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Analysis of regional economic 
development based on land use 
and land cover change information 
derived from Landsat imagery
Chao Chen1, Xinyue He1, Zhisong Liu2*, Weiwei Sun3, Heng Dong4 & Yanli Chu5

The monitoring of economic activities is of great significance for understanding regional economic 
development level and policymaking. As the carrier of economic activities, land resource is an 
indispensable production factor of economic development, and economic growth leads to increased 
demand for land as well as changes in land utilization form. As an important means of earth 
observation, remote-sensing technology can obtain the information of land use and land cover change 
(LUCC) related to economic activities. This study proposes a method for analysing regional economic 
situations based on remote-sensing technology, from which LUCC information extraction, sensitivity 
factor selection, model construction and accuracy evaluation were implemented. This approach was 
validated with experiments in Zhoushan City, China. The results show that the economic statistical 
index is most sensitive to the construction land area, and the average correlation coefficient between 
the actual data and the predicted data is 0.949, and the average of mean relative error is 14.21%. 
Therefore, this paper suggests that LUCC could be utilised as an explanatory indicator for estimating 
economic development at the regional level, and the potential applications of remotely-sensed image 
in economic activity monitoring are worth pursuing.

The monitoring of economic activities is of great significance for the understanding of economic situations 
and the support of policymaking concerned with sustainable development and management1. Considering 
that economic activities are cumulatively changing the surface of the Earth, data that reveal the Earth’s surface 
changes can therefore enable the capability of frequent and large-scale observations of economic activity, which 
could substantially improve understanding of the actual economic situation and its trend prediction. Traditional 
data collection methods such as mapping and ground surveying are time-consuming and costly2. Additionally, 
the information is not updated frequently and is difficult to access3,4. A powerful implementation of economic 
activity monitoring research is remotely-sensed image, which provide an up-to-date and realistic presentation 
of the Earth’s surface. Remote-sensing technology is an effective means of observing surface changes on the 
Earth due to its fast and wide-range imaging capability5–10. Since the 1970s, terrestrial Earth observation data 
have been continuously collected in various spectral, spatial and temporal resolutions11,12. In recent decades, 
the accessibility, quality and scope of these data have been continuously improving, making it a fundamental 
information source in the study of pattern change and visualization of the Earth’s surface as well as important 
data in the research of human activities monitoring13,14.

Having the capability to detect low levels of visible and near-infrared (VNIR) radiance at night, the Defense 
Meteorological Satellite Program-Operational Linescan System (DMSP-OLS) night-time light (NTL) data pro-
vided a new scope for measuring human economic activities15–20. These NTL data are free and feature a wide 
spatial coverage from − 180° to 180° longitude and − 65° to 75° latitude, thus greatly enhancing NTL applica-
tion research21. As an objective reflection of human activities, NTL data provide a cost-effective and spatially 
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consistent means for monitoring economic activities22–25. The initial purpose of the DMSP/OLS, however, was 
to observe the clouds illuminated by moonlight, and the night-time light imagery was a by-product of the data 
under cloud-free conditions26–30. Consequently, there remain some limitations when using NTL data: (1) Under-
estimation of economic activities that emit less or no additional night-time light, and in the potentially serious 
measurement errors of gross domestic product (GDP) growth, particularly in developing and emerging econo-
mies, the growth is more likely to be underestimated31–33. (2) As the most important NTL data, DMSP-OLS data 
are provided by multiple DMSP satellites, and the fact that NTL data from different satellites in different years 
cannot be directly compared due to lack of onboard calibration is likely to be the main obstacle to a time-series 
analysis34–37. (3) The DMSP-OLS NTL data provided by the NGDC have a geographic grid resolution of 30 arc 
seconds and a grid cell size that is approximately 0.86 km2 at the equator16. Therefore, the probability of multiple 
ground objects belonging to the same pixel is large, which affects the accuracy of economic activity evaluation38.

Generally, satellite remote-sensing missions are originally designed to monitor the physical environment of 
the Earth, for which the mapping of LUCC information is one of the most important applications39,40. LUCC 
information is usually associated with and mainly driven by socioeconomic factors and is also a direct reflection 
of economic activities41–43. It is well documented that the relationship between economic growth and LUCC 
information is not a one-way effect, but rather a complex relationship of interactions44,45. On the one hand, 
economic activities have profoundly changed the surface morphology of the Earth. Moreover, with economic 
development and population increase, land use changes have accelerated sharply, and the land cover pattern 
changes have become more and more significant. On the other hand, the variation process of land use and land 
cover has significant impacts on economy. As the foundation for economic activities, land is an indispensable 
production factor for economic development, and the input of land resources plays an important role in promot-
ing economic growth34,46,47. Thus, in the coordinated process of LUCC information and economic development, 
changes in economic activity intensity can be reflected through LUCC information. Remotely-sensed image can 
intuitively and comprehensively reflect the dynamics of land use and land cover, and the types, quantities and 
locations of LUCC information can be obtained via classification technology from remotely-sensed image. Nor-
mal multispectral optical satellite data with various spatial, temporal and spectral resolutions have been exten-
sively applied in investigations of LUCC information and its driving mechanism of socioeconomic factors44,48. 
However, economic indicators for assessing economic development have rarely been connected to LUCC data 
in its estimation in time series. The LUCC information derived from remotely-sensed images such as those from 
Landsat and MODIS is spatial and temporal, and this information does not require further postprocessing for 
comparison with NTL data49,50. Moreover, with the launch of satellites such as QuickBird, IKONOS, GeoEye, 
WorldView, SPOT 6/7, and GF-1/2 with higher spatial resolution, opportunities are provided for the global 
production of LUCC at the scale of 10 m or even meters51–54.

This study proposes a method to analyse regional economic situations based on the LUCC dynamics derived 
from remotely-sensed image. The main steps are as follows. First, multi-temporal remotely-sensed image is used 
to obtain the LUCC information (types and their areas) over a long period of time in the study area. Second, 
correlation analysis is applied to select the optimal indicators of economic situations (described by various eco-
nomic statistical indices) from the LUCC indicators. Then, regression analysis is applied in order to model the 
socioeconomic indicators. Finally, the method accuracy and model applicability are evaluated. The objectives 
of this study were to quantify the relationship between LUCC area and several socioeconomic statistics over 
time and to test the capability of LUCC to estimate regional economic development. This study will result in 
significant understanding of the regional economic development as well as assessing the data accuracy of social 
survey activities.

Methodology
The interrelationship between LUCC information and economic development is the basis of the proposed 
method, which attempted to reflect economic development using remotely-sensed images. The overall workflow 
(Fig. 1) was divided into 4 steps: (1) LUCC information extraction (in “LUCC information extraction” section), 
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Figure 1.   Flow chart of the proposed method.
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(2) sensitivity factor selection (in “Sensitivity factor selection” section), (3) model construction (in “Model con-
struction” section) and (4) accuracy evaluation (in “Accuracy evaluation” section).

The software packages used for this study were environment for visualizing images (ENVI) for image process-
ing, ArcGIS and MATLAB were used for analysing and presenting the results, and statistical product and service 
solutions (SPSS) was used for statistical analysis.

LUCC information extraction.  The LUCC information is obtained from remotely-sensed time series 
data. First, pre-processing was performed on the remotely-sensed image, including radiometric calibration, 
atmospheric correction and image cropping. The digital numbers in the raw data were converted to the top of 
atmosphere (TOA) reflectance by physical means via calibration parameters provided by Calibration Parameter 
Files (CPF), and the influence of atmospheric scattering and absorption were reduced by using Fast line-of-sight 
atmospheric analysis of spectral hypercubes (FLAASH) in ENVI. Then, based on features such as the spectral 
and spatial resolutions of the image, the training samples were selected and the maximum likelihood classifica-
tion (MLC) algorithm in supervised classification was carried out in order to obtain the land use types and their 
associated areal coverage within the study area. Considering the visual separability of different ground objects, 
the training samples were selected for six classes such as construction land, water, bare land, forest, tidal flat, 
crop land, and the training samples were divided into two parts, two-thirds for classification, and one-thirds for 
accuracy assessment. The reliable accuracy of classification was performed using overall accuracy and Kappa 
coefficient computed, and the overall accuracy is a measure of how well the classified pixels match the ground 
truth data while the Kappa coefficient measures how well the classification in question would compare to a 
chance arrangement of pixels to each land cover class. Finally, linear interpolation was performed by Eq. (1) on 
data with missing years, since remotely-sensed image may not cover all years.

where DataINI+1 is the data of ith year after the initial year INI, DataINI and DataTER are the data of the initial year 
INI and the termination year TER, respectively, and the data of the years between the initial year INI and the 
termination year TER is missing.

In the study, the overall accuracy and Kappa coefficient were computed by Eq. (2) using the confusion matrix, 
which is a square array of numbers set out in rows and columns which express the number of sample units (i.e., 
pixels, clusters of pixels, or polygons) assigned to a particular category relative to the actual category as verified 
on the ground55–57.

where OvAc is and khat are overall accuracy and Kappa coefficient, respectively, r is the number of rows in the 
matrix (the total number of categories), xii is the number of observations in row i and column i (the total pixels 
number of corrected classifications in training samples used for accuracy assessment), xi+ and x+i are the marginal 
totals of row i and column i, respectively, and N is the total number of observations (the total pixels number of 
training samples used for accuracy assessment).

Sensitivity factor selection.  The interaction mechanism between economic growth and LUCC informa-
tion is complex, and eleven economic indices are selected to describe economic status: gross domestic product 
(GDP), value-added of primary industry (VPI), value-added of secondary industry (VSI), value-added of ter-
tiary industry (VTI), per capita GDP (PGDP), fixed assets investment (FAI), total tourist income (TTI), gross 
industrial output value (GIOV), gross agricultural output value (GAOV), gross planting output value (GPOV) 
and gross forestry output value (GFOV). Therefore, the land category that is most relevant to the economic sta-
tistical index must be selected as sensitive factor to construct the model for estimating socioeconomic situations. 
The correlation coefficients between the economic statistical index and the land use type by Eq. (3) using correla-
tion analysis. For each economic statistical index, the most relevant land use type was selected as the sensitivity 
factor, i.e., the explanatory variable in the model.

where rLUCCm−ESIn is the correlation coefficient between land use type m (one in construction land, water, bare 
land, forest, tidal flat and crop land) and economic statistical index n (one in GDP, VPI, VSI, VTI, PGDP, FAI, 
TTI, GIOV, GAOV, GPOV and GFOV), xLUCCmi and xESInj xESInj are ith land use type m and jth economic sta-
tistical index in category n, respectively, xLULCm and xESIn are the average of land use type m and the average 
of economic statistical index n, respectively, N is the total number of land use type m or the total number of 
economic statistical index n.

Model construction.  Regression analysis was applied when using the LUCC information to model the eco-
nomic statistical indices. In order to eliminate heteroscedasticity and clarify the relationship between the LUCC 
information and the economic statistical indices more accurately, the logarithmically transformation base 10 
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were performed to change the range and scale of the data. We attempted to construct a single-factor quantitative 
model in which each economic statistical index is a dependent variable and the area of each land use type is an 
independent variable. The model is described by Eq. (4):

where Ieconomic is the value of a given economic statistical index, Llanduse is the area of the land use type that is 
selected as the sensitivity factor for this economic statistical index, and f is the quantitative model.

In this study, by inspecting scatter plots, a series of comparative statistical regression analyses are conducted, 
including linear, quadratic-term, power and exponential models. 4 types of simple quantitative models were 
constructed as shown in Table 1.

Accuracy evaluation.  Accuracy evaluation was performed to validate the model. For the model validation 
data, the independent variable was inserted into the regression model to obtain the estimated value, which was 
then compared with the actual value. The relative error (RE) is the ratio of the absolute error to the actual value, 
which can reflect the deviation of the model prediction from the actual value. The mean relative error (MRE) was 
used to evaluate the overall accuracy of the models. The formula is as follows:

where ye and ya are the model estimated value and the actual value, respectively, and n is the number of the 
actual value.

Study area and data
Study area.  Founded in 1987, Zhoushan is the first prefecture-level city in China that consists of islands; spe-
cifically, the Zhoushan Archipelago, which consists of 1390 islands with areas greater than 500 m258. Zhoushan 
City is located on the coast of the East China Sea, west of Hangzhou Bay and north of Shanghai (Fig. 2). It has 
a total administrative area of approximately 22,200 km2, but a land area of only 1140.12 km2. Zhoushan has 
abundant marine economic resources and is well known for marine fishery, tourism, international shipping and 
shipbuilding industries58. In 2011, the Zhoushan Archipelago New District was established. This was the first 
national strategic-level new district in China with a marine economy theme.

Zhoushan is characterised by hilly landforms, with numerous mountains and hills on the islands. Thus, 
land that can be effectively used is scarce. For this reason, the land development intensity of the islands varies 
greatly and the core zones of the city are located on the islands with larger areas. Zhoushan Island is the largest 
in Zhoushan City and also its economic and political center, and the area of Zhoushan Island is 502.65 km2, its 
east–west length is 44 km and its north–south width is 18 km59. The study area presented in Fig. 2a includes 
Zhoushan Island, Changzhi Island, Aoshan Island, Xiaogan Islands, and Lidiao Islands. The total land area of 
study region is 529.38 km2. This area is the core zone of Zhoushan and has experienced dramatic LUCC due to 
the rapid economic growth of the city in recent decades58. The original remotely-sensed image of the study area 
acquired on February 22, 2020 from the Landsat-8 OLI image is presented in Fig. 2b. The image are clear and 
high quality because of good weather conditions, and the study area includes the ocean, lakes, river, urban areas, 
wetlands, forest, and other features.

Data.  The data used in this study can be classified into 2 groups: remotely-sensed image and regional sta-
tistics of the study area. The remotely-sensed image for a particular day of a given year were used to derive the 
annual LUCC dynamics of the study area using classification technology of remotely-sensed image. The regional 
statistics were used to characterise the regional economic development situations for each calendar year.

Remotely‑sensed image.  We attempted to determine the LUCC information of the study area from remotely-
sensed image since the city was established. Given the limitations and constraints in the acquisition and selection 
of proper images, Landsat satellite images were used to derive the LUCC information in the study area. Landsat 
is a series of terrestrial satellites launched by NASA. Since 1972, 8 satellites have been launched, of which the 
Landsat 6 satellite failed to transmit. At present, the Landsat satellites have been continuously observing the 
Earth for more than 40 years and have accumulated large-scale, long-term remotely-sensed image, which are 
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Table 1.   The type and representation of the model. Where y is the economic index of the logarithmic 
transformed base 10, x is the area of land use type of the logarithmic transformed base 10, and a, b and c are 
coefficients.

The type of the model The representation of the model

Linear model y = a + bx

Quadratic-term model y = a + bx + cx2

Power model y = axb

Exponential model y = aebx
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widely used in Earth observation research21,32. Landsat satellites have basically the same observation conditions 
and 16- or 18-day re-entry cycles. In addition, the thematic mapper (TM), enhanced thematic mapper (ETM+), 
operational land imager (OLI) on Landsat satellite are the multi-spectral sensor with spatial resolution of 30 m 
(except for several spectral bands), which is better than the NTL data.

Considering the availability of cloud-free spatial coverage and the consistency of the annual acquisition date, 
11 Landsat TM or OLI images spanning 32 years (1984–2016) were used to obtain the multi-temporal LUCC 
information of the study area (Table 2). The collected images were provided by the US Geological Survey (USGS) 
(https​://glovi​s.usgs.gov/) and the Geospatial Data Cloud Platform of the Chinese Academy of Sciences Computer 
Network Information Center (https​://www.gsclo​ud.cn). The image format is GeoTIFF and the coordinate system 
is World Geodetic System 1984 (WGS84) projected by Universal Transverse Mercator (UTM) Projection. For the 
Landsat TM images, only the 6 reflective bands with 30-m spatial resolution were used for further data analysis, 
while the thermal infrared (TIR) band with a coarse spatial resolution of 120 m was excluded. For OLI images, 
the Pan band and Cirrus band were excluded, while the other 7 bands with 30-m spatial resolution were used.

Socioeconomic dataset.  In general, GDP is the most common economic indicator. In this study, we extended 
the selection of indicators to include those that are, in theory, closely related to LUCC information. We assem-
bled a city-level statistical dataset spanning 32 years (1984–2016) from the statistical yearbook of Zhoushan 
City, gross domestic product (GDP), value-added of primary industry (VPI), value-added of secondary industry 
(VSI), value-added of tertiary industry (VTI), per capita GDP (PGDP), fixed assets investment (FAI), total tour-
ist income (TTI), gross industrial output value, (GIOV), gross agricultural output value (GAOV), gross planting 

Figure 2.   Location map of the study area. (a) The geo-location of the study area, (b) The remotely-sensed 
image of the study area is false-color composite of Landsat-8 OLI images that rank band composites in the 
order of short wave-infrared (SWIR), near-infrared (NIR), and red bands. Map created in ArcMap 10.5 of the 
Environmental System Resource Institute, Inc. (www.esri.com/softw​are/arcgi​s/arcgi​s-for-deskt​op). Boundaries 
made with free vector data provided by National Catalogue Service for Geographic Information (https​://www.
webma​p.cn/commr​es.do?metho​d=dataD​ownlo​ad).

Table 2.   Information of landsat imagery used in the research.

Satellite Sensor Acquire date Path/Row

Landsat 5 TM April, 1984 118/39

Landsat 5 TM June, 1990 118/39

Landsat 5 TM July, 1995 118/39

Landsat 5 TM April, 1999 118/39

Landsat 5 TM June, 2005 118/39

Landsat 5 TM July, 2007 118/39

Landsat 5 TM July, 2009 118/39

Landsat 5 TM May, 2011 118/39

Landsat 8 OLI July, 2013 118/39

Landsat 8 OLI August, 2015 118/39

Landsat 8 OLI May, 2016 118/39

https://glovis.usgs.gov/
https://www.gscloud.cn
http://www.esri.com/software/arcgis/arcgis-for-desktop
https://www.webmap.cn/commres.do?method=dataDownload
https://www.webmap.cn/commres.do?method=dataDownload
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output value (GPOV) and gross forestry output value (GFOV). GDP is a monetary measure of the market value 
of all the final goods and services produced in a specific period, PGDP refers to the per capita GDP, the primary 
industry (PI) refers to agriculture, forestry, animal husbandry, and fishery (excluding the service industry in 
agriculture, forestry, animal husbandry, and fishery), the secondary industry (SI) refers to mining (excluding 
mining auxiliary activities), manufacturing (excluding metal products, machinery and equipment repair), elec-
tricity, heat, gas and water production and supply, and construction, the tertiary industry (TI) is the service 
industry, which mainly includes transportation, communications, commerce, catering, finance, education, and 
public services, FAI measures the change in the total spending on non-rural capital investments such as factories, 
roads, power grids, and property in Chines, the TTI refers to the total monetary income obtained by the destina-
tion country or region in a certain period from providing tourism products, purchasing goods, and other ser-
vices to tourists at home and abroad, the GIOV refers to the total result of industrial production activities of an 
industrial enterprise (unit) in a certain period, which is the total value of industrial final products and industrial 
labor services provided in money, the GAOV is the total amount of all agricultural, forestry, animal husbandry, 
and fishery products expressed in monetary form in a certain period (usually 1 year), the GPOV refers to the 
total amount of plantation and agricultural products expressed in monetary form in a certain period (usually 
1 year), and the GFOV refers to the total amount of fishery expressed in monetary form in a certain period (usu-
ally 1 year)13,16,60–63. The details of these indicators are listed in Table 3. For the PGDP, from 1984 to 2000 it was 
calculated using the registered population, and from 2000 to 2016 it was calculated using the resident popula-
tion. In this study, PGDP is in units of yuan (CNY), while the other economic statistics are in units of 105 CNY.

Experimental results and analyses
LUCC information extraction.  The Landsat satellite images were pre-processed using several procedures, 
i.e., radiometric calibration, atmospheric correction and image cropping. In classification system construction, 
the spatial resolution, spectral resolution of remotely-sensed image and the features of ground objects in the 
study area need to be considered comprehensively. The study area has a complex landscape, with hills in the cent-
ers of the islands, making the spatial distribution of the objects discrete and resulting in mixed pixels at the spa-
tial resolution of the images. Due to the significant spectral confusion, we grouped several categories together; 
specifically, grassland was grouped into cropland; aquaculture and brine pan were grouped into tidal flat. Finally, 
the LUCC information in the study area was divided into 6 categories: (1) construction land, (2) forest, (3) water, 
(4) bare land, (5) cropland and (6) tidal flat.

Maximum likelihood estimation was applied to the supervised classification of pre-processed Landsat images. 
The images were visually enhanced using linear contrast stretching and different band combinations to help 
select training samples. The classification results were modified and corrected in order to eliminate obvious 
errors. Accuracy assessment was performed for each classification result, and the samples were chosen from the 
repository of Google Earth historical images. The average value of the overall classification accuracy was 84.05%, 
and the average value of the Kappa coefficient was 0.80, as shown in Table 4.

The final classification maps for each of the 11 years are shown in Fig. 3, and the statistics of each category 
from 1984 to 2016 are listed in Table 5, and based on the classification results, the areas of land use types for 
missing years were obtained by the linear interpolation. In the Table 5, the bold and the italics represent the 
original data and the interpolated data, respectively.

The study area has obvious characteristics of LUCC information over the past few decades. First, construction 
land has increased more than fivefold, while tidal flats and cultivated land/grassland have decreased significantly. 
The construction land area continually increased over the 32-year study period, from 19.57 to 131.51 km2, an 
increase of 111.94 km2 and an increase ratio of 572.03%. Conversely, the tidal flat area decreased by 27.40 km2, 
from 29.35 to 1.95 km2, translating to a decrease ratio of 93.35%. The area of cultivated land/grassland decreased 
by 61.60 km2, from 220.70 to 159.10 km2, or by 27.91%. Meanwhile, forest land changed relatively little in ratio 
and area. The forest area increased by 16.06 km2, from 210.72 to 226.78 km2, translating to an increase of 7.62%, 
while the water area increased by 5.56 km2, from 5.62 km2 to 11.18 km2, an increase ratio of 98.80%. Finally, the 

Table 3.   Socioeconomic dataset of Zhoushan.

Economic statistical index Abbreviation Units Date

Gross domestic product GDP 105 CNY 1984–2016

Value-added of primary industry VPI 105 CNY 1984–2016

Value-added of secondary industry VSI 105 CNY 1984–2016

Value-added of tertiary industry VTI 105 CNY 1984–2016

Per capita GDP PGDP CNY 1984–2016

Fixed assets investment FAI 105 CNY 1984–2016

Total tourist income TTI 105 CNY 1984–2016

Gross industrial output value GIOV 105 CNY 1984–2016

Gross agricultural output value GAOV 105 CNY 1984–2016

Gross planting output value GPOV 105 CNY 1984–2016

Gross forestry output value GFOV 105 CNY 1984–2016
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area of bare land fluctuated greatly, but the overall change was not obvious, exhibiting a net increase of 0.45 km2 
during the study period, from 19.84 to 20.29 km2, or 2.26%.

Sensitivity factor selection.  Given that LUCC information is a complex process driven by socioeconomic 
factors, the primary challenge for estimating economic situations using LUCC information is to determine the 
association between the area of land use type and the economic statistics. Pearson correlation analysis was 
applied to qualitatively examine the statistical dependence between area of land use type and economic statistics 
across the study period. The Pearson correlation coefficient (ranging from − 1 to 1) was used to indicate the 
sensitivity level of land use type versus economic indices. In addition, the statistical significance level was tested 
using two-tailed t-statistics.

In order to make LUCC information consistent with economic statistics, linear interpolation was performed 
on missing-year data. Consequently, we obtained 33 sets of raw data consisting of the LUCC information and 
economic statistics for every year from 1984 to 2016. This raw dataset was then logarithmically transformed (in 
base 10, described as lg) in order to eliminate the intrinsic exponential growth trend of economic indicators and 
to make the data more consistent with the normal distribution, which is the assumption of Pearson correlation 

Table 4.   Classification accuracy assessment.

Year Overall accuracy (%) Kappa coefficient

1984 84.92 0.81

1990 76.58 0.71

1995 82.48 0.76

1999 87.05 0.84

2005 87.11 0.82

2007 82.73 0.78

2009 88.73 0.81

2011 83.80 0.81

2013 83.18 0.80

2015 84.44 0.81

2016 83.50 0.80

Average 84.05 0.80

Figure 3.   Classification maps of the 11 years examined in this study. Map created in ArcMap 10.5 of the 
Environmental System Resource Institute, Inc. (www.esri.com/softw​are/arcgi​s/arcgi​s-for-deskt​op).

http://www.esri.com/software/arcgis/arcgis-for-desktop
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analysis. We extracted one-thirds of the dataset at equal intervals for model validation, with the remaining data 
used for modelling. The correlation coefficients between each economic index and the area of each land cover 
type for the data used to construct the model are listed in Table 6. These results reveal that all of the economic 
indices are positively correlated with construction land, forest and water, and negatively correlated with cropland, 
bare land and tidal flat. The relevance varies, but it is obvious that each economic index is significantly correlated 
with construction land area; indeed, the coefficients have the highest values among all the land use types. It is 
apparent that among all of these land use type, the change of construction land is the best explanatory variable 
for revealing the trend of economic development in the study area. Thus, construction land was selected as the 
sensitivity factor for the single-factor quantitative model.

Model construction.  In order to reduce the impact of large variations in economic index values in time 
series and to improve the accuracy of regression analysis, a lg–lg regression model was used to estimate eco-
nomic indices. Taking the lg of the economic index as the dependent variable and the lg of area of construction 
land (ACL) as the independent variable, the lg–lg scatter plots are presented in Fig. 4.

The coefficients for the lg–lg regression model were estimated by the data used to construct the model. The 
specific information is shown in Tables 7, 8, 9 and 10; all of the models are significant, with p < 0.01.

Accuracy evaluation.  Model validation data were used to verify the models. The estimated economic indi-
ces were derived by the models and then compared to the actual values. The MRE is listed in Table 11, showing 
that the estimation accuracy varies among the models. For most of the economic indices, including VPI, VTI, 
PGDP, TTI, GAOV and GPOV, the quadratic-term models have higher precision than other models. For VSI 
and GIOV, linear models have the highest precision. For GDP and FAI, power models display the best perfor-

Table 5.   Areas of land use types. Note: In this table, the unit of area is km2.

No. Year Construction land Water Bare land Forest Tidal flat Cropland

1 1984 19.57 5.62 19.84 210.72 29.35 220.70

2 1985 20.79 5.52 23.61 208.97 28.64 217.98

3 1986 22.01 5.41 27.38 207.22 27.92 215.26

4 1987 23.23 5.31 31.16 205.48 27.20 212.55

5 1988 24.45 5.21 34.93 203.73 26.49 209.83

6 1989 25.67 5.10 38.70 201.99 25.77 207.11

7 1990 26.89 5.00 42.47 200.24 25.06 204.39

8 1991 28.75 4.79 38.64 204.72 23.38 204.22

9 1992 30.61 4.58 34.81 209.20 21.70 204.05

10 1993 32.47 4.37 30.97 213.69 20.01 203.89

11 1994 34.33 4.16 27.14 218.17 18.33 203.72

12 1995 36.19 3.95 23.31 222.65 16.65 203.55

13 1996 39.66 4.78 19.54 221.43 16.43 204.49

14 1997 43.12 5.61 15.77 220.21 16.21 205.43

15 1998 46.58 6.44 12.00 218.99 15.99 206.37

16 1999 50.05 7.27 8.23 217.77 15.77 207.31

17 2000 52.20 7.63 11.66 219.98 15.15 201.55

18 2001 54.34 8.00 15.10 222.18 14.53 195.80

19 2002 56.49 8.36 18.53 224.39 13.91 190.04

20 2003 58.63 8.72 21.96 226.60 13.30 184.28

21 2004 60.78 9.08 25.39 228.80 12.68 178.53

22 2005 62.92 9.45 28.83 231.01 12.06 172.77

23 2006 74.57 8.61 21.46 231.27 13.62 172.34

24 2007 86.22 7.77 14.10 231.54 15.17 171.91

25 2008 89.80 7.08 18.19 244.28 16.53 154.83

26 2009 93.37 6.38 22.28 257.02 17.89 137.75

27 2010 96.05 6.20 19.09 241.92 11.97 157.93

28 2011 98.72 6.03 15.91 226.82 6.05 178.11

29 2012 107.55 9.18 20.46 234.49 4.81 160.38

30 2013 116.38 12.32 25.02 242.15 3.56 142.66

31 2014 119.09 12.06 34.36 236.17 3.66 138.15

32 2015 121.80 11.80 43.69 230.19 3.76 133.65

33 2016 131.51 11.18 20.29 226.78 1.95 159.10
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mance in terms of precision. Overall, in spite of the model differences, GDP, VPI, VSI, VTI, PGDP, FAI and 
GIOV are better estimated than TTI, GAOV, GPOV and GFOV.

The best-fitting models for quantifying the relationship of each economic index were obtained by comparing 
the MREs of the different models. Among the 4 model types, the model with the lowest MRE was selected as the 
final model for each economic index. As shown in Table 12 and Fig. 5, the prediction errors of GDP, VTI and 
PGDP are less than 10%, indicating that these 3 economic indices are quite well estimated by the best-fitting 
models. For VPI, VSI, FAI, TTI, GIOV, GAOV and GPOV, the errors are also within 20%, which are satisfactory. 
For GFOV, however, the lowest MRE of 28.19% indicates that the models could not fit it accurately. Overall, the 
quantitative models could accurately reveal the dynamic changes for most of the economic indicators in this 
case study.

Discussion
Remotely-sensed image record changes on the Earth’s surface and thus can be used to represent human activi-
ties and to estimate socioeconomic indicators. Traditionally, NTL data are the main remotely-sensed image 
utilised to estimate socioeconomic situations. Few studies, however, have focused on the quantitative relation-
ship between LUCC information and economic development, which is also a reliable indicator for estimating 
socioeconomic situations.

This study opens up unique opportunities for the objective, seamless understanding of regional economic 
development from the perspective of land-use/cover change using remotely-sensed time series data, as well as 
the correction of economic survey data, both with a high degree of accuracy. The results of the case study in 
Zhoushan City indicated that LUCC information derived from remotely-sensed image could be indicative of 
dynamics in economic activity during economic development processes at the city level, as revealed by various 
quantitative correlations with relevant economic statistics. There is good performance in modelling the economic 
statistics when the area of construction land is selected as the sensitivity factor. The method proposed in this 
study still contains some deficiencies and uncertainties, however, as a result of the following factors.

The LUCC information is the key factor affecting the modelling accuracy, since the sensitivity factors selected 
from LUCC information were the basis for the regressions. The spatial resolution of Landsat imagery was rela-
tively low and the grouping of land use types was made due to the low separability caused by mixed pixels. It is 
necessary to use high-resolution images to extract more detailed LUCC information, and at the same time, we 
can use much more suitable classification methods to improve classification accuracy.

1.	 The spatial matching of remotely-sensed image and statistical data is also one of the influential factors which 
is currently not perfect and requires further improvement in future studies. Due to an absence of statistical 
data precisely matching the remotely-sensed image spatially, we had to utilise the LUCC information that 
only covered the core zone of Zhoushan City when modelling the statistical data at the city level.

2.	 In the study, only a single factor was included in the modelling, while in reality the correlation analysis 
showed that several land use types are significantly correlated with economic indices. Thus, additional factors 
should be included in the modelling, and the analysis of the impacts of different land use types on economic 
indices is necessary.

3.	 The existing studies have shown that the interaction between LUCC and economic development displays 
obvious regional differences. This interaction may be affected by many natural and unnatural factors such 
as land resource conditions, land policy and economic development stage. Therefore, the reliability of the 
proposed method needs to be further verified by additional case studies in different areas.

Table 6.   Correlation coefficients between LUCC information and economic statistical index. In the table, * 
indicates the significance level of 0.05, ** indicates the significance level of 0.01, and the bold font indicates the 
highest relevance.

GDP VPI VSI VTI PGDP FAI

Construction land 0.996** 0.976** 0.991** 0.995** 0.995** 0.991**

Forest 0.890 0.856** 0.904** 0.892** 0.893** 0.890**

Water 0.731** 0.723** 0.717** 0.736** 0.732** 0.727**

Crop land − 0.898** − 0.845** − 0.907** − 0.892** − 0.898** − 0.912**

Bare land − 0.306 − 0.354 − 0.289 − 0.315 − 0.309 − 0.260

Tidal flat − 0.850** − 0.867** − 0.817** − 0.844** − 0.847** − 0.864**

TTI GIOV GAOV GPOV GFOV

Construction land 0.984** 0.990** 0.955** 0.932** 0.693**

Forest 0.892** 0.907** 0.841** 0.856** 0.632**

Water 0.718** 0.717** 0.674** 0.619** 0.315

Crop land − 0.854** − 0.905** − 0.806** − 0.768** − 0.525*

Bare land − 0.368 − 0.290 − 0.354 − 0.421 − 0.302

Tidal flat − 0.829** − 0.815** − 0.837** − 0.792** − 0.595**
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Conclusions
From the perspective of the interrelationship between LUCC information and economic development, this study 
proposed a method for analysing regional economic situations using remotely-sensed image to extract LUCC 
information. Through a case study of Zhoushan, China’s first prefecture-level island city, this research investi-
gated the ability of LUCC information to estimate economic indices. The LUCC information was extracted from 
Landsat images, taking the area of construction land as the explanatory variable after correlation analysis. Eleven 
economic indices—GDP, VPI, VSI, VTI, PGDP, FAI, TTI, GIOV, GAOV, GPOV and GFOV—were incorporated 

Figure 4.   Scatter plots of lg of economic index versus lg of area of construction land (ACL): (a) GDP, (b) VPI, 
(c) VSI, (d) VTI, (e) PGDP, (f) FAI, (g) TTI, (h) GIOV, (i) GAOV, (j) GPOV, (k) GFOV. Figures created in 
MATLAB R2018a of the MathWorks, Inc. (www.mathw​orks.com).

http://www.mathworks.com
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in linear, quadratic-term, power and exponential models. The accuracy evaluation revealed that the mean relative 
errors of the best-fitting models for the 11 economic indices were 6.50%, 14.47%, 14.57%, 7.61%, 7.38%, 14.95%, 
17.99%, 14.60%, 17.45%, 12.57% and 28.19%, respectively. In conclusion, the results prove that LUCC informa-
tion could be used as an explanatory indicator for estimating economic development at the regional level, and 

Table 7.   Fitting results of the linear model. In the study, lg represents the logarithmically transformation base 
10.

Dependent variable (y) Independent variable (x) Model R2

lg (GDP) lg (ACL) y = 1.874 + 2.478x 0.991

lg (VPI) lg (ACL) y = 2.741 + 1.573x 0.952

lg (VSI) lg (ACL) y = 1.313 + 2.535x 0.982

lg (VTI) lg (ACL) y = 0.946 + 2.787x 0.989

lg (PGDP) lg (ACL) y = 0.017 + 2.392x 0.991

lg (FAI) lg (ACL) y = 0.404 + 3.146x 0.982

lg (TTI) lg (ACL) y = − 2.229 + 4.338x 0.968

lg (GIOV) lg (ACL) y = 1.356 + 2.444x 0.981

lg (GAOV) lg (ACL) y = 2.894 + 1.661x 0.911

lg (GPOV) lg (ACL) y = 2.607 + 1.191x 0.869

lg (GFOV) lg (ACL) y = 2.222 + 0.597x 0.481

Table 8.   Fitting results of the quadratic-term model.

Dependent variable (y) Independent variable (x) Model R2

lg (GDP) lg (ACL) y = 0.469 + 4.158x − 0.491x2 0.993

lg (VPI) lg (ACL) y = 0.6151 + 4.117x − 0.744x2 0.962

lg (VSI) lg (ACL) y = − 0.176 + 4.316x − 0.521x2 0.984

lg (VTI) lg (ACL) y = − 1.715 + 5.970x − 0.931x2 0.995

lg (PGDP) lg (ACL) y = − 1.501 + 4.208x − 0.531x2 0.993

lg (FAI) lg (ACL) y = 0.260 + 3.319x − 0.051x2 0.982

lg (TTI) lg (ACL) y = − 10.622 + 14.378x − 2.936x2 0.989

lg (GIOV) lg (ACL) y = − 0.404 + 4.549x − 0.616x2 0.984

lg (GAOV) lg (ACL) y = − 1.918 + 7.417x − 1.683x2 0.956

lg (GPOV) lg (ACL) y = − 1.617 + 6.243x − 1.477x2 0.934

lg (GFOV) lg (ACL) y = − 2.823 + 6.631x − 1.765x2 0.683

Table 9.   Fitting results of the power model.

Dependent variable (y) Independent variable (x) Model R2

lg (GDP) lg (ACL) y = 4.225x0.693 0.992

lg (VPI) lg (ACL) y = 4.170x0.497 0.956

lg (VSI) lg (ACL) y = 3.748x0.768 0.984

lg (VTI) lg (ACL) y = 3.641x0.842 0.991

lg (PGDP) lg (ACL) y = 2.394x1.006 0.990

lg (FAI) lg (ACL) y = 3.513x0.931 0.980

lg (TTI) lg (ACL) y = 2.277x1.519 0.955

lg (GIOV) lg (ACL) y = 3.696x0.756 0.984

lg (GAOV) lg (ACL) y = 4.383x0.506 0.922

lg (GPOV) lg (ACL) y = 3.658x0.449 0.888

lg (GFOV) lg (ACL) y = 2.706x0.340 0.523
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the potential applications of remotely-sensed image in the monitoring of economic activities are worth pursuing. 
In future research, the remotely-sensed image quality still has room for improvement, and more methods could 
be applied to the classification process.

In this paper, a comprehensive analysis method for analysis of regional economic situation was enriched using 
remote-sensing technology. The study has some deficiencies, and further work should be conducted regarding (1) 
more case studies from different regions should be undertaken in order to verify the reliability and applicability of 

Table 10.   Fitting results of the exponential model.

Dependent variable (y) Independent variable (x) Model R2

lg (GDP) lg (ACL) y = 3.016 e0.410x 0.985

lg (VPI) lg (ACL) y = 3.281 e0.293x 0.941

lg (VSI) lg (ACL) y = 2.580 e0.454x 0.977

lg (VTI) lg (ACL) y = 2.423 e0.497x 0.978

lg (PGDP) lg (ACL) y = 1.470 e0.594x 0.980

lg (FAI) lg (ACL) y = 2.232 e0.551x 0.975

lg (TTI) lg (ACL) y = 1.106 e0.889x 0.928

lg (GIOV) lg (ACL) y = 2.560 e0.447x 0.975

lg (GAOV) lg (ACL) y = 3.448 e0.296x 0.894

lg (GPOV) lg (ACL) y = 2.959 e0.262x 0.856

lg (GFOV) lg (ACL) y = 2.324 e0.193x 0.479

Table 11.   Mean relative errors (MREs) of the models. In the table, the bold font indicates the minimal MRE.

Economic indices Linear models (%) Quadratic term models (%) Power models (%) Exponential models (%)

GDP 7.42 7.91 6.50 10.63

VPI 14.92 14.47 14.53 15.25

VSI 14.57 15.51 14.88 15.96

VTI 11.30 7.61 10.87 18.12

PGDP 7.49 7.38 7.83 12.91

FAI 16.15 16.35 16.44 14.95

TTI 37.88 17.99 45.81 63.48

GIOV 14.60 15.17 14.91 16.63

GAOV 23.06 17.45 21.56 25.94

GPOV 19.88 12.57 18.36 21.50

GFOV 35.46 28.19 34.04 35.15

Table 12.   Best-fitting models.

Dependent variable (y) Independent variable (x) Model R2 MRE (%)

lg (GDP) lg (ACL) y = 4.225x0.693 0.992 6.50

lg (VPI) lg (ACL) y = 0.615 + 4.117x − 0.744x2 0.962 14.47

lg (VSI) lg (ACL) y = 1.313 + 2.535x 0.982 14.57

lg (VTI) lg (ACL) y = − 1.715 + 5.970x − 0.931x2 0.995 7.61

lg (PGDP) lg (ACL) y = − 1.501 + 4.208x − 0.531x2 0.993 7.38

lg (FAI) lg (ACL) y = 2.232 e0.551x 0.975 14.95

lg (TTI) lg (ACL) y = − 10.622 + 14.378x − 2.936x2 0.989 17.99

lg (GIOV) lg (ACL) y = 1.356 + 2.444x 0.981 14.60

lg (GAOV) lg (ACL) y = − 1.918 + 7.417x − 1.683x2 0.956 17.45

lg (GPOV) lg (ACL) y = − 1.617 + 6.243x − 1.477x2 0.934 12.57

lg (GFOV) lg (ACL) y = − 2.823 + 6.631x − 1.765x2 0.683 28.19

Average 0.949 14.21
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the proposed method; (2) using remotely-sensed image with the higher spatial resolution to obtain more detailed 
information on land use and cover change, and reduce the impact of mixed pixels on statistics of areas of land 
use types; (3) using the method such as deep learning to improve the classification accuracy.

Received: 14 February 2020; Accepted: 13 July 2020

Figure 5.   Scatter plots of economic index versus area of construction land and the best-fitting models: (a) GDP, 
(b) VPI, (c) VSI, (d) VTI, (e) PGDP, (f) FAI, (g) TTI, (h) GIOV, (i) GAOV, (j) GPOV, (k) GFOV. Figures created 
in MATLAB R2018a of the MathWorks, Inc. (www.mathw​orks.com).

http://www.mathworks.com


14

Vol:.(1234567890)

Scientific Reports |        (2020) 10:12721  | https://doi.org/10.1038/s41598-020-69716-2

www.nature.com/scientificreports/

References
	 1.	 Cao, W., Wu, D., Huang, L. & Liu, L. Spatial and temporal variations and significance identification of ecosystem services in the 

Sanjiangyuan National Park, China. Sci. Rep. 10, 1377–1398. https​://doi.org/10.1038/s4159​8-020-63137​-x (2020).
	 2.	 Wu, J., He, S., Peng, J., Li, W. & Zhong, X. Intercalibration of DMSP-OLS night-time light data by the invariant region method. 

Int. J. Remote Sens. 20, 7356–7368. https​://doi.org/10.1080/01431​161.2013.82036​5 (2013).
	 3.	 Rawat, K. S., Singh, S. K., Singh, M. I. & Garg, B. L. Comparative evaluation of vertical accuracy of elevated points with ground 

control points from ASTERDEM and SRTMDEM with respect to CARTOSAT-1DEM. Remote Sens. Appl. Soc. Environ. 13, 289–297. 
https​://doi.org/10.1016/j.rsase​.2018.11.005 (2019).

	 4.	 Parsa, V. A. & Salehi, E. Spatio-temporal analysis and simulation pattern of land use/cover changes, case study: Naghadeh, Iran. 
J. Urban Manag. 5, 43–51. https​://doi.org/10.1016/j.jum.2016.11.001 (2016).

	 5.	 Chen, C. et al. The application of the tasseled cap transformation and feature knowledge for the extraction of coastline information 
from remote sensing images. Adv. Space Res. 64, 1780–1791. https​://doi.org/10.1016/j.asr.2019.07.032 (2019).

	 6.	 Chen, C. et al. Knowledge-based identification and damage detection of bridges spanning water via high-spatial-resolution optical 
remotely sensed imagery. J. Indian Soc. Remote Sens. 47, 1999–2008. https​://doi.org/10.1007/s1252​4-019-01036​-z (2019).

	 7.	 Chen, C., Fu, J. Q., Zhang, S. & Zhao, X. Coastline information extraction based on the tasseled cap transformation of Landsat-8 
OLI images. Estuar. Coast. Shelf Sci. 217, 281–291. https​://doi.org/10.1016/j.ecss.2018.10.021 (2019).

	 8.	 Rogana, J. & Chen, D. M. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 
61, 301–325. https​://doi.org/10.1016/S0305​-9006(03)00066​-7 (2004).

	 9.	 Saux, B. L., Yokoya, N., Hansch, R. & Prasad, S. Advanced multisource optical remote sensing for urban land use and land cover 
classification. IEEE Geosci. Remote Sens. Mag. 6, 85–89. https​://doi.org/10.1109/MGRS.2018.28743​28 (2018).

	10.	 Singh, S. K., Basommi, B. P., Mustak, S. K., Srivastava, P. K. & Szabo, S. Modelling of land use land cover change using earth 
observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto Int. 33, 1202–1222. https​://doi.org/10.1080/10106​
049.2017.13433​90 (2018).

	11.	 Goldblatt, R. et al. Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote 
Sens. Environ. 205, 253–275. https​://doi.org/10.1016/j.rse.2017.11.026 (2018).

	12.	 Balázs, B., Bíró, T., Dyke, G., Singh, S. K. & Szabó, S. Extracting water-related features using reflectance data and principal com-
ponent analysis of Landsat images. Hydrol. Sci. J. 63, 269–284. https​://doi.org/10.1080/02626​667.2018.14258​02 (2018).

	13.	 Liu, Y., Zhang, X., Kong, X., Wang, R. & Chen, L. Identifying the relationship between urban land expansion and human activities 
in the Yangtze River Economic Belt, China. Appl. Geogr. 94, 163–177. https​://doi.org/10.1016/j.apgeo​g.2018.03.016 (2018).

	14.	 Mustak, S., Baghmar, N. K., Srivastava, P. K., Singh, S. K. & Binolakar, R. Delineation and classification of rural–urban fringe using 
geospatial technique and onboard DMSP–operational Linescan system. Geocarto Int. 33, 375–396. https​://doi.org/10.1080/10106​
049.2016.12655​94 (2018).

	15.	 Croft, T. A. Nighttime images of the earth from space. Sci. Am. 239, 86–98. https​://doi.org/10.1038/scien​tific​ameri​can07​78-86 
(1978).

	16.	 Elvidge, C. D. et al. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric. 
Int. J. Remote Sens. 18(6), 1373–1379. https​://doi.org/10.1080/01431​16972​18485​ (1997).

	17.	 Elvidge, C. D. et al. Night-time lights of the world: 1994–1995. ISPRS J. Photogramm. Remote Sens. 56, 81–99. https​://doi.
org/10.1016/S0924​-2716(01)00040​-5 (2001).

	18.	 Doll, C. N. H., Muller, J. P. & Elvidge, C. D. Night-time imagery as a tool for global mapping of socioeconomic parameters and 
greenhouse gas emissions. AMBIO J. Hum. Environ. 29, 157–163. https​://doi.org/10.1579/0044-7447-29.3.157 (2000).

	19.	 Doll, C. N. H., Muller, J. P. & Morley, J. G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 
57, 75–92. https​://doi.org/10.1016/j.ecole​con.2005.03.007 (2006).

	20.	 Ivajnšič, D. & Devetak, D. GIS-based modelling reveals the fate of antlion habitats in the Deliblato Sands. Sci. Rep. 10, 5299. https​
://doi.org/10.1038/s4159​8-020-62305​-3 (2010).

	21.	 Ghosh, M. K., Kumar, L. & Roy, C. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. 
ISPRS J. Photogram. Remote Sens. 101, 137–144. https​://doi.org/10.1016/j.isprs​jprs.2014.12.009 (2015).

	22.	 Henderson, J. V., Storeygard, A. & Weil, D. N. Measuring economic growth from outer space. Am. Econ. Rev. 102, 994–1028. https​
://doi.org/10.1257/aer.102.2.994 (2012).

	23.	 Sutton, P. C. & Costanza, R. Global estimates of market and non-market values derived from nighttime satellite imagery, land 
cover, and ecosystem service valuation. Ecol. Econ. 41, 509–527. https​://doi.org/10.1016/S0921​-8009(02)00097​-6 (2002).

	24.	 Ma, T., Zhou, C., Pei, T., Haynie, S. & Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS 
nighttime light data: a comparative case study from China’s cities. Remote Sens. Environ. 124, 99–107. https​://doi.org/10.1016/j.
rse.2012.04.018 (2012).

	25.	 Min, B., Gaba, K. M., Sarr, O. F. & Agalassou, A. Detection of rural electrification in Africa using DMSP-OLS night lights imagery. 
Int. J. Remote Sens. 34, 8118–8141. https​://doi.org/10.1080/01431​161.2013.83335​8 (2013).

	26.	 Xie, Y. & Weng, Q. World energy consumption pattern as revealed by DMSP-OLS nighttime light imagery. GISci. Remote Sens. 53, 
265–282. https​://doi.org/10.1080/15481​603.2015.11244​88 (2016).

	27.	 Coops, N. C., Kearney, S. P., Bolton, D. K. & Radeloff, V. C. Remotely-sensed productivity clusters capture global biodiversity 
patterns. Sci. Rep. 8, 16261. https​://doi.org/10.1038/s4159​8-018-34162​-8 (2018).

	28.	 Waluda, C. M., Yamashiro, C., Elvidge, C. D., Hobson, V. R. & Rodhouse, P. G. Quantifying light-fishing for Dosidicus gigas in the 
eastern Pacific using satellite remote sensing. Remote Sens. Environ. 91, 129–133. https​://doi.org/10.1016/j.rse.2004.02.006 (2004).

	29.	 Oozeki, Y. et al. Reliable estimation of IUU fishing catch amounts in the northwestern Pacific adjacent to the Japanese EEZ: potential 
for usage of satellite remote sensing images. Mar. Policy 88, 64–74. https​://doi.org/10.1016/j.marpo​l.2017.11.009 (2018).

	30.	 Li, D., Zhao, X. & Li, X. Remote sensing of human beings—a perspective from nighttime light. Geo-spatial Inf. Sci. 19, 69–79. https​
://doi.org/10.1080/10095​020.2016.11593​89 (2016).

	31.	 Zhao, X. et al. Waterbody information extraction from remote-sensing images after disasters based on spectral information and 
characteristic knowledge. Int. J. Remote Sens. 38, 1402–1422. https​://doi.org/10.1080/01431​161.2016.12782​84 (2017).

	32.	 Keola, S., Andersson, M. & Hall, O. Monitoring economic development from space: using nighttime light and land cover data to 
measure economic growth. World Dev. 66, 322–334. https​://doi.org/10.1016/j.world​dev.2014.08.017 (2015).

	33.	 Chen, C., Fu, J. Q., Sui, X. X., Lu, X. & Tan, A. H. Construction and application of knowledge decision tree after a disaster for 
water body information extraction from remote sensing images. J. Remote Sens. 22, 792–801. https​://doi.org/10.11834​/jrs.20188​
044 (2018).

	34.	 Liu, Z., He, C., Zhang, Q., Huang, Q. & Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime 
light data from 1992 to 2008. Landsc. Urban Plan. 106, 62–72. https​://doi.org/10.1016/j.landu​rbpla​n.2012.02.013 (2012).

	35.	 Raupach, M. R., Rayner, P. J. & Paget, M. Regional variations in spatial structure of nightlights, population density and fossil-fuel 
CO2 emissions. Energy Policy 38, 4756–4764. https​://doi.org/10.1016/j.enpol​.2009.08.021 (2010).

	36.	 He, C., Ma, Q., Liu, Z. & Zhang, Q. Modeling the spatiotemporal dynamics of electric power consumption in Mainland China 
using saturation-corrected DMSP/OLS nighttime stable light data. Int. J. Digit. Earth 7, 993–1014. https​://doi.org/10.1080/17538​
947.2013.82202​6 (2014).

https://doi.org/10.1038/s41598-020-63137-x
https://doi.org/10.1080/01431161.2013.820365
https://doi.org/10.1016/j.rsase.2018.11.005
https://doi.org/10.1016/j.jum.2016.11.001
https://doi.org/10.1016/j.asr.2019.07.032
https://doi.org/10.1007/s12524-019-01036-z
https://doi.org/10.1016/j.ecss.2018.10.021
https://doi.org/10.1016/S0305-9006(03)00066-7
https://doi.org/10.1109/MGRS.2018.2874328
https://doi.org/10.1080/10106049.2017.1343390
https://doi.org/10.1080/10106049.2017.1343390
https://doi.org/10.1016/j.rse.2017.11.026
https://doi.org/10.1080/02626667.2018.1425802
https://doi.org/10.1016/j.apgeog.2018.03.016
https://doi.org/10.1080/10106049.2016.1265594
https://doi.org/10.1080/10106049.2016.1265594
https://doi.org/10.1038/scientificamerican0778-86
https://doi.org/10.1080/014311697218485
https://doi.org/10.1016/S0924-2716(01)00040-5
https://doi.org/10.1016/S0924-2716(01)00040-5
https://doi.org/10.1579/0044-7447-29.3.157
https://doi.org/10.1016/j.ecolecon.2005.03.007
https://doi.org/10.1038/s41598-020-62305-3
https://doi.org/10.1038/s41598-020-62305-3
https://doi.org/10.1016/j.isprsjprs.2014.12.009
https://doi.org/10.1257/aer.102.2.994
https://doi.org/10.1257/aer.102.2.994
https://doi.org/10.1016/S0921-8009(02)00097-6
https://doi.org/10.1016/j.rse.2012.04.018
https://doi.org/10.1016/j.rse.2012.04.018
https://doi.org/10.1080/01431161.2013.833358
https://doi.org/10.1080/15481603.2015.1124488
https://doi.org/10.1038/s41598-018-34162-8
https://doi.org/10.1016/j.rse.2004.02.006
https://doi.org/10.1016/j.marpol.2017.11.009
https://doi.org/10.1080/10095020.2016.1159389
https://doi.org/10.1080/10095020.2016.1159389
https://doi.org/10.1080/01431161.2016.1278284
https://doi.org/10.1016/j.worlddev.2014.08.017
https://doi.org/10.11834/jrs.20188044
https://doi.org/10.11834/jrs.20188044
https://doi.org/10.1016/j.landurbplan.2012.02.013
https://doi.org/10.1016/j.enpol.2009.08.021
https://doi.org/10.1080/17538947.2013.822026
https://doi.org/10.1080/17538947.2013.822026


15

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12721  | https://doi.org/10.1038/s41598-020-69716-2

www.nature.com/scientificreports/

	37.	 Yang, X., Lu, Y. C., Murtiyoso, A., Koehl, M. & Grussenmeyer, P. HBIM modeling from the surface mesh and its extended capability 
of knowledge representation. ISPRS Int. J. Geo-Inf. 8, 301. https​://doi.org/10.3390/ijgi8​07030​1 (2019).

	38.	 Yang, X., Qin, Q. M., Grussenmeyer, P. & Koehl, M. Urban surface water body detection with suppressed built-up noise based on 
water indices from Sentinel-2 MSI imagery. Remote Sens. Environ. 219, 259–270. https​://doi.org/10.1016/j.rse.2018.09.016 (2018).

	39.	 Singh, S. K. et al. Landscape transform and spatial metrics for mapping spatiotemporal land cover dynamics using earth observa-
tion data-sets. Geocarto Int. 32, 113–127. https​://doi.org/10.1080/10106​049.2015.11300​84 (2017).

	40.	 Singh, M., Malhi, Y. & Hagwat, S. Evaluating land use and aboveground biomass dynamics in an oil palm–dominated landscape 
in Borneo using optical remote sensing. J. Appl. Remote Sens. 8, 083695. https​://doi.org/10.1117/1.jrs.8.08369​5 (2014).

	41.	 Rounsevell, M. D. A. et al. Challenges for land system science. Land Use Policy 29, 899–910. https​://doi.org/10.1016/j.landu​sepol​
.2012.01.007 (2012).

	42.	 Dang, A. N. & Kawasaki, A. Integrating biophysical and socio-economic factors for land-use and land-cover change projection in 
agricultural economic regions. Ecol. Model. 344, 29–37. https​://doi.org/10.1016/j.ecolm​odel.2016.11.004 (2017).

	43.	 Li, J., Zhang, C., Zheng, X. & Chen, Y. Temporal-spatial analysis of the warming effect of different cultivated land urbanization of 
metropolitan area in China. Sci. Rep. 10, 2760. https​://doi.org/10.1038/s4159​8-020-59593​-0 (2020).

	44.	 Serra, P., Pons, X. & Saurí, D. Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces 
integrating biophysical and human factors. Appl. Geogr. 28, 189–209. https​://doi.org/10.1016/j.apgeo​g.2008.02.001 (2008).

	45.	 Li, C. et al. Study on average housing prices in the inland capital cities of China by night-time light remote sensing and official 
statistics data. Sci. Rep. 10, 7732. https​://doi.org/10.1038/s4159​8-020-64506​-2 (2017).

	46.	 Shu, C., Xie, H., Jiang, J. & Chen, Q. Is urban land development driven by economic development or fiscal revenue stimuli in 
China?. Land Use Policy 77, 107–115. https​://doi.org/10.1016/j.landu​sepol​.2018.05.031 (2018).

	47.	 Singh, S. K., Srivastava, K., Gupta, M., Thakur, K. & Mukherjee, S. Appraisal of land use/land cover of mangrove forest ecosystem 
using support vector machine. Environ. Earth Sci. 71, 2245–2255. https​://doi.org/10.1007/s1266​5-013-2628-0 (2014).

	48.	 Liu, J. et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 20, 483–494. 
https​://doi.org/10.1007/s1144​2-010-0483-4 (2010).

	49.	 Liao, W. et al. Taking optimal advantage of fine spatial resolution: promoting partial image reconstruction for the morphological 
analysis of very-high-resolution images. IEEE Geosci. Remote Sens. Mag. 5, 8–28. https​://doi.org/10.1109/mgrs.2017.26636​66 
(2017).

	50.	 Chen, C. et al. Damaged bridges over water: using high-spatial-resolution remote-sensing images for recognition, detection, and 
assessment. IEEE Geosci. Remote Sens. Mag. 6, 69–85. https​://doi.org/10.1109/MGRS.2018.28528​04 (2018).

	51.	 Gong, P. et al. Mapping essential urban land use categories in China (EULUC-China): preliminary results for 2018. Sci. Bull. 65, 
182–187. https​://doi.org/10.1016/j.scib.2019.12.007 (2020).

	52.	 Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 236, 111510. 
https​://doi.org/10.1016/j.rse.2019.11151​0 (2020).

	53.	 Sun, W., Peng, J., Yang, G. & Du, Q. Correntropy-based sparse spectral clustering for hyperspectral band selection. IEEE Geosci. 
Remote Sens. Lett. 17, 484–488. https​://doi.org/10.1109/LGRS.2019.29249​34 (2020).

	54.	 Sun, W., Yang, G., Peng, J. & Du, Q. Lateral-slice sparse tensor robust principal component analysis for hyperspectral image clas-
sification. IEEE Geosci. Remote Sens. Lett. 17, 107–111. https​://doi.org/10.1109/LGRS.2019.29153​15 (2020).

	55.	 Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46. 
https​://doi.org/10.1046/j.1365-2249.2000.01137​.x (1991).

	56.	 Sharma, D. & Singhai, J. An object-based shadow detection method for building delineation in high-resolution satellite images. 
PEG J. Photogramm. Remote Sens. Geoinf. Sci. 87, 103–118. https​://doi.org/10.1007/s4106​4-019-00070​-3 (2019).

	57.	 Chen, Y. Y., Ming, D. P. & Lv, X. W. Superpixel based land cover classification of VHR satellite image combining multi-scale CNN 
and scale parameter estimation. Earth Sci. Inform. 12, 341–363. https​://doi.org/10.1007/s1214​5-019-00383​-2 (2020).

	58.	 Fu, J. Q., Chen, C. & Chu, Y. L. Spatial–temporal variations of oceanographic parameters in the Zhoushan sea area of the East 
China Sea based on remote sensing datasets. Reg. Stud. Mar. Sci. 28, 100626. https​://doi.org/10.1016/j.rsma.2019.10062​6 (2019).

	59.	 Chen, J. Y. et al. Land-cover reconstruction and change analysis using multisource remotely sensed imageries in Zhoushan Islands 
since 1970. J. Coast. Res. 30, 272–282. https​://doi.org/10.2112/JCOAS​TRES-D-13-00027​.1 (2013).

	60.	 Orimoloye, I. R. et al. Wetland shift monitoring using remote sensing and GIS techniques: landscape dynamics and its implications 
on Isimangaliso Wetland Park, South Africa. Earth Sci. Inform. 12, 553–563. https​://doi.org/10.1007/s1214​5-019-00400​-4 (2020).

	61.	 Kakooei, M. & Baleghi, Y. A two-level fusion for building irregularity detection in post-disaster VHR oblique images. Earth Sci. 
Inform. 13, 459–477. https​://doi.org/10.1007/s1214​5-020-00449​-6 (2020).

	62.	 Ranjan, S., Sarvaiya, J. N. & Patel, J. N. Integrating spectral and spatial features for hyperspectral image classification with a modified 
composite kernel framework. PEG J. Photogram. Remote Sens. Geoinf. Sci. 87, 275–296. https​://doi.org/10.1007/s4106​4-019-00080​
-1 (2019).

	63.	 Singh, H., Garg, R. D. & Karnatak, H. C. Online image classification and analysis using OGC web processing service. Earth Sci. 
Inform. 12, 307–317. https​://doi.org/10.1007/s1214​5-019-00378​-z (2020).

Acknowledgments
The authors would like to thank the editors and the anonymous reviewers for their outstanding comments and 
suggestions, which greatly helped them to improve the technical quality and presentation of the manuscript. We 
also greatly appreciate the USGS (https​://www.usgs.gov) and Geospatial Data Cloud (https​://www.gsclo​ud.cn) 
for the free availability of Landsat remotely-sensed image. This work is supported by the National Natural Sci-
ence Foundation of China (41701447, 41701483), the Fundamental Research Funds for Zhejiang Provincial 
Universities and Research Institutes (2019J00003) , the Training Program of Excellent Master Thesis of Zhejiang 
Ocean University.
We thank LetPub (www.letpu​b.com) for its linguistic assistance during the preparation of this manuscript.

Author contributions
All authors listed in the revised manuscript significantly contributed to this study. Conception and supervision 
of the research topic, methodology, Chao Chen; data processing, Chao Chen, Xinyue He and Zhisong Liu; results 
analyzed, Chao Chen, Zhisong Liu and Weiwei Sun; Writing-original draft preparation, Chao Chen, Xinyue He 
and Yanli Chu; writing-review, revision and editing, Chao Chen, Xinyue He, Heng Dong and Yanli Chu.

Competing interests 
The authors declare no competing interests.

https://doi.org/10.3390/ijgi8070301
https://doi.org/10.1016/j.rse.2018.09.016
https://doi.org/10.1080/10106049.2015.1130084
https://doi.org/10.1117/1.jrs.8.083695
https://doi.org/10.1016/j.landusepol.2012.01.007
https://doi.org/10.1016/j.landusepol.2012.01.007
https://doi.org/10.1016/j.ecolmodel.2016.11.004
https://doi.org/10.1038/s41598-020-59593-0
https://doi.org/10.1016/j.apgeog.2008.02.001
https://doi.org/10.1038/s41598-020-64506-2
https://doi.org/10.1016/j.landusepol.2018.05.031
https://doi.org/10.1007/s12665-013-2628-0
https://doi.org/10.1007/s11442-010-0483-4
https://doi.org/10.1109/mgrs.2017.2663666
https://doi.org/10.1109/MGRS.2018.2852804
https://doi.org/10.1016/j.scib.2019.12.007
https://doi.org/10.1016/j.rse.2019.111510
https://doi.org/10.1109/LGRS.2019.2924934
https://doi.org/10.1109/LGRS.2019.2915315
https://doi.org/10.1046/j.1365-2249.2000.01137.x
https://doi.org/10.1007/s41064-019-00070-3
https://doi.org/10.1007/s12145-019-00383-2
https://doi.org/10.1016/j.rsma.2019.100626
https://doi.org/10.2112/JCOASTRES-D-13-00027.1
https://doi.org/10.1007/s12145-019-00400-4
https://doi.org/10.1007/s12145-020-00449-6
https://doi.org/10.1007/s41064-019-00080-1
https://doi.org/10.1007/s41064-019-00080-1
https://doi.org/10.1007/s12145-019-00378-z
https://www.usgs.gov
https://www.gscloud.cn
http://www.letpub.com


16

Vol:.(1234567890)

Scientific Reports |        (2020) 10:12721  | https://doi.org/10.1038/s41598-020-69716-2

www.nature.com/scientificreports/

Additional information
Correspondence and requests for materials should be addressed to Z.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this license, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Analysis of regional economic development based on land use and land cover change information derived from Landsat imagery
	Anchor 2
	Anchor 3
	Methodology
	LUCC information extraction. 
	Sensitivity factor selection. 
	Model construction. 
	Accuracy evaluation. 

	Study area and data
	Study area. 
	Data. 
	Remotely-sensed image. 
	Socioeconomic dataset. 


	Experimental results and analyses
	LUCC information extraction. 
	Sensitivity factor selection. 
	Model construction. 
	Accuracy evaluation. 

	Discussion
	Conclusions
	References
	Acknowledgments


