
tablet-based application for recording data while in the field,
offering rapid data collection and increased data integrity in
comparison to transcribing paper notebooks for a database.
Field Book exports data using the specification outlined by
BrAPI (8), which standardizes the exchange of breeding data
between databases and applications. Ideally, this synergy
between BrAPI and Field Bookwould provide seamless import
of phenotypic data; however, collecting phenotypic data
through web apps is not yet universally adopted. Incorpora-
tion of such technologies into the data collection workflow is
also slow due to the learning curve and unwillingness to lose
important features already provided by spreadsheet software.
Furthermore, most individuals in academia are highly familiar
with spreadsheet software and utilizing it as a data-recording
tool integrates well with downstream analysis. It also provides
great flexibility, such as highlighting important data points
or defining methods or scales alongside the data. For exam-
ple, during a typical data collector workflow, one might wish
to mark a measurement to double check later; spreadsheets
facilitate this, whereas some web applications may not. For-
tunately, most applications can be exported into tabular text
formats similar to those exported by spreadsheet software.
This means that database systems can be designed to support
multiple methods of data collection by focusing on the simi-
larities between tabular text formats, and research groups can
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opt for a hybrid model of data collection or transition as a
whole between methods.

In addition to providing a fast, scalable and secure option
for managing large biological datasets, it is also essential to
take into account user requirements and skill sets with respect
to computational data analysis. While some researchers will
self-educate in the realm of command-line interfacing and
shell scripting, others feel that it compounds the scientific
workload they are already undertaking. In addition, many do
not have access to a high-performance computation cluster,
causing them to resort to running analyses on their public or
private workstations which can tie up their system’s resources
for days. Some of these challenges can be overcome by provid-
ing a friendly, intuitive interface to analysis tools and searches.
A well-designed Graphical User Interface (GUI) can drasti-
cally reduce a user’s learning curve and provide a sense of
familiarity within their operating system’s environment (9). If
the user is expected to install the software, however, they may
still run into the issue of having limited resources available on
their workstation. GUI software is comparatively slower to
command-line analyses due to a greater demand on disk and
memory. Additionally, install-only software requires the user
to diligently monitor for the latest updates to capitalize on
general improvements and new features.

To counteract the limitations of a user’s own computer
hardware on storage and computation, a developer can opt
to use the web to serve a friendly and dynamic client-side
interface with the backend of a dedicated server. Websites
can be accessed from anywhere with an internet connection
by anyone, with the potential to password-protect some or all
content. Use of the web lends itself to accessibility, portability,
manipulation and analysis of data through searches, export
and integration of metadata, all with simple access to the
internet and a browser. This can facilitate meeting findable,
accessible, interoperable and reusable (FAIR) data princi-
ples (10) and thus becomes a highly advantageous option to
gain the greatest potential from both the data itself and the
researchers that do the analyses.

The use of a content management system, such as Drupal
(11), further benefits the developer by allowing them to shift
focus from the overhead of managing users and website secu-
rity, to the content and user experience. Tripal (12) extends
Drupal with added functionality for biology-based web por-
tals including specialized displays, data management tools
and data importers. Tripal stores all biological data in the
GMOD Chado schema (13) which has a focus on ontology-
driven metadata and generic data categories (i.e. features,
stocks and analyses) with rich linking tables supporting flex-
ible interconnectivity of data. This generic, modular schema
includes the Natural Diversity Module (14) to provide flex-
ible support for genotypic, phenotypic and field collections.
As described in Jung et al. (14), the Chado Natural Diver-
sity module requires 10 tables to describe a genotypic data
point with multiple records per table to describe important
metadata. This becomes a serious limitation in the case of
large genotypic datasets as the number of records involved
degrades performance through multiple table joins. Morales
et al. (6) uses the Chado Natural Diversity tables as a rela-
tional link to genotypic data primarily stored non-relationally
within the same database. While this improvement provides
concrete links between genotypic and phenotypic data and
reduces the number of records needed, it still requires the same

number of table joins to fully describe the data and does not
take advantage of the ontology-driven nature of Chado for
metadata storage.

Chado is designed to use PostgreSQL (15), an open-source
relational database model that is rich in features and also sta-
ble and reliable as a result of being atomicity, consistency,
isolation and durability (ACID)-compliant. ACID compli-
ance ensures that, if all principles are met, data housed in
a database will retain validity regardless of whether multi-
ple transactions are occurring at once or if there is a power
failure or disruption (16). Chado uses constraints within Post-
greSQL to ensure data types, relationships and boundaries
are respected. However, relational databases are known to be
demanding on storage requirements and difficult to maintain
without comprehensive knowledge of the database structure
(3). Complex schema such as Chado with many interrelated
tables can require extremely long queries to extract datasets
from; however, this can be mitigated through the develop-
ment of targeted, efficient indices. Traditionally, genotypic
data are represented in matrix format and many solutions
attempt to mimic this format in PostgreSQL (1–6, 17). While
the flexibility of array- or JSON-based data types in Post-
greSQL provides an intuitive way to store raw data points,
using these as the core of a storage model has the conse-
quence of moving outside the data constraints and ontology
enforcement in Chado. Thus, to extend Chado for effi-
cient storage of genotypic data with strong data integrity, it
is important to extend the current relational principles for
core data where non-relational data types play a secondary
role as appropriate. Here, we investigate and propose an
all-encompassing efficient storage, data loading and access
solution for genotypic and phenotypic data in biological web
portals using Tripal and the Chado schema. Optimization of
indices and minor adjustments to the existing Chado data
model has enabled us to provide a performant and scalable
option for dozens of web portals that are a part of the Tripal
community.

Implementation
The functionality described here has been packaged as three
Tripal modules: ND Genotypes (https://git.io/fpH7L), Geno-
types Loader (https://git.io/fpH7Y) and Analyzed Phenotypes
(https://git.io/fpH7l). Deployment is on a Tripal instance with
data stored exclusively in PostgreSQL. Data are accessed
through the Tripal web interface in the form of searches, tools
and integration on genetic marker, variant and germplasm
pages. These modules are tightly integrated with Drupal
permissions to provide secure access control.

Data model
Genotypic data are stored in PostgreSQL using the GMOD
Chado schema (13) with minor, backward-compatible
improvements. All metadata documenting projects, genetic
markers, sequence variants and germplasm data are stored in
their respective unaltered Chado data tables. The genotypic
calls are stored in a new linker table joining the project, mark-
ers, variants and germplasm with the allele call (Figure 1).
This method of gathering all the relevant relational pieces
into a single record drastically cuts down on storage space
while the use of foreign keys ensures referential integrity (18).

https://git.io/fpH7L
https://git.io/fpH7Y
https://git.io/fpH7l
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Figure 1. Genotypic Data Model. The entity–relationship diagram describes the relevant sections of the Chado schema for storage of genotypic data.
The genotype_call table (highlighted in orange) is a backward-compatible enhancement to the Chado schema, whereas all the supporting tables match
the generic Chado specification. The genotype_call table gathers together all the metadata for a genotypic data point into a single record through the
use of foreign keys.

Using a linking table fits well with the Chado model while
using at the same time uses fewer tables than the Chado Nat-
ural Diversity module leading to a more compact storage
solution specific to genotypic data. The genotype_call table
also contains a JSONB metadata column for efficient, flexi-
ble storage of genotype properties (e.g. quality metrics). This
flexibility allows us to store all genotype properties supplied to
reflect the Variant Call Format (VCF) (19) specification which
allows complete flexibility in genotype properties available.
The allele call indicated in the genotype field is translated to
nucleotides and stored in the chado genotype table to ensure
the call is fully specified within the relational schema. In this
way, we take advantage of modern PostgreSQL (i.e. version
9.4+) to store the metadata available for our genotypic data
efficiently and flexibly while still keeping the core genotypic
data normalized. This is in direct contrast to existing solutions
for high-density genotypic data (1–6).

Our approach prioritizes data integrity and full metadata
preservation; however, as a web client application, query
speed is also critical. With this in mind, we created two
generic materialized views (Figure 2) with the intent of min-
imizing query JOINS, while still supporting very different
queries with a single materialized view. This approach allows
us to optimize query speed and storage space at the same

time, compared to the single materialized view per query
approach. The main materialized view, mview_ndg_calls,
compiles display names for the data linked in the geno-
type_call table (i.e. project, genetic marker and stock). This
materialized view supports both variant and germplasm-
focused queries. Mview_ndg_variants compile variant loca-
tions allowing support of multiple locations per variant (e.g.
multiple genome assemblies) without increasing the magni-
tude of the materialized view for genotype calls. Well-chosen
indices (Supplementary Data 1) were designed to improve
query speed while optimizing storage space.

Phenotypic data are also stored in the GMOD Chado
schema with trait data stored as controlled vocabularies (i.e.
in the cvterm table) andmeasurements stored in the phenotype
table. The germplasmmeasured is the same accession stored in
the stock table for genotypes (Figure 3). This ensures the con-
nection between phenotypic and genotypic data is preserved
and unambiguous. The only departure from the published
Chado schema is the addition of a stock_id, unit_id and
project_id to the phenotype table. This allows for more effi-
cient linking of measurements to their component parts thus
minimizing space requirements and improving performance.

As with genotypes, phenotype query performance is also
optimized using generic materialized views. There is a single
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Figure 2. ND Genotypes materialized view implementation. Mview_ndg_variants (left) contains all variant locations providing support for multiple
genome assemblies without duplicating the allele data stored in mview_ndg_calls (right). Both these materialized views pull data from several Chado
tables (center, blue) to prevent table joins in user-triggered queries. There are numerous foreign keys in these materialized views to allow retrieval of
infrequently required metadata.

materialized view, mview_phenotype, which averages across
replicates and compiles display names for the linked data (i.e.
trait, method, unit, project and site-year). This single materi-
alized view is flexible enough to provide data for all queries
required by the module and improves performance while still
preserving the original data for novel research. Query speeds
were optimized through strategic indices (Supplementary
Data 1).

Data loading
Fast loading of large datasets in the VCF is provided by
the Genotypes Loader module, which supports VCF v4.0+.
Administrators are given the flexibility to configure controlled
vocabulary terms which describe the data in the context of
their web portal. Additionally, the loader will always check
for pre-existing germplasm and variants and can be config-
ured to either enter germplasm and variants from the VCF
directly into the database or fail with an error message if
they do not yet exist. The loader validates the VCF to ensure
that it matches the specification and extensively checks Chado
constraints to provide descriptive error reporting to the user.
PostgreSQL’s COPY FROM command is used for inserting all
metrics within the genotype fields of the VCF into the geno-
type_call table. This ensures that multiple genotype calls, the
number of which is configurable, are processed within a sin-
gle database query versus one query per genotype call, thereby
drastically improving the speed of import while ensuring con-
straints are met. Missing genotype calls in the VCF file are
skipped during import to optimize storage space and query
speeds, which is particularly impactful in the case of sparse
datasets (17).

We opted for a GUI for phenotypic data upload (Figure 4).
Data are uploaded in TSV format, which is easily exportable

by spreadsheet software; furthermore, data collection apps
like Field Book can also export in easily transformed column-
based formats. Our template specifies core metadata such
as trait, method, unit and germplasm accession with each
row representing a single measurement. Validation occurs
instantly with descriptive feedback to guide the researcher
through formatting errors or valuable missing information.
The entire file undergoes data-level validation to ensure data
types match expectations, related data already exist and all
required data are supplied. Due to the differences of phe-
notypic data methodology between researchers, having each
researcher upload and validate their own data improves data
quality by limiting transcribingmistakes and ensuring they are
describing their own methods and units. Researchers are also
asked to map their traits to standardized ontologies to facili-
tate data sharing. Access to the data upload is configured by
the site administrator and may be restricted to specific users
or more generally to users with a given role.

Display
There are several ways to access genotypic data provided
by the system. Tripal provides genetic marker and sequence
variant pages supporting metadata such as location, primers
and assay type; our ND Genotypes module provides Tri-
pal Fields to summarize genotypic data on these pages.
Pie charts show the ratio of observed alleles for a given
marker to provide context to a researcher’s marker assay
results. These charts are generated on demand from the
data storage described previously through specialized web
services and D3.js is used to draw SVG diagrams support-
ing user interaction. A separate field provides the flanking
sequence of the marker or variant with known variants
indicated (Figure 5) by their International Union of Pure
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Figure 3. Phenotypic Data Model. The entity–relationship diagram describes the relevant sections of the Chado schema for storage of phenotypic data.
This data model adheres to the standard Chado schema with the addition of stock, project and unit foreign keys to the phenotype table. The change is
backward compatible but critical in that it allows us to store the trait-method-unit tuple in the phenotype table for each phenotypic data point.

and Applied Chemistry (IUPAC) codes (20). This is partic-
ularly useful for marker assay design to take advantage of
new technologies. Both of these Tripal fields provide con-
figuration options following Tripal best practices and, as
such, can be repositioned on the page through the Tripal
Display Suite.

ND Genotypes provides a variant by germplasm genotype
matrix tool that facilitates the quick lookup of genotypes for a
specific germplasm set and/or genomic region (Figure 5). This
matrix displays the nucleotides to the researcher with empty
cells in the table to represent missing data points. Powerful fil-
tering options such as metadata and polymorphism between
a pair of germplasm accessions allow researchers to restrict
large amounts of data into high-quality datasets suitable for
analyses. Dynamic queries are used to first retrieve the set
of variants matching filter criteria from the variant-focused
materialized view and then, in a separate query, retrieve the
genotypic calls for those variants from the allele-focusedmate-
rialized view. This approach improves performance by filter-
ing the much smaller variant materialized view and ensures
we can use the primary key index for fast retrieval from the
larger genotypic call materialized view. Download is avail-
able in common formats such as CSV genotype matrices and
Hapmap to facilitate external analysis.

Our Analyzed Phenotypes module summarizes phenotypic
data by trait in individual distribution plots where replicates

are averaged but site-years remain separate. Violin plots are
used for quantitative data with box plots to show both data
structure (i.e. median, interquartile range and 95% confi-
dence interval) and distribution (Figure 6). Qualitative pheno-
typic data are summarized using histograms (Figure 6). Both
charts are data-driven using specialized web services, inter-
active using d3.js and enable comparison among site-years.
On germplasm pages, individual germplasm of interest are
highlighted. Trait distribution plots can be accessed through
a single page application that generates them based on user
input and through specialized Tripal Fields provided by our
module for Tripal trait, germplasm and experiment pages.
This kind of integration between data and the rest of the Tri-
pal system ensures that the display is intuitive to all users by
providing context and summaries for the trait, experiment or
germplasm being viewed.

Demonstration
The Tripal modules described above are a core part of Know-
Pulse (21), a genetic, genomic and phenotypic web portal
for pulse crops. Sequence variant information for a diversity
panel of lentil (Lens culinaris) (22) in VCF has been loaded
into KnowPulse using the Genotypes Loader module. To
demonstrate some of the functionality of the ND Genotypes
module, consider the following example question: given a
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Figure 4. Analyzed Phenotypes Upload form. The left panel shows the first stage of upload, where the user selects their experiment and genus and
uploads their file in TSV format. Stage 2 (middle) processes the file and reveals green checkmarks where validation has passed and red x’s with helpful
guidance if there were errors. The user can re-upload their file if there are issues or move onto the final stage (right) where they will be asked to
describe each trait in their file. If a trait name matches exactly to an existing trait in the database, the fields will be gray and cannot be changed as seen
in the screenshot but provide a valuable resource for the user to validate that the methods and units used are the same.

Figure 5. Genotypic data visualization on a generic Tripal site. The left panel shows the distribution of alleles for the current variant as a pie chart (top), a
link to the genotype matrix (middle) and the flanking sequence for the variant with known additional variants indicated by their IUPAC codes (bottom).
The right panel shows the genotype matrix tool with the allele consensus for seven user-selected germplasm displayed in a variant by germplasm
accession table. This table can be further filtered by pairwise polymorphism, genomic region as well as additional filter criteria.
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Figure 6. Phenotypic data visualization on a generic Tripal site. Both visualizations are available on specific germplasm pages and show the distribution
of phenotypic data collected separated by site-year with the current germplasm indicated by a green indicator. Violin plots (top panel) are used to
visualize quantitative data with the mean value shown on the y -axis and the site-year indicated along the x-axis. Histograms (bottom panel) are used to
visualize qualitative data with the frequency of occurrence on the y -axis, the scale shown along the x-axis and each site-year indicated by bar color.
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region in the genome shown to contribute to a trait, which
variants are polymorphic between two germplasm accessions?
The researcher can navigate to the form for Lens Geno-
types on KnowPulse (https://knowpulse.usask.ca/gmtrxLc).
Figure 7 reflects the resulting tabular view from specifying two
germplasm lines (CDC Gold AGL and CDC Impower AGL)
and selecting each line from the dropdown for polymorphic
variants in the first portion of the form. The dataset was fur-
ther restricted by specifying a range 3 346 700–5 720 700 on
chromosome LcChr2 in the second portion of the form. The
researcher now has a list of variants that are polymorphic
and can page through their results or download in CSV or
Hapmap format (if they are logged into KnowPulse with the
appropriate permissions).

To demonstrate AnalyzedPhenotype functionality, let us
assume a researcher is interested in flowering traits for spe-
cific germplasm with the goal of comparing it to a germplasm
diversity panel. By searching for their germplasm of interest
(https://knowpulse.usask.ca/germGoldAgl) and clicking on or
scrolling to the ‘Phenotypes’ field, they can specify their exper-
iment (in this case, AGILE 2) and trait of interest (Days till
Plants have One Open Flower) in the dropdowns provided.
Figure 8 shows the distribution of flowering time for the given
experiment. The germplasm of interest is highlighted using a
green line bisecting each violin which indicates the value in
each site-year relative to the other germplasm in the experi-
ment. In this example, we see that CDC Gold AGL typically
flowered later than average in most site-years.

System and methods
All the extension modules described in this article were devel-
oped to support large genotypic and phenotypic datasets for
intuitive, quick exploration by researchers and metadata-
rich distribution. They were developed to be modular and
highly configurable to facilitate sharing among the Tripal
community.

Code standards and accessibility
All modules are open-source (GPLv3) and freely available
on GitHub: ND Genotypes (https://git.io/fpH7L), Geno-
types Loader (https://git.io/fpH7Y) and Analyzed Phenotypes
(https://git.io/fpH7l). Each module features extensive doc-
umentation hosted by ReadtheDocs including installation,
usage and guidelines for collaboration. Furthermore, care has
been taken to ensure these modules meet the standards of the
Tripal community as defined by the Tripal Rating 2019 System
(23), which ensures that they can be used on a generic Tripal
site. Specifically, all three modules have a gold badge indi-
cating the highest level of standards recognized by the Tripal
community. These modules will be upgraded to the next ver-
sion of Tripal when it is released and there is strong intent to
maintain them. We encourage questions, suggestions or bugs
to be posted in the associated issue queue.

Benchmarking
Benchmarking was done on both simulated and real-world
datasets in a production Tripal website with a small and
uneven load. The tests were run nine times on the same
day over the span of at least 4 h to help mitigate the differ-
ences in load. Queries were timed at the database level using

PostgreSQL 9.4.10 EXPLAIN ANALYZE and as such does
not include rendering time in Tripal. This uses the PostgreSQL
query planning functionality while the addition of the analyze
keyword ensures the query is actually run and the total execu-
tion time is reported. Each dataset exists within a production
database. The datasets for the benchmarking described in this
article were hosted on a Linux database and webserver com-
bination. The database server is a Lenovo X3650 M5 with 2×
Xeon 6C E52643 V3 3.4GHz processor, 128 GB TruDDR4
RAM, 8×600GB 15K 6 Gbps SAS 2.5in G3HS HDD in a
RAID10 configuration.

Real-world datasets consist of data generated by the Uni-
versity of Saskatchewan Pulse Crop research group with a
focus on the AGILE Genome Canada grant. Specifically,
genotypic data consist primarily of theL. culinaris exome cap-
ture assay (22) and phenotypic data consist primarily of the
L. culinaris AGILE diversity panel with a focus on phenol-
ogy traits (24). The genotypic dataset consists of 105 340 269
data points across 534 individuals and 372 506 variants. The
phenotypic dataset consists of 39 302 data points across one
experiment, 15 traits, 23 site-years and 451 individuals.

Tripal Test Suite (25) database seeders have been included
in ND Genotypes (26) and Analyzed Phenotypes (27) with
documented instructions for use. These database seeders were
designed to approximate real data as closely as possible with
the exception that there are no missing data points, since our
data importers would exclude these data points. They can be
used on any Tripal-compatible system to stress-test genotypic
and phenotypic data storage and visualization. This approach
ensures prospective adopters can test this solution on their
system.

Benchmarking for ND Genotypes features three queries
that cover the genotypic matrix in three states—(i) Unfil-
tered: germplasm selected but no filter criteria; (ii) Range:
germplasm selected with a genomic sequence range specified
and (iii) Polymorphic: germplasm selected and only poly-
morphic variants shown. Analyzed Phenotypes benchmarking
features two queries—(i) QuantitativeMeasurement Distribu-
tion: the query used to generate the trait distribution plots and
(ii) Summary: specifies the magnitude of data per genus (e.g.
the number of experiments). Full details of these queries can
be found in Supplementary Data 1.

System requirements
ND Genotypes, Genotypes Loader and Analyzed Phenotypes
require a Tripal 3 (12) instance: Apache2 (28), PostgreSQL
9.4+ (15), PHP 5.6+ (29) and Drupal 7.× (11). Hardware
requirements depend largely on the magnitude of data stored
with the limiting factor being disk space.

Discussion
Why a web portal?
As we established in the introduction, there are many hurdles
to researcher’s use of existing large data technologies. Since
existing implementations are primarily focused on power
users with most requiring command-line experience, they
are not accessible to many researchers. Furthermore, these
implementations may be overkill for more focused ques-
tions such as ‘What variants are polymorphic between my
germplasm accessions of interest in a trait-implicated region

https://knowpulse.usask.ca/gmtrxLc
https://knowpulse.usask.ca/germGoldAgl
https://git.io/fpH7L
https://git.io/fpH7Y
https://git.io/fpH7l
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Figure 7. Lentil Genotype Matrix functionality provided by ND Genotypes module. This screenshot shows the listing of polymorphic genotypic data for
CDC Gold AGL and CDC Impower AGL restricted to LcChr2:3346700..5720700. This pre-filtered view can be accessed at
https://knowpulse.usask.ca/AGL-Lc1.2-Matrix-Example. Alternatively, the user can access the genotype matrix tool and enter the filter criteria as shown
in the screenshot starting with the germplasm names.

https://knowpulse.usask.ca/AGL-Lc1.2-Matrix-Example
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Figure 8. Phenotypic data visualization for CDC Gold AGL provided by Analyzed Phenotypes. The screenshot on the left shows the phenotypic data
pane open on the KnowPulse germplasm page for CDC Gold AGL. The top section summarizes the phenotypic data available for CDC Gold AGL, the
middle section provides quick links to all traits with data for CDC Gold AGL and the bottom section embeds the ‘Days till 10% of Flowers have one open
flower’ Trait Distribution plot for this germplasm. The user selects the trait and experiment combination, and the plot is dynamically drawn for them. The
screenshot on the right magnifies the trait distribution plot. This page can be accessed at https://knowpulse.usask.ca/germGoldAgl or by searching for
CDC Gold AGL using the Germplasm search tool.

of the genome?’ or ‘Is this germplasm accession early or late
flowering compared to the rest of our diversity panel?’. Our
web-based implementation provides a means for researchers
to explore these questions quickly and intuitively, without
the need to install software, requisition time on a high-
performance computing cluster, develop analysis scripts or
require assistance from a bioinformatician.

An additional benefit of a web-based implementation as
compared to command line-based implementations is the
ability to summarize and display data through powerful visu-
alizations. For example, our Analyzed Phenotypes module
provides data summarized in a violin plot for intuitive com-
parison between site-years. Thus, in addition to simply pro-
viding the data to answer a given question, our modules
also generate publication-ready figures without additional
software or analysis.

Lastly, through the use of a web portal, these modules
provide a way to meaningfully distribute data. Rather than
handing a spreadsheet off to a collaborator, researchers can
share the URL for the content page (i.e. a trait, experiment

or germplasm) allowing collaborators to access not only the
data but also critical metadata and visualizations to ensure
that data are meaningful. Essentially, the use of Tripal with
these extension modules can help your data adhere to FAIR
data principles. Tripal already goes a long way towardmaking
your data FAIR (10) and these modules tie into the Tri-
pal application programmers’ interface (API) to ensure the
preservation of all the benefits of Tripal. Specifically, our mod-
ules utilize the Tripal API to provide: (1) web services and
searches to increase data findability, (2) data stored in the
common Chado community schema to increase interoperabil-
ity between data types and projects, and (3) extensive support
for metadata documentation to increase data reusability.

Why a PostgreSQL normalized schema?
When considering storage options for large-scale biological
data web portals, data integrity combined with query per-
formance are key considerations. PostgreSQL is a common
choice for the storage of biological data (1–6, 30–35), as

https://knowpulse.usask.ca/germGoldAgl
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it has robust data-type checking and a rule-based constraint
system meeting ACID compliance. These powerful tools for
data integrity have been used extensively in Chado, which ND
Genotypes and Analyzed Phenotypes extend.

Within the framework of PostgreSQL, one can implement
an array-based technique as described by Lichtenwalter et al.
(3) or a more traditional relational structure. While array-
based implementations provide flexible data definitions, faster
queries and more compact storage (3), it is at the expense
of constraint checking ensuring referential integrity. Fur-
thermore, we opted for a normalized, relational database
approach because it excels at answering diverse questions
without data duplication (36). For example, genotypic ques-
tions include (i) what is the allele frequency of a particular
variant, (ii) how many variants are in a particular region of
interest, (iii) how many germplasm accessions have a partic-
ular allele and (iv) which variants are polymorphic between
a pair of germplasm accessions? All of these questions can
be answered using specialized queries acting on a single nor-
malized relational schema, whereas with a non-relational
approach the data would need to be duplicated per query to
optimize speed (17).

In addition to the data integrity built into Chado, our fully
relational solution ensures genotypic and phenotypic data are
integrated tightly with other biological data types through
existing Chado linking tables. This, combined with Tripal’s
support for Chado, allows us to provide an extendable, full
web portal solution with a vibrant open-source community.
The Tripal API provides Tripal Fields to enable linked data
to be displayed on Tripal Content pages. Our modules use
this API extensively to display genotypic and phenotypic data
summaries on all linked data pages (i.e. germplasm, experi-
ment, marker and variant pages). Furthermore, Tripal’s inte-
gration with Drupal Views ensures administrators can make
searches across data types, such as restricting germplasm
based on genotypic and phenotypic data. This is possible
because our data storage solution uses relational links for
variants, markers, germplasm, experiments and even alleles.
This contrasts with solutions such as BreedBase (6), which do
not have relational links to the Chado feature table for mark-
ers due to their storage within a JSONB object. Additionally,
their storage design stores all markers for a given germplasm
experiment combination in a single JSONB object which
does result in a limit on the number of markers, whereas

Figure 9. Comparison of timings for functional queries on indexed materialized views versus Chado. The left column shows timings for genotypic
data-focused queries and the right focuses on phenotypic data queries. Each box plot represents functionality in either Analyzed Phenotypes or ND
Genotypes with the x-axis indicating the execution time of the query is milliseconds and the y -axis indicating the query performed. All box plots show
the optimized form of the query was substantially faster than querying Chado directly. These timings were taken on a production database with nine
replicates over the course of 1 day. Queries are fully described in Supplementary Data 1 and methods were described under Systems and Methods:
Benchmarking.
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our solution only experiences the shared limit to PostgreSQL
database size.

Optimizing performance
Within a normalized relational schema, performance can be
optimized through well-placed indices and flexible material-
ized views. ND Genotypes and Analyzed Phenotypes use both
indices and materialized views to optimize query speeds for
use within the web environment as described under Imple-
mentation.

Chado is a highly normalized database schema that sup-
ports a variety of biological data types in a highly intercon-
nected manner. Furthermore, it provides flexible storage for
associated metadata through property (e.g. stockprop) and
related controlled vocabulary term (e.g. stock_cvterm) tables.
However, this flexibility comes at the cost of requiring a large
number of table joins to complete most queries which results
in longer query times as joins are compute intensive. For per-
formance reasons, materialized views are used to aggregate
the data ahead of time into a single question-independent
table, which allows user-triggered queries to contain a much
smaller number of table joins. For comparison, user-triggered
queries in BreedBase (6) are run directly on the ChadoNatural
Diversity schema requiring multiple joins to link the genotypic
data with the experiment and germplasm. While they mitigate
this using a file-based cache for repeated questions, if your
user base is asking a large variety of questions, then fewer
table joins imply our method would be more performant.

ND Genotypes and Analyzed Phenotypes use materialized
views to speed up queries but do so in a flexible manner to
ensure multiple queries can use the same materialized view.
Well-chosen indices were then added to the materialized views
to further optimize performance. It is important to remem-
ber that not all indices will speed up your queries. Extensive
research using the PostgreSQL query planner was done on
each of the queries executed by these modules to ensure that
(i) the best indices for each query were available and (ii) no
additional unused indices were in place taking up storage
space. When designing indices where storage space is a con-
cern (e.g. genotypic datasets), the best indices are a balance
between query-specific compound indices for optimal query
speeds and reusable indices focused on multiple queries. For
example, range queries are time consuming, so we used a
compound index and segregated variant location information
from genotypic calls to restrict a genomic range with a smaller
index. However, filtering for pairwise polymorphism using a
compound index requires too much storage space; therefore,
we opted for reusable indices paired with join subqueries.
Our approach also provides hints to the query planner to
ensure optimal index use through the query itself by utilizing
JOIN subqueries, the EXISTS operator and ROW construc-
tors. Thus, our solution finds a balance between performance
and storage space.

NDGenotypes and Analyzed Phenotypes have been used in
production settings. As described in the Benchmarking section
under System and Methods, the data queries behind existing
functionality were timed either using the materialized views
with indices or querying Chado directly. We observed a com-
pelling increase in performance as shown in Figure 9. Not only
do these performance gains justify our approach, but they also

show that this solution works in production on large datasets.
Furthermore, bothmodules include Tripal Test Suite Database
Seeders which ensure you can stress test performance on your
own system (26, 27).

Conclusion
To summarize, the collection of modules described in this
article provide a performant web-based solution to storage,
distribution and analysis of large phenotypic and genotypic
datasets. Specifically,

• Materialized views and strategic indices make our data
storage method efficient on large datasets. Each module
provides researchers with dynamic visualizations, queries
and filterable downloads.

• Our web focus makes large datasets accessible to
researchers by facilitating exploration without installation
of software or typical data acquisition and reformatting.

• As all data including quality meta-data are stored in a rela-
tional database with referential integrity, such web portals
provide a quality backup of data.

• Multiple experiments can be housed in the same web por-
tal in an integrated and searchable manner facilitating
comparison between datasets.

• All data are displayed alongside quality, descriptive meta-
data with download functionality to ensure datasets are
reusable.

Essentially, this collection of modules, in combination with
Tripal, provide a solution to make large genotypic and phe-
notypic datasets FAIR while also providing a framework for
researchers to explore the data.

Supplementary data
Supplementary data are available at Database Online.
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