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Experimental kernel-based
quantum machine learning in finite
feature space
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Karel Lemr?*’ & Franco Nori**

We implement an all-optical setup demonstrating kernel-based quantum machine learning for two-
dimensional classification problems. In this hybrid approach, kernel evaluations are outsourced to
projective measurements on suitably designed quantum states encoding the training data, while the
model training is processed on a classical computer. Our two-photon proposal encodes data points in
a discrete, eight-dimensional feature Hilbert space. In order to maximize the application range of the
deployable kernels, we optimize feature maps towards the resulting kernels’ ability to separate points,
i.e., their “resolution,” under the constraint of finite, fixed Hilbert space dimension. Implementing
these kernels, our setup delivers viable decision boundaries for standard nonlinear supervised
classification tasks in feature space. We demonstrate such kernel-based quantum machine learning
using specialized multiphoton quantum optical circuits. The deployed kernel exhibits exponentially
better scaling in the required number of qubits than a direct generalization of kernels described in the
literature.

Many contemporary computational problems (like drug design, traffic control, logistics, automatic driving, stock
market analysis, automatic medical examination, material engineering, and others) routinely require optimiza-
tion over huge amounts of data'. While these highly demanding problems can often be approached by suitable
machine learning (ML) algorithms, in many relevant cases the underlying calculations would last prohibitively
long. Quantum ML (QML) comes with the promise to run these computations more efficiently (in some cases
exponentially faster) by complementing ML algorithms with quantum resources. The resulting speed-up can
then be associated with the collective processing of quantum information mediated by quantum entanglement.

There are various approaches to QML, including linear algebra solvers, sampling, quantum optimization,
or the use of quantum circuits as trainable models for inference (see, e.g., Refs.>"'). A strong focus in QML
has been on deep learning and neural networks. Independently, kernel-based approaches to supervised QML,
where computational kernel evaluations are replaced by suitable quantum measurements, have recently been
proposed'®!? as interesting alternatives. Combining classical and quantum computations, they add to the family
of quantum-classical hybrid algorithms.

Kernel-based QML (KQML)is particularly attractive to be implemented on linear-optics platforms, as quan-
tum memories are not required. Here, we thus investigate the prospect of KQML with multiphoton quantum
optical circuits. To this end, we propose kernels that scale exponentially better in the number of required qubits
than a direct generalization of kernels previously discussed in the literature!?. We also realize this scheme in a
proof-of-principle experiment demonstrating its suitability on the platform of linear optics, thus, proving its
practical applicability with current state of quantum technologies.

Let us explain KQML by first recalling some definitions and theorems, and then we overview the recently
proposed method for finding linear boundaries in feature Hilbert space (FHS)'?. FHS is defined as a space of
complex vectors |@(x)), where ¢ describes a feature map (FM), and x denotes a real vector of dimension D (the
input data). FHSs generally have higher dimension than the original data x. This implies that linear decision
boundaries in FHS can give rise to nonlinear decision boundaries in the original data space. By virtue of such
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nonlinear FMs, it is not required to implement nonlinear transformations on the quantum-state encoded data,
in contrast to the direct amplitude encoding common in other QML approaches.

The central idea underlying KQML is that inner products of vectors that are mapped into FHS can be directly
accessed by measurements, which then suggests to identify these inner products with kernel functions. By
physically measuring the kernel functions « (x', x) = |{¢(x)|@(x)) |2, it is thus possible to bypass their per pedes
computation on a classical machine. Such measurement-based implementation may, in some cases, be signifi-
cantly faster than the latter option.

It follows from the representer theorem that a function of the reproducing kernel that minimizes the cost
function (a solution to the ML problem) can be written as f*(x) = Zﬁf:l amuk (x,x™), where M is the number
of training samples, the coeflicients a,, are real parameters subject to the training, and x belongs to feature space.
For a given kernel «, the parameters a,, can be found efficiently. The objective of ML is to deliver a function
f*(x) that classifies the non-separable points X1, xM-K gand MK+ M by finding a trade-off between
the number of misclassifications and the width of the separating margin. The parameters a,,, can be obtained by
solving the following problem: minimize Zf\::l(lamlz + Yuy)such thatajx (x,x') > 1 —u;fori =1,...M — K,
and aik (x,x') < —(1 —u;j)fori =M — K + 1,.., M, u > 0, where y gives the relative weight of the number of
misclassified points compared to the width of the margin. In a nutshell, this approach allows to replace the non-
linearity of the problem with linear multidimensional quantum computations, which offers a potential speed-up.

Results
Kernel resolution in finite dimensions. An important and widespread kernel class are Gaussian-type
kernels, which introduce a flexible notion of proximity among data points. An essential hyperparameter of
Gaussian-type kernels is thus their variance (or, more generally, their resolution). The resolution determines a
Gaussian kernel’s ability to distinguish data points, which, for given training data, can decide if a model can be
trained successfully or not. If kernel resolution is too coarse, resulting decision boundaries miss relevant details
in the data; if it is too refined, the model becomes prone to overfitting. Only if the resolution can be chosen suffi-
ciently flexibly to be accommodated to the structure of the data, model training can be expected to be successful.
In the infinite-dimensional feature spaces offered by continuous variable implementations, viable FMs with
(in principle) arbitrary resolution can be implemented, e.g., by mapping data into squeezed states'?, where the
adjustable squeezing factor then determines the resolution of the resulting Gaussian kernel (i.e., its variance).
However, within the paradigm of discrete, finite-dimensional quantum information processing, the FHS dimen-
sion becomes a scarce resource, resulting in limitations on kernel resolution. As we show now, optimizing the
range of kernel resolutions in finite dimensions then forces us to move beyond the scope of Gaussian kernels.
Let us discuss the optimal kernel resolution that can be achieved in N-dimensional FHS, within the class of
FMs of the form

N
X Y@) =Y Ve ), Y =1, (1)

n=0 n=0

with {|n)} a basis of the Hilbert space and x € [—1/2, 1/2). Any data set can be brought to this form, which is a
routine step in data preparation. We stress that the amplitudes r, are independent from the input values x. The
resulting kernels then are of the form
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In this shorthand notation x (x) > 0 Vxand «(0) = 1. For the sake of clarity we consider here 1D input data x.
For D-dimensional inputs x, each input component x; is encoded separately, requiring an (N - D + D)-dimen-
sional FHS. If the FHS is spanned by g qubits, we have N = 29 — 1. In particular, for N = landr, = 1/2 we have
K (x,x") = cos[m (x' — x)]%, which realizes a cosine kernel (CK). The class of states (1) comprises also truncated
squeezed states |{rsq (x)), with

/(2n)!(—tanh )"
+/B2"n!\/cosh I3

(¢ denotes the squeezing factor and B renormalizes the state after truncation), and, what we call here, multi-slit
interference states|y\s1(x)), with constant amplitudes /1, = 1/ +/N. The latter inherit their name from the fact
that, by virtue of (x|p) = e>7"P* (h=1), they are formally equivalent to a balanced superposition of momentum
states in a (hypothetical) compact continuous variable Hilbert space (augmented by an internal spin-N degree
of freedom),

Vra = 3)

N
st () = ﬁ ;Oclp = n)ln), (4)

giving rise to “N-slit interference” in the position coordinate when projected onto (x| ® ﬁ ij:l (n"°. Note
that polynomial kernels (discussed, e.g., in®'?) fall outside of the state class (1).

SCIENTIFIC REPORTS |

(2020) 10:12356 | https://doi.org/10.1038/s41598-020-68911-5



www.nature.com/scientificreports/

(b)

N

Figure 1. Kernel family (2) for different amplitude choices. (a) We find that the resolution-optimized kernel
(blue solid) exhibits suppressed side maxima as compared to the MSI kernel (red dashed), while the TSQ kernel
(with squeezing factor ¢ = 2, black dotted) maintains a nonvanishing plateau at all x values. For comparison,
we also display the respective squeezed-state kernel for N — oo (gray dotted) and CK (purple dash-dotted). (b)
Characteristic amplitude progressions for the example of N = 14 and { = 4. (c) The optimized kernel exhibits
a significantly improved resolution progression with N, as compared to the MSI or the TSQ kernel (here with

¢ =3).

We can use the above compact-space embedding to gain further insight into the nature of our kernel defini-
tion (2). If we interpret the states (1) as|¥/) = Y ,_; /Tulp = 1) ® |n), we can introduce the density operator
p = |¥)(¥|and trace over the internal spin degree of freedom,

N
pext = Trint(p) = Y _ rulp = n)(p = nl. 5)
n=1

We then find that the kernel (2) is related to the spatial coherences of the mixed reduced state pexi:
K (6,x') = [(x] pet |6} 2.

We define a kernel’s spatial resolution Ax[«]by its variance (a hyperparameter typically optimized for Gauss-
ian kernels)

1/2
(Ax[k])? = / dx x*i (x), (6)
—1/2

where the renormalized kernel ¥ (x) = «(x)/R, with R = f _162 dx k(x) = ij:l rﬁ, describes a valid probability

distribution. In the case of the mulit-slit interference states |y¥s), one ana}\ytically obtains
(Ax[rmsi))? = ﬁ (1 — S1(N)), with the interferometric “squeezing factor” S; (N) = — % L—1y %, and
N > 2P,

The kernel (6) minimizing the variance is a solution to the optimization problem: minimize leﬁ‘f such that

N
n=1

j=1

rn = 1, where

1
=, n=m
Ko = < 2 inem
nm { (—1) \2’ clse (7)

2(n—m)?n2
andr = (r,...,rv) . In Fig. 1 we compare this optimized kernel with the TSQ and the MSI kernel. The opti-
mized kernel comes with strongly suppressed side maxima as compared to the MSI kernel, while the TSQ
maintains a nonvanishing plateau for all x values. Consequently, the optimized kernel enables, for a given N, a
significantly improved resolution as compared to the other kernel choices. Figure 1b clarifies that amplitudes
decaying symmetrically about the “center” state are responsible for improving the kernel resolution.

On the other hand, a kernel that maximizes the variance (i.e., k (x) = 1) follows from r; = 1and r, = 0 for
n # 1, resulting in the variance ( Ax[k])? = 1/12. By a suitable choice of the coeflicients r,,, we can thus tune the
resolution of the kernel between its minimum value obtained for the optimized kernel and its maximum value
assumed for a uniform kernel.

Whereas kernels of the form (2) can also be efficiently computed classically, their quantum evaluation may
still deliver a significant speed-up. We illustrate this with an example, the computation of cos?" x. The optimal
classical algorithm depends on the properties of N. In the best case scenario, N is a power of 2. Then, in the first
step we compute cos? x. Next, we compute [cos? x]2, etc. The entire computation then takes log, (N + 1) steps. As
we demonstrate below, for the quantum implementation, the required size of the FHS (number of qubits) grows
also like log, (N + 1). However, in contrast, there the associated calculations are replaced by a single measure-
ment. We expect similar arguments to hold for more general classes of functions, as well.

Beyond the quantum-classical hybrid approach pursued here, the proposed FMs may, if seen as modules to be
combined with other quantum computing subroutines, contribute their resource-efficient data point separation
ability to an overall setup that comes with an inherently quantum scaling advantage. MSI states, for instance, can
be generated in a gate-based quantum computer following the first stage of the phase-estimation algorithm?°.

Alternative Gaussian-kernel implementation. Above we have shown that truncated squeezed states
and their resulting kernels fall within the state class (1). If we relax the condition that the amplitudes r,, be inde-
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Figure 2. Training results on a random inseparable data set of 40 samples (up/down-tipped triangles). The
performance on a test set (left/right-tipped triangles) of 60 points (the fraction of correctly classified samples
that were not used in the QML process) is given in the bottom right corner of each respective subplot. We find
that the optimal variance/resolution choice for the Gaussian kernel is s = 2. For s = 3 we deal with overfitting.
Shown are the simulation results both for an exact Gaussian kernel and for the truncated FM (8) comprising

4 terms (g = 2). The learned classification boundaries are given as contour plots. The slight difference in
performance compared to the theoretical prediction is due to statistical fluctuations in the experimental data
and the relatively small test set (misclassification of a single near-boundary point results in a 0.02 performance

drop).

pendent from the input values x, we can formulate an alternative data encoding into truncated squeezed states
according to

where N =29 — 1, x = x; + ix3,and Z~! = ZN

N
lp) =2
n=0

(slxD*"
n!

n=0

(sx)"

[n),
n!

(8)

. Note that this feature map is defined for 2D inputs

x = (x1,x2)". For large N this kernel again reproduces to good approximation a Gaussian kernel, as

k(' x) = {p(X)|p)) > ~ exp [—s*(x1 — x})? — 52 (x2 — x5)],

)

where the variance is set by the hyperparameter s. In particular, as shown in Fig. 2, this approximation is valid
for g = 2 and relatively small values of s.

We find that this kernel performs, for the number of qubits g = 2 and after numerically optimizing the
hyperparameter to s = 2, on average as well as the cosine kernel for the same total number of qubits equal to
N = 1(see Fig. 4). Moreover, by appropriate parameter reconfiguration, it would be possible to realize this type
of kernel using the same experimental setup. From an experimental perspective, however, it is more conveni-
ent (and thus scalable) to implement the feature map associated with the powers of the cosine kernel, which is
exclusively implemented by setting phases and polarization angles.

Cosine kernels.

The kernel selected for our proof-of-principle demonstration of KQML is
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Figure 3. Optical circuit implementing both the FM and the model circuits. The performance

of the setup in QML is shown in Fig. 4 for N = 1and D = 2. The experimental setup consists of

polarizing beam splitters (PBSs), beam dividers (BDs), quarter-wave and half-wave plates (QWPs

and HWPs, respectively), and single photon detectors D, forn = 1a, 1b, 2a, 2b, 3,4. D3and D4

are H/V polarization resolving (implemented as a PBS and two standard detectors). The kernel

K (X', X)exp = [X_ps—pr,v CC(D2s, D3p) —CC(D2v, D3p)+CC(D2t, D3v)1/ 3 s S | CC(Dy, Dy)is given as

aratio of coincidences CC(D,y,, D) registered by photon detectors D, and D, to the total number of photons

D
k(%) = o)) P = ] cos™ (x), — xa), (10)

n=1

where the FM taking a normalized feature x,e[-7/2,7/2) to FHS is

lp(x)) = o Z =0 \/ ( ) sin® (x,,) cosN ¥ (x,,) |k) ;. Note that N is related to the number of qubits g per dimen-

sionasq = [log2 (N + 1)7. This FM can also be considered a constant-phase representation of constant-amplitude
states. This is the same as representing states either in a basis of eigenstates of x or z components of a collective
spin operator. In partlcular, (cos(x)]0) + sin(x)[1))/v/2 < (|0') + €¥*(1'))/+/2, where [0) = (]0') + [1'))/+/2

and|1) = (|0') — [1'))/~v/2.

This mapglng uses exponentlally less resources (qubits) than the direct product of the map from Ref.!?, i. e >
o) = Qpeq Qmei Zk -0 sinf (x,) cos!™ k(xn)|k)n m> where the number of qubits per dimension is g =
Using the powers of CKs allows us to adjust the kernel resolution by choosing the proper value of N. Thus, the
number of used qubits can be related directly to the variance of the kernel. The number of qubits here plays
the same role as the squeezing parameter in the experimental proposal given in Ref.!?. The CK can also include

additional (D — 1) degrees of freedom by virtue of a FM defined as

lo(x)) = ®Ze’2y" 1,/( )sink(xn)cosN_k(xn)lk>m (11)

n=1 k=0

SCIENTIFIC REPORTS |

(2020) 10:12356 | https://doi.org/10.1038/s41598-020-68911-5



www.nature.com/scientificreports/

| q Theory Theory Experiment Theory
nputdata v —1/2 N=1 N=1 N=2

S S s S
|| |
x b" :t: .’ 't: < b't= ", .‘=
2 p. V&& "b. 7&& .”.' '&& .w.. Y&&
wh algdl s wh algalla w algdlla vt algelia
“dd P “« F 2 a “« I3 a
4 4 .82 +.92 +.88
I, I iv, i i,

A A
e 2P L 5o de v B v iate 3. 2's 5o A v
v v v v v v v v v v
v v .87 v .85 v .85 v .83
."v E'v {'v ."v ."v
< [ < < [ L >

X1 X1 X1 X1 X1

Figure 4. Training results on a random inseparable data set of 40 samples (up/down-tipped triangles). The
performance on a test set (left/right-tipped triangles) of 60 points (the fraction of correctly classified samples
that were not used in the QML process) is given in the bottom right corner of each respective subplot. We see
that the best choice of CKis N = 1. For N = 2 we deal with overfitting and for N = 1/2 the kernel is too coarse
to give as good results as for N = 1. The learned classification boundaries are given as contour plots. The slight
difference in performance of KQML in relation to the theoretical prediction is due to statistical fluctuations of
the experimental data and relatively small test set (misclassification of a single near-boundary point results in
0.02 performance drop).

where yy = Ob the number of terms here is (N + 1)P, and the associated kernel measured by postselection is
k', x) = [[— cos?N (x!, — x;,) cos? oy = Yn—1)-

Discussion

We have experimentally implemented KQML to solve three classification problems on a two-photon optical
quantum computer. In our experiment we implemented a D = 2, N = 1kernel (using all the modes from Fig. 3,
we can set at most D = 5 with g = 1). We used two photons, but only the top mode of the dual-rail encoding.
Including more modes would lead to kernels causing overfitting (see Fig. 4).

We have performed measurements for M = 40 two-dimensional samples (D = 2), drawn from two classes
(see horizontally/vertically-tipped triangles in Fig. 4). This procedure was repeated for three benchmark classifi-
cation problems. For each benchmark 40 x 39/2 = 780 measurements were performed to create a corresponding
Gram matrix (GM), which was subsequently used to find the best linear classification boundary as given by the
representer theorem. In other words, a custom kernel « (x, x*) = k (x", x™) form,n = 1,2, ..., M was measured.
This kernel was used as a custom precomputed kernel for the scikit-learn SVC classifier in python.

Pairs of H-polarized photons were prepared in a type-I spontaneous parametric down-conversion process in a
B-BaB,0y4 crystal. The crystal was pumped by a 200 mW laser beam at 355 nm (repetition rate of 120 MHz). The
coincidence rate, including all possible detection events from Fig. 3, was approximately 250 counts per second.
The setup operates with high fidelity (98%) and the dominant source of errors can be attributed the Poissonian
photon count statistics. The design of this setup is modular and its easy to incorporate more qubits by simply
adding additional blocks. We measured each point for a time necessary to collect about 2,500 detection events.
Thus, excluding the time needed to switch the setup parameters, the whole measurement for a single benchmark
problem takes about two hours.

To prepare the contour plot of the decision function based on the experimental data shown in Fig. 4 and to
quantify the performance of the trained model on the relevant test sets, we have also measured the GM for 1,225
points and used its symmetries to fill in the unmeasured values. The values for points in between have been found

SCIENTIFICREPORTS|  (2020)10:12356 | https://doi.org/10.1038/s41598-020-68911-5



www.nature.com/scientificreports/

using linear interpolation. The data accumulation time can be shortened by orders of magnitudes by fine tuning
the parameters of the setup and by using brighter photon sources.

Conclusions

We report on the first experimental implementation of supervised QML for solving a nonlinear multidimensional
classification problem with clusters of points which are not trivially separated in the feature space. We hope that
our research on QML will help to improve ML technologies, which are a major power-horse of many industries,
a vivid field of research in computer science, and an important technique for solving real-world problems. We
believe that both the theoretical and the experimental investigation of FM circuits and their constraints regarding
kernel resolution and compression for a limited FHS (i.e., FHS size dependent FMs) constitutes a crucial step in
the development of practical KQML for support-vector-machine QML3-11213,

We demonstrate that a linear-optical setup with discrete photon encoding is a reliable instrument for this
class of quantum machine learning tasks. We also report obtaining exponentially better scaling of FHS in the
case of CK than in the case of taking direct products of qubits'®. The same can hold for other more complex
kernels implemented in finite FHS, which could appear unfeasible, but in fact require nontrivial FMs (e.g., the
resolution-optimized kernels shown in Fig. 1). Thus, KQML can provide a promising perspective for utilizing
noisy intermediate-scale quantum systems?®! %, complementing artificial quantum neural networks?*~?* and other
hybrid quantum-classical algorithms**-2

The classical computational cost of the power kernel computation is O[log(N)] and the quantum cost is
a constant value depending on the precision of the computation. In the classical case, one needs to perform
Ollog(N)] computation steps that can not run in parallel due to the recursive nature of the classical algorithm.
In the quantum case, one needs to run 1 computation step but on log(N) qubits. As in any quantum computation,
the precision of the calculation depends on the number of measurements and it can be considered constant for a
given computational problem. This observation itself is a valuable result and a quantum advantage. The quantum
advantage of the presented approach is apparent in terms of the complexity of calculations, i.e., O[log(N)]versus
O(1). Consider the number of samples needed for quantum calculations. It depends on the confidence level (2)
and admissible error: €. For a given pair of z and error €, one needs O(1/€2) repetitions of the experiment. This
is just a constant overhead. In the classical case, this constant overhead can be smaller, but the complexity of
calculations can be larger as the it is N-dependent. Only if we face significantly lower than unity qubit-number-
dependent efficiency 7 (i.e., circuit-size dependent losses), for a given z-value the complexity of quantum com-
putations should be considered as being o' — log(N))/ €2). However, the power scaling also applies to the
total error probability of classical computations of log(N) steps. Note, however, that both 1 and single-step error
probability of classical computing are not fundamentally limited and can be arbitrary close to 1 or 0, respectively.

Our quantum kernels can be used for solving high-dimensional classification problems and could poten-
tially be computed faster than their classical counterparts. Popular problems solved by classification algorithms
include image recognition (e.g. face detection or character recognition), speech recognition (e.g. voice user
interfaces), medical diagnoses (e.g. associating results of medical tests with a class of diseases), real-time specific
data extraction from vast amounts of unstructured data (e.g. classification of patterns in unstructured data) and
many more. Classification can also be used as an initial phase for predictive computations that help to make the
best decision based on the available data (e.g., managing risk, security, traffic, procurement etc.). We believe that
this quantum-enhanced approach is useful especially in cases where it is difficult or impossible to achieve the
result on time with classical computing.

Methods

Optical circuit for KQML. States given by Eq. (11) can be prepared in a quantum optical setup. In the
reported proof of principle experiment, we can set N = 3and D = 2. This means that, effectively, the experiment
deploys q = 2 qubits per dimension. The FM is defined via single-photon polarization states (H/V polarization)
as well as dual-rail encoding (77/B for top/bottom rail, respectively)

2

190} =) (€ ) IHT ) + V306 () HB),
n=1 (12)

#3005 () VB + 5° () VT ),

where c(x,) = cos(x,) and s(x,) = sin(x,). This approach is resource-efficient as it only requires two photons
to encode x into the FHS state of N = 3and D = 2.

An optical circuit implementing this FM is depicted in Fig. 3. The top part of the FM circuit works as follows:
first, it transforms the standard input | HB) using wave plates resulting in |[HB) — (|HB) + |VB))/ /2. Next, a
beam divider separates polarization modes in space, i.e., we have (|HB) + |VT)). Now, the effective operation
of wave plates in the top and bottom modes can be described as first transforming |VT) — wur|HT) 4+ vr|VT)
and|HB) — pup|HB) + vg|VB).The parameters are setas ur = V263 (60),vr = V253 (%), 0B = V62 (x)s(xn),
VB = \/gc(xn)sz(xn)-

This whole operation is unitary and can be described as U (x)|HH) = |¢(x)). The complex conjugate of opera-
tion U(x) is U (x’) and it can be used to express the kernel as « (', x) = |(HH|UT(x")U(x)|HH)|?. Thus, the
circuit UT (x') for projecting the state |¢(x)) to |p(x)) can be constructed as the inverse of the feature embedding
U(x) circuit, but for setup parameters set for x'. The next action of the plates in the top and bottom rails is to
perform a reverse transformation, but for x,, = x),. Next, the plates flip the polarizations in the respective rails.
Now, the interesting part of the engineered state is in the top rail with flipped polarization. To implement U (x)T,
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the last pair of waveplates is used both to flip the polarization and to perform the Hadamard transformation.
Finally, the PBS transmits only H-polarized photons for further processing.

The procedure of measuring the kernel « (x’, x) can be extended to include additional dimensions, resulting
in measuring the kernel & (x’, x) = x (x/, x) cos*(y — y') following from FM (11). Instead of the transformation
U (x")U(x), we consider RT (y)UT (x")U(x)R(y), where R(y) = e*|H)(H| is a phase shift applied to a prese-
lected H-polarized photon in the bottom part of the setup, and RT(y') = e=2% |H)(H| is a phase shift to the
postselected H-polarized photon in the same part of the setup. The phase difference between the postselected
upper and lower H-polarized photons can be measured as cos®(y — y'). This is done with PBS’ which transmits
diagonally-polarized photons |D) = (|[H) 4 |V))/+/2 and reflects antidiagonal photons|A) = (|H) — |V))/+/2,
and polarization-resolving single-photon detectors (see caption of Fig. 3).
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