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ABSTRACT
Background: Onchocerciasis infection is one of the neglected tropical diseases targeted for 
eradication by 2030. The disease is usually transmitted to humans through the bites of black 
flies. These black flies mostly breed near well-oxygenated fast-running water bodies. The 
disease is common in mostly remote agricultural villages near rivers and streams.
Objective: In this study, a deterministic model describing the infection dynamics of human 
onchocerciasis disease with control measures is presented.
Methods: We derived the model’s reproductive number and used a stability theorem of a 
Metzler matrix to show that disease-free equilibrium is both locally and globally asymptoti-
cally stable whenever the reproductive number is less than one. Parameter contribution was 
conducted using sensitivity analysis. The model endemic equation is shown to be a cubic 
polynomial in the presence of infected immigrants and a quadratic form in their absence.
Results: When the inflow of infected immigrants is null, the model endemic equation may 
admit a unique equilibrium if the reproductive number is greater than one, or admits multiple 
endemic equilibria if the reproductive number is less than unity. We carried out a sensitivity 
analysis to identify the significant parameters that contribute to onchocerciasis spread.
Conclusion: Onchocerciasis disease can be eradicated if the importation of infected immi-
grants is properly monitored. The integration of the One Health concept in the public health 
system is key in tackling the emergence and spread of diseases.
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Introduction

Onchocerciasis popularly called river blindness or 
Robles’ disease is among the 11 most important 
neglected tropical diseases targeted for eradication 
by 2030 [1]. This disease is transmitted to humans 
through the bites of black fly of the genus Simulium. 
The disease is common in Africa and this calls for 
urgent attention. Neglected tropical diseases need 
urgent attention in developing countries at large. 
The fight against these diseases in developing coun-
tries is paramount.

These black flies breed near well oxygenated fast- 
running water bodies [2]. The immature phases of 
the black fly (egg, larva and pupa) are aquatic. As 
a result, the disease is common in most remote agri-
cultural villages near rivers and streams [3].

The people who are mostly at risk of black fly bites 
include farmers, tourists, missionaries/evangelists, 
peace keepers, field researchers and volunteers [4]. 
In West Africa, the fear of infection is one of the 
major causes of human migration from fertile river 
basins into the sub marginal lands, which results in 
over cultivation and low productivity [5].

Currently, about 218 million people globally is at 
risk of onchocerciasis transmissions. Over 99% of 
infected people dwell in Tropical Africa while the 
remaining live in Yemen and Latin America [6].

In 2017, it was estimated that 14.6 million of the 
people infected with onchocerca volvulus had 
developed various skin diseases and 1.15 million 
people had loss their vision according to a report 
by CDC-Onchocerciasis-Epidemiology and risk fac-
tors, 2019.

Figure 1 shows the Worldwide distribution of 
Onchocerca volvulus [6]. The disease is endemic in 
Western, Central and Eastern Africa. Northern and 
Southern Africa are free from the infection.

The continued existence of black fly vectors, the 
co-endemicity of onchocerciasis with Loa-loa, the 
inflow of infected immigrants and the lack of 
proper knowledge about onchocerciasis disease 
constitute a major threat to the elimination efforts 
of this disease especially in Africa [2,7,8]. In Ghana, 
for example, onchocerciasis is found in isolated 
remote farming communities near rivers and 
streams. And this make the disease control very 
challenging.

CONTACT Shaibu Osman shaibuo1010@gmail.com Department of Basic Sciences, University of Health and Allied Sciences, Ho, Ghana

INFECTION ECOLOGY & EPIDEMIOLOGY
2024, VOL. 14, 2347941
https://doi.org/10.1080/20008686.2024.2347941

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article 
has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0003-3692-3846
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/20008686.2024.2347941&domain=pdf&date_stamp=2024-05-08


Up to date, no vaccine nor medication for the 
prevention of onchocerciasis disease exist. Hence, 
mass drug administration with ivermectin has so far 
remained the only effective control strategy in the 
fight against this disease. However several studies 
have demonstrated that the complete elimination of 
the disease may not be feasible or may required 
a longer period of time especially in Africa with 
ivermectin drug alone [3,7]. Thus, alternative control 
measures including supplementary vector control 
strategies are recommended to accelerate the oncho-
cerciasis elimination drive [2,7–9].

Hence, improving our comprehension of the 
dynamics of the disease transmission using mathema-
tical modeling is necessary in order to design effective 
control techniques [10,11].

Mathematical models generally explain the 
dynamics of infections, the threshold value that 
determines the persistence or die out of the infection 
and the best control measures in combating diseases 
[12–16].

Several mathematical models have been used to 
evaluate intervention strategies concerning oncho-
cerciasis disease [3,8,12,17,18]. Authors in [3] 
adopted the theory of optimal control and explored 
the effectiveness of controls such as personal pro-
tection, treatment with ivermectin and vector con-
trol used to combat onchocerciasis diseases. Their 
results indicated that vector control was the best 
among the controls considered. However, it was 
concluded that eliminating onchocerciasis from the 
population depends on ivermectin treatment as well 
as vector control. The work done in [4], an SIR 
model of river blindness disease with demography 
was formulated. The results suggested that the 

endemicity of onchocerciasis represent a major 
health risk to the communities in northern 
Nigeria. It was also observed that there is a decline 
in the susceptibility rate. And this was probably due 
to the intervention by health workers in terms of 
treatment and education. According to [19], com-
bining ivermectin treatment with larviciding and 
trapping of black flies can significantly reduce onch-
ocerciasis transmission rate. The analysis of 
a mathematical model for onchocerciasis presented 
in [20] revealed that combining ivermectin mass 
drug administration with educational campaigns, 
larviciding and trapping of black flies can signifi-
cantly reduce the spread of onchocerciasis. These 
authors, however recommended that future oncho-
cerciasis models should endeavor to explore the 
influence of infected immigrants on onchocerciasis 
transmission dynamics.

Following the recommendations in [20], we for-
mulated and analyzed a simple model for the infec-
tion dynamics of onchocerciasis that takes into 
account educational campaigns, ivermectin treat-
ment, black fly larvae control, black fly trapping and 
the inflow of infected immigrants.

Educational campaign is aimed at creating aware-
ness about onchocerciasis and it’s main causes. 
Educate the public on preventive measures and the 
mode of treatment. Education can also help unveil 
the misconceptions and myths surrounding oncho-
cerciasis. Larviciding is intended to control the black 
fly numbers in the community [20]. Trapping of 
black flies refers to the process of using all kind of 
traps and baits to collect and remove black flies in the 
communities [8].

Table 1 and Figure 1 show reported cases of onch-
ocerciasis between 2008–2015. There is a decline in 
the number of reported cases of the disease.

Table 2 shows the number of reported cases of 
individuals treated for human onchocerciasis in 
Ghana from 2005–2019. This is evident that the dis-
ease needs urgent attention in Ghana.

Onchocerciasis model description and 
formulation

The model considered the interactions of human 
(host) and black fly (vector) populations. Humans 

Figure 1. Human onchocerciasis reported cases in Ghana 
from 2008–2015.

Table 1. Human onchocerciasis reported cases in Ghana from 
2008 to 2015.

Year Cases Cummulative cases

2008 2225 2225
2009 2111 4336
2010 1728 6064
2011 1263 7327
2012 724 8051
2013 462 8513
2014 609 9122
2015 380 9502
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(hosts) are classified into susceptible ðShÞ, suscep-
tible educated ðSehÞ, infected ðIhÞ and treated ðThÞ

subclasses. As a result, the total human population 
at any given time t is:

Following the model formulation in [21], the total 
host population is sustained at a constant rate πh that 
includes birth and immigration of which a small frac-
tion p are infected immigrants. Thus, humans are 
recruited into the susceptible class at a rate 
ð1 � pÞπh. Susceptible humans receive education on 
the disease through campaigns and move to suscep-
tible educated class upon compliance at a rate θ. 
Susceptible and susceptible educated humans become 
infected through contact with infected vectors at 
a rate λh and ð1 � σÞλh, respectively. Where σ is the 
efficacy of educational campaign. Infected humans 
receive ivermectin drug through mass administration 
and progress to treated class at a rate γ. Treated 
humans become susceptible educated at a rate φ as 
the results of the sterilizing effect of ivermectin drug. 
A good number of studies have reported that humans 
receiving ivermectin treatment are still transmitting 
onchocerciasis [20,22,23]. Thus, in this model, 
r 2 ½0; 1Þ is a modification parameter used to account 
for the reduction in transmission of infections from 
treated hosts. μh is the human removal rate from each 
human compartment.

Also, the total black fly vector population is stra-
tified into immature black fly and adults black fly 
sub-populations. The immature sub-population con-
sists of the black fly eggs, larvae and pupae stages. 
These stages form the aquatic phase of the black fly.

For computational simplicity, all the aquatic stages 
are lumped into a single compartment denoted by 
Avð Þ. The aquatic vector Avð Þ is generated by the eggs    

laid by the female adults’ black fly (susceptible and 
infected) at a rate πv 1 � Av

K

� �
Sv þ Ivð Þ

� �
.

The population of aquatic vector is bounded 
above by the carrying capacity ðKÞ which depends 
on the breeding site, food, fresh air and well oxy-
genated water supply. Aquatic vector populations 
decline due to natural death at a rate of μa

� �
and to 

larviciding at a rate of μ,

� �
. The surviving aquatic 

vectors mature into susceptible black flies at a rate 
1 � εð Þψ, where ε is the efficacy of larviciding. The 

matured black fly sub-population is divided into 
susceptible Svð Þ and infected Ivð Þ vectors. The sus-
ceptible black fly become infected during blood 
meal from infected or treated humans at a rate 
λvð Þ. As the results of natural death and trapping 

at rates μv
� �

and μt
� �

, respectively, the susceptible 
Svð Þ and infected Ivð Þ black fly population 

decreases. Thus, at any time t, the total black fly 
population is:

The forces of infection for the human and black fly 
are, respectively, λh ¼

bβhIv
Nh

� �
and λv ¼

bβvðIhþrThÞ

Nh

� �
. 

The transfer diagram in Figure 2 describes the trans-
mission dynamics of human onchocerciasis. The state 
variables and our model parameters are presented in 
Tables 3 and 4, respectively.

The model system of equations becomes:

where,

Boundedness of solution

Theorem 1: For non-negative initial values 
Shð0Þ; Sehð0Þ; Ihð0Þ; Thð0Þ; Avð0Þ; Svð0Þ and Ivð0Þ of 
system 3, the solutions ShðtÞ; SehðtÞ; IhðtÞ; Th  
ðtÞ; AvðtÞ; SvðtÞ and IvðtÞ are all non-negative and 
bounded " t � 0:

Proof: Consider the system of differential equation in 3

Table 2. Reported number of indi-
viduals treated for human oncho-
cerciasis in Ghana from 2005 to 
2019.

Year Individuals treated

2019 6526501
2018 6441223
2017 4403121
2016 4331666
2015 3416583
2014 3372058
2013 3372058
2012 3466716
2011 1776626
2010 1491516
2009 544959
2008 1784353
2007 No data
2006 1069137
2005 675066
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Similarly, the following results can be obtained:

Therefore, for " t � 0, the state variables of the 
model have non-negative solutions [24].

Invariant region

This section is dedicated to finding the region over 
which the solution set of our onchocerciasis model 
system of equations is well posed.

Theorem 2: The feasible region in which the solution 
set of the model system of equations make biological 
sense is the set;

where

and 

Proof: First, we determine the subset Ωh.
The human (host) population Nh at any given 
time t is:

Figure 2. Transfer diagram for the onchocerciasis transmission dynamics.

Table 3. Description of state variables of the model.
Variable Description

Sh Susceptible humans
Seh Susceptible educated humans
Ih Infected humans
Th Treated humans
Av Immature black flies
Sv Susceptible black flies
Iv Infected black flies
Nh Total human population
Nv Total black fly population
λh Force of infection for the human population
λv Force of infection for the black fly (vector)
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Solving equation (10) and taking the limit as 
t ! þ1 we obtain: Nh !

πh
μh

Consequently, the following result is obtained

Therefore;

Secondly, the subset Ωv is determined. At any point 
in time, the blackfly (vector) population satisfies:

Thus, the feasible region for the solution set of the 
model system of equations is:

Onchocerciasis-free equilibrium

In computing the disease-free equilibria, we employ 
the theorem below.
Theorem 3: Let’s define

as the black fly net reproduction or extinction num-
ber, then if:

(1) N � 1, model 3 has a trivial disease-free equi-
librium (TDFE) (black fly extinction equili-
brium point) given by:

(2) N>1 (black flies persist in the community), 
model (3) admits a realistic disease-free equili-
brium (RDFE) given by:

Proof: Suppose, S�h; S�eh; I�h ; T�h ; A�v ; S�v ; I�v
� �

is 
the disease-free equilibrium point. Setting the right- 
hand side of system 3 to zero with the condition that 
there are no infections at the disease-free equilibrium, 
that is, I�h ¼ T�h ¼ I�v ¼ p ¼ 0, yields:

Table 4. Parameter description. susceptible human
Parameter Description

πh Human recruitment rate
μh Natural death rate of human
βh Prob. of transmission of infections from an infected human to a susceptible black fly
p Proportion of infected immigrants
θ Educational campaign compliance rate
σ Efficacy of educational campaign
γ Progression rate of infected humans to treated humans
φ Progression rate from treated human to susceptible educated humans
r Modification parameter accounting for the reduction of transmission of infections from a treated human to a susceptible black fly
πv Black fly egg deposition rate
K Carrying capacity of aquatic vector
b Black fly biting rate
βv Probability of transmission of infections from an infected black fly to a susceptible human
ψ Maturity rate of immature black fly
ε Efficacy of larviciding
μv Natural death rate of mature black fly
μa Natural death rate of immature black fly
μ, Death rate of immature black fly due to larviciding
μt Death rate of mature black fly due to trapping
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□ 
Hence, �0 and �1 are obtained, respectively, from 
A�v ¼ 0 and A�v ¼ K 1 � 1

N

� �
. Clearly, the magnitude 

of N dictates the existence of the model disease-free 
equilibrium points.
N is a threshold quantity similar to the vector off-

spring number or net reproduction number used in 
[25–30]. In general, this can be interpreted as 
a measure of the average number of new adult female 
black flies produced by one reproductive black fly dur-
ing its entire reproductive life. It is expressed as 
a product of the egg deposition rate πv, the fraction of 
immature black fly that survive and develop into adult 
black fly 1� εð Þψ

1� εð Þψþu1½ �
(in the presence of larviciding and 

vector trapping) and the average life span of adult black 
fly 1

u2
. Thus, if N>1, the black fly population persist in 

the community, otherwise if N � 1, the black fly vector 
population becomes extinct and the Onchocerciasis 
transmission can be eliminated. It is worth noting that 
the trivial disease-free equilibrium (TDFE) corresponds 
to the absence of black fly vectors in the community. 
Hence, the TDFE is biologically less meaningful.

Onchocerciasis reproduction number

Expressing our model differential equations in the 
form dX

dt ¼ ðF � VÞXT where XT denotes the trans-
pose of X ¼ ðIh; Th; IvÞ, F and V are vectors denot-
ing the rate of generation of new infections and 
transfer rates, respectively, gives

The Jacobian matrices F and V of F and V evaluated 
at the RDFE are, respectively:

where x1 ¼
bβhS�h

N�h
+q0bβhS�eh

N�h 
and x2 ¼

bβvS�v
N�h

From the expression of V, the inverse of V is:

Hence, the next generation matrix FV � 1 is given by:

Using FV � 1 � λIj j ¼ 0, where I is a unit matrix and λ 
an eigenvalue of FV � 1, we get the dominant eigenva-
lue as;

Where N is a threshold quantity similar to the vector 
offspring number or net reproduction number used 
in [16,31]. Therefore, the reproductive number of the 
model is given by:

where

It can be observed from equation (33) that in the 
absence of educational campaigns (θ ¼ 0) R0 
becomes, say

The threshold quantities R0h and R0v represent the 
contributions of onchocerciasis disease spread from 
human to black fly (host to vector) and from black 
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fly to human (vector to host), respectively. R0h repre-
sents the number of secondary cases of black flies 
(vectors) one infectious human will generate in 
a susceptible population of black flies during its 
infectious phase. Similarly, R0v can be interpreted 
as the number of secondary human cases generated 
by an infected black fly in an entirely susceptible 
human population over the course of its life time 
as infectious [32].

Stability of onchocerciasis-free equilibrium

Local stability of onchocerciasis-free equilibrium

Lemma 1: Let M be a Metzler matrix, then SðMÞ<0 
if and only if M is invertible and � M� 1 � 0, where 
SðMÞ ¼ supfReλ; λ ¼ eigenvalue ofMg is called the 
spectral bound of M [33].

Theorem 4: The realistic disease-free equilibrium state

is locally asymptotically stable (LAS) if R0<1 and 
unstable if R0>1, where R0 ¼ ρðFV � 1Þ with F and 
V defined as in the previous sections

Proof: ρðFV � 1Þ<1) I � FV � 1 is an M-matrix 
[16,34]. Now I � FV � 1 being an M-matrix means 
that � ðI � FV � 1Þ is a Metzler matrix and thus, is 
stable when the matrix � ½� ðI � FV � 1Þ�

� 1
� 0 

where k1; k2 and k3 are as defined before.
Let det M denotes the determinant of M, then 
detM ¼ k1k2 � 1 ¼ R2

0 � 1. Thus, M is invertible 
if R2

0 � 1�0.
Now, suppose R2

0 � 1�0, then � M� 1 is given by:

But ki>0 ði ¼ 1; 2; 3Þ whenever N>1. Hence, 
� M� 1 � 0 if R0<1. Therefore, the realistic disease- 

free equilibrium state �1 is locally asymptotically 
stable if R0<1 and unstable if R0>1.

Global stability of onchocerciasis-free equilibrium

Following [35,36] the global asymptotic stability of 
a system equilibrium point can be established by first 
expressing the system in the form:

Here, Ys and Yi denotes the compartments of non- 
transmitting hosts and vectors, respectively, 
with Ys ¼ Sh; Seh; Av; Svð Þ

T

Using our model system of equations, we get:

where d ¼ 1 � εð Þψ þ u1 þ
πv 1� εð Þψ

u2
1 � 1

N

� �

where;

From the above we formulate the theorem as follows.

Theorem 5: The system 
dYs
dt ¼ B1 Ys � YRDFEð Þ þ B12Yi is globally 
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asymptotically stable at the RDFE when all eigenva-
lues of matrix B1 have negative real parts and B2 is 
a Metzler matrix.

Proof: Clearly, two eigenvalues of the matrix B1 
are λ1 ¼ � q1 and λ2 ¼ � μh. The remaining two 
eigenvalues are obtained from the sub-matrix:

The characteristic equation of the matrix in 47 is

Since in equation (48), u2 þ d>0 and πv 1 � εð Þψ  
1 � 1

N

� �
>0 whenever N>1, we conclude using the 

Routh-Hurwitz stability criterion, that the eigenvalues 
λ3 and λ4 have negative real parts. Hence, all the eigen-
values of the matrix B1 have negative real parts.
Also,

is a Metzler matrix (since all the off diagonal entries 
are non negative). Thus, the system

is globally asymptotically stable at the realistic dis-
ease-free equilibrium.

Onchocerciasis endemic equilibrium

Let ðS��h ; S��eh ; I��h ; T��h ; A��v ; S��v ; I��v Þ be the endemic 
equilibrium point for the onchocerciasis model, then 
solving the system:

The following solutions are obtained

Now, A��v ¼ 0 yields the endemic equilibrium

Clearly, when the inflow of infected immigrants is 
zero, that is p ¼ 0, �2 is the same as the trivial dis-
ease-free equilibrium ð�0Þ, otherwise there is no tri-
vial disease-free equilibrium [37,38].

Using equation 53 and the forces of infections;

and 

gives:

where
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It is easy to see from equation (61) that

This implies that there is a change of sign of the 
function f λ��h

� �
on the interval ½0; þ1Þ, hence, 

f λ��h
� �

¼ 0 has a root lying in ½0; þ1Þ. Thus, the 
biological meaning of f λ��h

� �
¼ 0 is guaranteed. 

Next, we apply the Descartes Rule of Sign 
Change to explore on the number of endemic 
solutions (see Table 5).

From Table 5, we state and prove the following 
theorem.

Theorem 6: If a1 < 0 and a2 > 0, system (1) has three 
distinct endemic equilibrium. 
Proof: 

Now;

Clearly, λ��h is real and positive if a1< 0 and a2 >0. 
Thus, the solution λ��h is positive implies f 0 λ��h

� �
¼ 0 

has two positive solutions. Hence, it follows from the 
Fundamental Theorem of Algebra that the endemic 
equation f λ��h

� �
¼ 0 has three positive solutions if 

a1< 0 and a2 >0.

Multiple endemic equilibrium and backward 
bifurcation

The phenomenon of backward bifurcation is 
often experienced when a stable disease-free 
equilibrium coexist with a stable endemic equili-
brium. This phenomenon is common with epide-
miological models with multiple roots of 
transmission. Here, if the existence of multiple 
endemic equilibrium coincide with R0<1, then 
our model undergoes backward bifurcation as 
shown in Figure 3. The occurrence of backward 
bifurcation implies that the idea of R0<1 its 
a necessary but not a sufficient condition for 
eradication of the disease [39].

Endemic condition in the absence of infected 
immigrants (p = 0)

It is easy to see that when p ¼ 0, equation (61) 
becomes:

where:

Next, we explore the conditions for the existence of 
positive roots for

Table 5. Number of possible positive roots of f ðλ��h Þ.
Case a0 a1 a2 a3 Sign change +ve roots

i + + + � 1 0, 1
ii + + � � 1 0, 1
iii + � + � 3 1, 3
iv + � � � 1 0, 1

Figure 3. Backward bifurcation.
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Since b0 ¼ a0>0, the number and nature of roots of 
equation (74) depends on the value of R0 and the sign 
of discriminant Δ ¼ b2

1 � 4b0b2. Thus, the following 
theorem is elaborated.

Theorem 7: In the absence of infected immigrants 
then;

(i) For R0>1, system 3 admits a unique endemic 
equilibrium point

(ii) For b1<0 and b2 ¼ 0 or b2
1 � 4b0b2 ¼ 0, sys-

tem 3 has a unique endemic equilibrium 
point

(iii) For R0<1; b1<0 and b2
1 � 4b0b2>0, system 3 

has two endemic equilibrium points
(iv) Otherwise, system 3 has no endemic equili-

brium point

Theorem 7 case (iii) suggests that in the absence of 
importation of infections, the model exhibits back-
ward bifurcation. This is depicted in Figure 3 
below. The occurrence of backward bifurcation 
means that even in the absence of importation of 
infections, R0<1 is not enough for the eradication 
of onchocerciasis.

Global stability of the unique endemic 
equilibrium point

It has been established in theorem 7 that in the 
absence of inflow of infective immigrants, system 3 
has a unique endemic equilibrium point if R0>1. In 
what follows, we establish the global stability of this 
unique endemic equilibrium.
Lema 2: In the absence of importation of infections, 
the unique endemic equilibrium point of system 3 is 
globally asymptotically stable (GAS) at the interior of 
the model invariant region if R0>1 and unstable 
otherwise.
Proof: Consider the Lyapunov function:

Taking the time derivative of L gives:

10 M. KONLAN ET AL.



Also, 
dL
dt ¼ 0if and only ifS��h ¼ Sh; S��eh ¼ Seh; I��h ¼ Ih;

T��h ¼ Th;A��v ¼ Av; S��v ¼ Sv; and I��v ¼ Iv
Therefore, the largest compact invariant set within the 

model’s invariant region is the singleton 
S��h ; S��eh ; I��h ; T��h ; A��v ; S��v ; I��v
� �

. Hence, the unique 
endemic equilibrium is globally asymptotically stable if 
Lþ<L� [24].

Sensitivity analysis

Sensitivity analysis is used to determine the para-
meters that mostly contribute to disease spread or 
increase R0ð Þ. These parameters should be targeted 
during any intervention aimed at combating the 
infection.

Sensitivity indices

Using the normalized forward sensitivity index relation;

we obtain the values for sensitivity indices of the 
parameters of the reproductive number, R0ð Þ as pre-
sented in Table 6.

If the sign of the sensitivity index of a given para-
meter of R0 is positive, it means R0 is directly propor-
tional to that parameter. That is, an increase 
(decrease) in the parameter value when other para-
meters remain constant would result in an increase 
(decrease) in disease incidence.

Conversely, if the sign of the sensitivity index of 
a given parameter is negative, then R0 is indirectly 
proportional to that parameter [40].

From Table 6, we see that the parameters b, βh, 
βv, μh, K, πv, r and ψ are directly proportional to 
the disease spread ðR0Þ while πh, θ, σ, γ, φ, ε, μa, 
μl, μt and μv are inversely proportional to R0. 

Hence, the most sensitive parameter is Black fly 
biting rate, ðbÞ.

Table 7. The model parameter values.
Parameter Value/Range Source

πh 0.031 [8]
μh 1/23178 [8]
βh 0.0114 [3]
θ 0.5 [20]
σ 0.3 [20]
γ 0.65 [27]
φ 0.0891 [9,12]
r 0.0083 [27]
πv 600 [27]
K 6000 [20,27]
b 0.0855 [8]
βv 0.0111 [3]
ψ 1.926 [20]
ε 0.4 [20]
μv 1.354 [27]
μa 2 [20]
μ, 0.4 [20]
μt 0–0.9 [8]
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Figure 4. Susceptible human class with controls.
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Figure 5. Susceptible educated human class with controls.

Table 6. The values of the sensi-
tivity indices.

Parameter Sensitivity Index

b þ1:00
βh þ0:50
βv þ0:50
πh � 0:50
μh þ0:49997
πv þ3.6 x10–3

k þ0:50
θ � 1.84877x10–5

σ � 0:2143
γ � 0:471
φ � 0:02852
ε � 0:33495
r þ0:02853
ψ þ0:50243
μa � 4.04995x10–4

μ, � 2.02498x10–3

μt � 0.028798
μv � 0.9748
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Figure 7. Treated human class with controls.
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Figure 8. Aquatic vector class with controls.
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Figure 9. Susceptible vector class with controls.
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Figure 10. Infected vector class with controls.
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Figure 11. Infected human class without infected 
immigrants.
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Figure 6. Infected human class with controls.
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Numerical simulations

To demonstrate the robustness of the model, sys-
tem 3 is simulated using the set of parameter 
values in Table 7. The initial conditions used in 
the simulations were as follows; Sh 0ð Þ ¼ 600, 
Ih 0ð Þ ¼ 50, Th 0ð Þ ¼ 0, Av 0ð Þ ¼ 5; 000, 
Sv 0ð Þ ¼ 1; 000, and Iv 0ð Þ ¼ 30.

The graphical solutions and their interpretations 
are presented in Figures 4–12.

Figures 4–9 revealed that onchocerciasis disease 
continue to persist even with control measures in 
place. This is an indication that these controls 
need to be revised. The biological implication of 
Figure 4 is that as the susceptible population 
become infected, the infectious population keeps 
increasing. Hence, the susceptible population 
reduce steadily. This may be caused by the inflow 
of infectious immigrants. Moreover, from Figures 
8–10, one can see that the vector control are very 
effective at reducing vector numbers. Control 
incorporated in combating the vector populations 
are encouraged since this control measure is 
efficient.

Also, Figures 11 and 12 displayed the evolution of 
onchocerciasis disease in the human and black fly 
populations in the absence of infected immigrants, 
respectively. These two graphs indicate that oncho-
cerciasis can be eradicated if the importation of infec-
tions is properly monitored. Therefore, proper 
monitoring and evaluation of black fly population 
should be encouraged.

Conclusion

In this study, we developed and analyzed 
a mathematical model that explains the infection 
dynamics, control and eradication of human onch-
ocerciasis disease in a community where humans 
(hosts) and black flies (vectors) interact. The 

model considered influence of education policy, 
vector control measures and the inflow of infected 
immigrants on the spread of the disease.

Our analysis showed that the model has two 
trivial equilibria; one at the disease-free equilibrium 
state and the other at disease persistence equili-
brium point. It was further observed that these 
trivial solutions were the same in the absence of 
imported infections. The model also exhibited 
a biologically desired disease-free steady state or 
realistic disease-free equilibrium (RDFE) whenever 
the black fly reproduction number is greater 
than one.

Using stability theorems of Metzler matrices and 
the Routh-Hurwitz stability criterion, we proved 
that the biologically desired infection-free equili-
brium point is both locally and globally asymptoti-
cally stable when the disease reproduction number 
ðR0Þ is less than one and unstable if R0>1. We 
demonstrated that the model may admit three dis-
tinct endemic equilibrium states. Furthermore, we 
established that in the absence of importation of 
infections, the model will undergo backward bifur-
cation when R0<1 or may admit a unique endemic 
equilibrium if R0>1.

The results from the sensitivity analysis 
revealed that the black fly biting and removal 
rates (b and μh) were mostly sensitive to the 
disease spread. It was also revealed that the black 
fly biting and removal rates b and μh, the aqua-
tic black fly maturity rate, the transmission prob-
abilities from host to vector and vice versa 
(βh and βv), the aquatic vector carrying capa-
city and maturity rate (K and ψ), the black fly 
egg deposition rate πv and the rate of transmission 
of infections from treated hosts r are directly pro-
portional to R0.

However, the human recruitment rate πh, the iver-
mectin treatment rate (γ), the education campain rate 
(θ), the efficacity of the educational campaign (σ), the 
efficacity of larviciding (ε), progression rate of treated 
humans to educated human class (φ), the rate of the 
immature vector due to larviciding (μ,), the imma-
ture and adult vector removal rates (μa and μv) 
and the black fly trapping rate (μt) are inversely 
proportional to (R0).

Our numerical simulation results indicated that 
importation of river blindness disease by humans is 
a major contributing factor to the endemicity of the 
disease in the communities. Furthermore, the simula-
tion results revealed that onchocerciasis can be era-
dicated if the importation of the disease is properly 
monitored. Further study can be conducted on the 
disease using stochastic modelling approach. The 
challenge of data availability has made it very difficult 
to incorporate optimal control and cost effectiveness 
analysis of the model.
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Figure 12. Infected vector class without infected immigrants.
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