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Abstract: Atmospheric-pressure low-temperature plasma (APLTP) was used to study the bactericidal
mechanism against Escherichia coli (E. coli) and its application in the sterilization of fresh-cut
cucumbers. The morphological changes of E. coli cells subjected to APLTP were observed by
scanning electron microscopy (SEM). Cell death was evaluated by fluorescence microscopy (FM).
Cell membrane permeability was measured by conductivity changes, and the amount of soluble
protein leakage in the bacterial supernatant was determined by measurement of protein concentration.
Additionally, the effects of APLTP on the physicochemical and sensory quality of fresh-cut cucumber
were studied by assessing the changes of moisture content, soluble solid content (SSC), pH value, color,
relative conductivity, malondialdehyde (MDA) level, vitamin C (Vc) content, aroma composition
and microstructure. The results showed that the E. coli cell morphology was changed due to the
charged particles and active components produced by APLTP. The E. coli cell wall and cell membrane
ruptured, cell content leaked out, cells lost the ability to reproduce and self-replicate, and the function
of cell metabolism was directly affected and led to E. coli inactivation. In addition, there was no
significant effect on physicochemical properties and sensory quality of fresh-cut cucumbers.

Keywords: atmospheric-pressure low-temperature plasma (APLTP); E. coli; bactericidal mechanism;
fresh-cut cucumber

1. Introduction

Plasma is an ionized gas, which consists of an assembly of ions, electrons and neutral particles
(atoms or molecules). The charges of ions and electrons are equal and show overall neutrality. It is a
kind of ionized state composed of charged particles, and is called the fourth state of matter besides
the three states of solid, liquid and gas. Plasma sterilization and decontamination is widely used in
biology, medicine and food security [1–3].

Atmospheric-pressure low-temperature plasma (APLTP) is an emerging nonthermal technology
that can potentially decontaminate the surfaces of fresh produce. This antimicrobial intervention offers
the advantages of being chemical free, water free, low temperature, highly efficient, nonpolluting and
nontoxic. In addition, it is able to operate openly and continuously at atmospheric pressure when used
as a new green sterilization technology. Plasma sterilization is widely used in food applications due to
its ability to maintain the color, smell, taste and shape of foods to the maximum extent [4–9].
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Criter [10] used plasma to treat Escherichia coli (E. coli) O157:H7, Salmonella and
Listeria monocytogenes on the surface of apple, melon and lettuce, and the number of colonies in
all samples was significantly reduced. It was also reported that when E. coli, Saccharomyces cerevisiae,
Pantoea agglomerans and Gluconacetobacter were inoculated on the peel of mango and lemon, cold
plasma treatment can effectively kill microorganisms inoculated onto fresh produce [11]. Moreover,
when Salmonella and E. coli O157:H7 were inoculated on apple peel and treated with plasma
generated by sliding arc medium, the Salmonella and E. coli decreased by 2.9–3.7 log CFU/mL and
3.4–3.6 log CFU/mL, respectively [12]. In addition, Stefano [13] found that the L. monocytogenes and
E. coli O157:H7 concentrations on the mango surface decreased by 2.5 log CFU/g after only 30 s
treatment with cold-source plasma.

It has been demonstrated that highly efficient sterilization of various bacteria can be achieved
at low temperature by nonthermal plasmas, such as dielectric barrier discharge (DBD) [14], glow
discharge [15], corona discharge [16] and plasma jet [17]. Among these plasma sources, the plasma jet
is believed to be a feasible one because it generates the plasma outside the discharge region and in
ambient air, which expands its application scope [18,19]. Low-temperature plasma generation is a very
complex physical and chemical process, and can produce ultraviolet (UV) radiation, charged particles,
active ingredients and other bactericidal agents. Transient electric fields of quite large amplitude are
likely to be active in cell permeabilization or poration [20–22]. Active ingredients mainly include atoms
in the excited state, metastable atoms, and oxides and nitrides with active chemical properties, able to
induce the change of cell membrane permeability [23–25].

The role of plasma in the organism is mainly achieved through the combined effect of these
bactericidal agents in the organism at the molecular level. Currently, further studies are needed
to determine which one of these factors plays a leading bactericidal role and how it works at the
molecular level.

In this study, APLTP was used to treat a bacterial suspension of E. coli, which was used as the
model microorganism. The changes of the morphology of cells treated with APLTP were examined by
scanning electron microscopy (SEM). Cell death was detected by fluorescent microscopy (FM). Cell
membrane permeability was measured by conductivity changes, and the amount of soluble protein
leakage in the bacterial supernatant was determined by measurement of the protein concentration.
Additionally, APLTP was applied to fresh-cut cucumber, and the physicochemical properties and
sensory quality of fresh-cut cucumber before and after treatment were compared to verify the
practicability of APLTP as a sterilization method for cucumber and similar food products.

2. Results

2.1. The Bactericidal Mechanism

2.1.1. SEM Observation

The SEM images of the normal cultured E. coli and plasma-treated E. coli bacterial morphology
are shown in Figure 1.

The SEM images reveal that the control nontreated E. coli cells were blunt round at both ends,
without Bacillus spores, and had a full, smooth surface (Figure 1A). After the plasma treatment, the
morphology of the E. coli cells (Figure 1B) was irregular, and some of the surface cells were dented,
wrinkled or broken. Additionally, the boundary of the cell wall in some cells was unclear, some of
the cells appeared leaking, and a large amount of cell debris was observed. Thus, plasma treatment
destroyed the cell membrane of E. coli, caused its contents to flow out and resulted in its inactivation.
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and observed by fluorescence microscopy. AO permeates the normal cell membrane, and 

fluorescently stains the nucleus green or yellow–green. PI is a red fluorescent nucleic acid 

intercalating dye that cannot permeate the membrane of living cells, and thus can only stain the cells 

with disrupted cell membranes, making it useful to differentiate dead cells and healthy cells. The FM 

images showed that the control E. coli cells (Figure 2A) showed green fluorescence, while the 

plasma-treated E. coli (Figure 2B) showed red fluorescence. This result indicates that plasma 

treatment gradually increased the permeability of cell walls and cell membranes, allowing the PI to 

enter the cell and bind to genomic DNA. Accordingly, this result revealed that all of the 

plasma-treated E. coli were killed, which is consistent with the results of previous experiments on 

sterilization of fresh-cut cucumber. 

  

Figure 2. Fluorescent microscopy (FM) images of E. coli. (A). Control E. coli; (B). Plasma-treated E. 

coli. 

2.1.3. Evaluation of Conductivity 

Figure 1. Scanning electron microscopy (SEM) images of E. coli. (A) Control E. coli; (B) Treated E. coli.

2.1.2. FM Observation

The plasma-treated E. coli was double-stained with acridine orange/propidium iodide (AO/PI)
and observed by fluorescence microscopy. AO permeates the normal cell membrane, and fluorescently
stains the nucleus green or yellow–green. PI is a red fluorescent nucleic acid intercalating dye that
cannot permeate the membrane of living cells, and thus can only stain the cells with disrupted cell
membranes, making it useful to differentiate dead cells and healthy cells. The FM images showed
that the control E. coli cells (Figure 2A) showed green fluorescence, while the plasma-treated E. coli
(Figure 2B) showed red fluorescence. This result indicates that plasma treatment gradually increased
the permeability of cell walls and cell membranes, allowing the PI to enter the cell and bind to genomic
DNA. Accordingly, this result revealed that all of the plasma-treated E. coli were killed, which is
consistent with the results of previous experiments on sterilization of fresh-cut cucumber.
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2.1.3. Evaluation of Conductivity 

The bacterial cell membrane forms a barrier that allows the passage of small molecules such as 

K+, Na+ and H+. These small molecules play a crucial role in maintaining membrane function, 

enzyme activity and normal metabolism in the bacterial cells. The infiltration of small molecules is 

controlled by the membrane structure and composition [26]. The change of conductivity of culture 

medium can reflect the change of cell membrane permeability. The results presented in Figure 3 

reveal that the conductivity of LB broth had no significant difference, but the conductivity of the 

plasma-treated E. coli cells increased significantly, indicating that the ionic homeostasis was 

destroyed due to the effect of the APLTP treatment on the bacterial cell membrane. It is thought that 

due to major electrolyte leakage, the cell membrane barrier was disrupted, thus affecting cell 

metabolism and eventually leading to E. coli cell death. 

Figure 2. Fluorescent microscopy (FM) images of E. coli. (A) Control E. coli; (B) Plasma-treated E. coli.

2.1.3. Evaluation of Conductivity

The bacterial cell membrane forms a barrier that allows the passage of small molecules such as
K+, Na+ and H+. These small molecules play a crucial role in maintaining membrane function, enzyme
activity and normal metabolism in the bacterial cells. The infiltration of small molecules is controlled
by the membrane structure and composition [26]. The change of conductivity of culture medium can
reflect the change of cell membrane permeability. The results presented in Figure 3 reveal that the
conductivity of LB broth had no significant difference, but the conductivity of the plasma-treated E. coli
cells increased significantly, indicating that the ionic homeostasis was destroyed due to the effect of the
APLTP treatment on the bacterial cell membrane. It is thought that due to major electrolyte leakage,
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the cell membrane barrier was disrupted, thus affecting cell metabolism and eventually leading to
E. coli cell death.
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2.1.4. Determination of Protein Concentration

Proteins are important structural components of the cell membrane and cytoplasm [27]. The
release of proteins indicates that cell membrane integrity has been seriously compromised. The results
of the measurement of protein concentration are shown in Figure 4. After APLTP treatment, the protein
content in the E. coli suspension increased by 5.6 times. Thus, according to this result, treatment by
APLTP damaged the cell membrane, which led to the leakage of a large amount of protein and affected
the normal cell growth.
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2.1.5. Optical Emission Spectrum

Optical emission spectroscopy of APLTP is shown in Figure 5. The most prominent spectral
features are neutral argon atomic lines in the region from 700 to 900 nm, and excited OH (307–310 nm).
The quartz glass was placed above the fresh-cut cucumbers to study the effect of UV photons generated
by APLTP. The results showed the sterilization efficiency against E. coli was about 10% after 5 min of
exposure to UV generated by APLTP. UV germicidal action was optimal between 240 and 280 nm, few
emission lines were visible in Figure 5. This is why the sterilization rate is low. The result is consistent
with low disinfection efficiency of UV.
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2.2. The Application of APLTP to Sterilize Fresh-Cut Cucumbers

The result of fresh-cut cucumber sterilization showed that the distance between the samples
and electrode was 2.2 cm, the treatment voltage was 2.5 kV, the processing time was 5 min, and the
sterilization efficiency against E. coli could reach 99.99%.

2.2.1. Effect of APLTP Treatment on the Physicochemical Properties of Fresh-Cut Cucumber

Fresh-cut cucumber quality indicators include moisture content, soluble solids, pH, color, taste,
shape and so on. The changes of the physicochemical properties of fresh-cut cucumber after APLTP
treatment are shown in Table 1. The moisture content, soluble solids and pH value of fresh-cucumber
after APLTP treatment did not change significantly (p > 0.05). These findings show that the water,
sugar content and the acidity of fresh cucumber have been well maintained after APLTP treatment.
Similar findings were reported by Won, Lee and Min [28], who found no significant differences for
titratable acidity in control and cold-plasma-treated mandarins.

Table 1. Effect of APLTP treatment on the physicochemical properties of fresh-cut cucumber.

Indicators Control Treated

Moisture content (%) 95.135 ± 0.05 a 95.153 ± 0.05 a

Vc (mg/100 g) 20.25 ± 0.10 a 20.27 ± 0.10 a

Relative conductivity (%) 9.32 ± 0.10 a 9.35 ± 0.10 a

MDA (µmol/L) 0.00121 ± 0.00011 a 0.00125 ± 0.00012 a

Soluble solids (Brix) 3.6 ± 0.10 a 3.7 ± 0.12 a

pH 6.02 ± 0.10 a 6.05 ± 0.10 a

a No significant difference (p > 0.05).

Relative conductivity is one of the important indicators of membrane permeability of fruits
and vegetables. In the present study, we found that the relative conductivity was higher in treated
cucumbers, indicating that the greater the permeability of the cell membrane, the more serious the cell
damage [29]. Malondialdehyde (MDA) is the product of membrane lipid peroxidation. Accordingly,
MDA is usually used as an important indicator of membrane lipid peroxidation to indicate the degree
of lipid peroxidation and the strength of the damage due to adversity [30]. As shown in Table 1,
the changes of relative conductivity and MDA content were not significant (p > 0.05). This finding
shows that the effect of APLTP on the cell membrane of fresh-cut cucumbers can be neglected. Vc is
an important indicator of the quality of the cucumber. The content of Vc in cucumber after APLTP
treatment did not change significantly (p > 0.05), which indicated that APLTP can maintain the Vc
content of cucumber well. Thus, plasma is a potent sterilizing agent and its treated process can preserve
fresh-cut cucumber properties.
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2.2.2. Effect of APLTP Treatment on Sensory Indicators of Fresh-Cut Cucumber

Color plays a key role in food choice and is among the most important parameters for consumer
acceptability. From the data presented in Table 2, the color parameters (brightness L *, red-green a *,
blue-yellow b *) did not change significantly (p > 0.05) in treated fresh-cut cucumbers. These results
are in agreement with those reported for cold-plasma-treated strawberries and cherry tomatoes, where
changes in color among the control and treated fruits were found to be insignificant [31,32].

Table 2. Effect of APLTP treatment on sensory indicators of fresh-cut cucumber.

Indicators Control Treated

Aroma components

(E,Z)-2,6-Nonadienal 42.53 ± 2.54 a 40.61 ± 1.11 a

(E)-2-Nonenal (%) 12.54 ± 0.57 a 11.54 ± 0.58 a

Hexanal (%) 9.71 ± 0.54 a 10.64 ± 1.33 a

(E)-2-Hexenal (%) 4.42 ± 0.28 a 4.72 ± 0.39 a

(Z,Z)-3,6-Nonadienal (%) 14.09 ± 0.17 b 14.59 ± 0.32 a

Color parameters

L * 63.78 ± 0.25 a 63.89 ± 0.23 a

a * −6.07 ± 0.10 a −5.98 ± 0.15 a

b * 16.61 ± 0.10 a 16.63 ± 0.13 a

4E 0 0.73 ± 0.25
a No significant difference (p > 0.05). b Significant difference (0.01 < p < 0.05).

After plasma treatment, the content of (E,Z)-2,6-nonadienal decreased slightly with cucumber
taste but not significantly. The decrease of the (E)-2-nonenal content reduced the unpleasant odor
in cucumber. Also, the increase of hexanal and (E)-2-hexenal gave the cucumber a better fragrance.
The increase in cis structure makes the refreshing aroma more concentrated. Accordingly, significant
increase of (Z,Z)-3,6-nonadienal gave cucumber a more refreshing aroma. It is thus clear that the
APLTP treatment caused a series of complex chemical changes in the flavoring components listed in
Table 2, which led to the increase or decrease of the main aroma components and made the cucumber
aroma better.

The images shown in Figure 6A,B reveal that the control and treated cucumber pulp cells are
intact and neatly arranged. In addition, the cell gap is tight and there is no wrinkle crimp. Also, there
is no obvious perforation in the cell wall. These findings show that APLTP treatment does not damage
the morphology of the cucumber pulp.

Molecules 2018, 23, x 6 of 12 

 

increase of (Z,Z)-3,6-nonadienal gave cucumber a more refreshing aroma. It is thus clear that the 

APLTP treatment caused a series of complex chemical changes in the flavoring components listed in 

Table 2, which led to the increase or decrease of the main aroma components and made the 

cucumber aroma better. 

Table 2. Effect of APLTP treatment on sensory indicators of fresh-cut cucumber. 

 Indicators Control Treated 

Aroma components (E,Z)-2,6-Nonadienal 42.53 ± 2.54 a 40.61 ± 1.11 a 
(E)-2-Nonenal (%) 12.54 ± 0.57 a 11.54 ± 0.58 a 

Hexanal (%) 9.71 ± 0.54 a 10.64 ± 1.33 a 
(E)-2-Hexenal (%) 4.42 ± 0.28 a 4.72 ± 0.39 a 

(Z,Z)-3,6-Nonadienal (%) 14.09 ± 0.17 b 14.59 ± 0.32 a 
Color parameters L * 63.78 ± 0.25 a 63.89 ± 0.23 a 

a * −6.07 ± 0.10 a −5.98 ± 0.15 a 
b * 16.61 ± 0.10 a 16.63 ± 0.13 a 
△E 0 0.73 ± 0.25 

a No significant difference (p > 0.05). b Significant difference (0.01 < p < 0.05). 

The images shown in Figure 6A and 6B reveal that the control and treated cucumber pulp cells 

are intact and neatly arranged. In addition, the cell gap is tight and there is no wrinkle crimp. Also, 

there is no obvious perforation in the cell wall. These findings show that APLTP treatment does not 

damage the morphology of the cucumber pulp. 

  

Figure 6. Scanning electron microscopy (SEM) images of cucumber pulp. (A). Control cucumber 

pulp cells; (B). Treated cucumber pulp cells. 

3. Discussion 

In this study, we investigated the effectiveness and mechanism of action of the APLTP method 

as a sterilization tool against E. coli using a variety of techniques, which included SEM and FM 

analysis, protein leakage assay, and evaluation of cell membrane permeability. The results revealed 

that plasma treatment of the bacteria cells caused rupture of the cell wall and cell membrane, leakage 

of the cell content, and loss of the ability to reproduce and self-replicate. All these effects directly 

affected the metabolic function of the cell to achieve the bactericidal activity. Some previously 

reported research results regarding the bactericidal mechanism showed that temperature, UV light, 

high-voltage electric fields, charged particles and reactive oxygen species (ROS), as well as other 

external conditions, all play a role in the low-temperature plasma sterilization process [33–35]. Some 

of these agents act on the cell wall or penetrate the cell wall and cause irreversible damage to the 

interior of the bacteria. The reasons for such an effect include a series of physical and chemical 

reaction processes that eventually lead to cell death [36]. 

The microbial inactivation effect of the plasma treatment can be attributed to several synergistic 

mechanisms, including the generation of UV radiation, ozone, charged particles and ROS, in 

addition to other reactive species [34], which can damage microbial membranes, DNA and proteins 

[37]. The temperature during the APLTP treatment process is below 35 ± 1 °C, which is close to the 

Figure 6. Scanning electron microscopy (SEM) images of cucumber pulp. (A) Control cucumber pulp
cells; (B) Treated cucumber pulp cells.



Molecules 2018, 23, 975 7 of 12

3. Discussion

In this study, we investigated the effectiveness and mechanism of action of the APLTP method as
a sterilization tool against E. coli using a variety of techniques, which included SEM and FM analysis,
protein leakage assay, and evaluation of cell membrane permeability. The results revealed that plasma
treatment of the bacteria cells caused rupture of the cell wall and cell membrane, leakage of the cell
content, and loss of the ability to reproduce and self-replicate. All these effects directly affected the
metabolic function of the cell to achieve the bactericidal activity. Some previously reported research
results regarding the bactericidal mechanism showed that temperature, UV light, high-voltage electric
fields, charged particles and reactive oxygen species (ROS), as well as other external conditions, all
play a role in the low-temperature plasma sterilization process [33–35]. Some of these agents act on the
cell wall or penetrate the cell wall and cause irreversible damage to the interior of the bacteria. The
reasons for such an effect include a series of physical and chemical reaction processes that eventually
lead to cell death [36].

The microbial inactivation effect of the plasma treatment can be attributed to several synergistic
mechanisms, including the generation of UV radiation, ozone, charged particles and ROS, in addition
to other reactive species [34], which can damage microbial membranes, DNA and proteins [37]. The
temperature during the APLTP treatment process is below 35 ± 1 ◦C, which is close to the optimal
growth temperature of E. coli. This indicates that thermally-induced damage cannot be the sterilization
mechanism. Another possible sterilization mechanism is UV radiation-induced damage, especially
in the 200–280 nm wavelength range where DNA destruction is most effective, and which plays an
important role in low-pressure plasma sterilization [38–40]. According to the data of optical emission
spectroscopy, UV is only a minor contributor to E. coli inactivation, while excited argon atoms and OH
are main responsible for the APLTP sterilization.

The effects of APLTP on the physicochemical properties and sensory quality indicators of fresh-cut
cucumber were studied by analyzing the changes of moisture content, soluble solids, pH value, color,
relative conductivity, MDA level, Vc content, aroma composition and microstructure. The results
showed that there was no significant change in any of these indices (p > 0.05). APLTP can maintain
water, sugar, acidity, Vc and color, and improve the aroma of the cucumber. Additionally, APLTP
maintains cell membrane permeability and does not cause lipid oxidation. Furthermore, it was also
found by SEM analysis that APLTP did not destroy the cell structure of fresh-cut cucumber pulp.
Thus, APLTP may be used as an alternative to thermal pasteurization and may result in higher-quality
fresh-cut fruits and vegetables.

4. Experimental Section

4.1. Sterilization Mechanism

4.1.1. Experimental Apparatus

The schematic diagram of the experimental setup of the APLTP system is shown in Figure 7. The
sample was placed in a super-clean worktable. Argon gas (99.99% purity) was used as the source of
plasma and its flow rate was controlled by a float flow meter (LZB-10, Yuyao Yinhuan Flowmeter Co.
Ltd., Yuyao, China). The distance between the samples and electrode can be controlled by adjusting
the altitude controller. The discharge was driven by a high-frequency AC power supply, which can
provide an output of maximal peak voltage of 2.5 kV. Based on the results from previous experiments
on sterilization of fresh-cut cucumber, the distance between the samples and electrode was 2.2 cm, the
treatment voltage was 2.5 kV, the processing time was 5 min, gas flow was 0.75 dm3·min−1 and the
sterilization efficiency against E. coli could reach 99.99%.
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4.1.2. Preparation of Inoculum

E. coli (No. E0005B) was obtained from Guangdong Huankai Microbial Sci. & Tech. Co., Ltd.
(Guangzhou, China). E. coli was grown overnight in a sterilized Luria-Bertani (LB) broth in a shaker at
37 ◦C to prepare a bacterial suspension at a concentration of about 8 log CFU/mL. One mL of bacterial
suspension was added into a 30-mm-diameter quartz petri dish and the dish was placed in a stage
under the plasma jet.

4.1.3. SEM Observation

The treated E. coli was washed three times with 0.1 M phosphate-buffered saline (PBS) and fixed
twice with 2.5% glutaraldehyde and 1% osmium tetroxide for 12 h at 4 ◦C. Then, the fixed E. coli
cells were dehydrated by an ethanol gradient (50%, 70%, 80%, 90% and 100%), washed with PBS and
ultimately resuspended in PBS. In order to prevent surface charging by the electron beam, the treated
E. coli cells were coated on the conductive adhesive, dried in a vacuum and sprayed with gold. Cell
morphology was observed and photographed using a SEM (JEOL 7500F SEM, JEOL, Tokyo, Japan).
Besides observing plasma-treated cells, untreated cells were used as control.

4.1.4. FM Observation

The plasma-treated bacterial suspension was double stained with AO/PI for observation. First,
100 µL of reagent C was mixed with 900 µL of sterile deionized water to prepare the staining buffer
solution. Second, the treated bacterial suspension was washed twice with 0.1 M PBS. Third, 500 µL of
staining buffer solution was added to resuspend the cells. Fourth, 5 µL of AO and 10 µL of PI dyes
were added sequentially. Subsequently, the mixture was washed with 0.1 M PBS after incubating
in the dark at 4 ◦C for 10–20 min. Eventually, the cells were observed on a fluorescent microscope
(LEICA TCS SP5 II FM, Leica Microsystems, Wetzlar, Germany). Besides observing plasma-treated
cells, untreated cells were used as a control.

4.1.5. Determination of Conductivity

A volume of 2 mL of treated bacterial suspension was centrifuged at 5000 rpm for 10 min.
Supernatants were diluted 20-fold and tested for conductivity with a conductivity meter (FE38
conductivity meter, Mettler-Toledo Instrument Co. Ltd., Shanghai, China). Besides testing
plasma-treated cells, untreated cells were tested as a control. At the same time, the change of
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conductivity of the cell-free LB nutrient broth before and after treatment was measured. The experiment
was repeated 3 times and the data were averaged.

4.1.6. Determination of Protein Concentration

Protein content was determined using the Coomassie Brilliant Blue method. E. coli supernatant
(0.1 mL) was accurately pipetted into a 10 mL stoppered test tube, then Coomassie Brilliant Blue G250
(5 mL) stain was added into test tube, and stood for 2 min after mixing. The absorbance was measured
at a wavelength of 595 nm using a 10-mm-thick cuvette, and the protein content of the corresponding
sample was determined from the standard curve.

4.1.7. Optical Emission Spectroscopy

The optical emission spectra were recorded on the AvaSpec-2048-8-RM spectrometer
(Avantes, Eerbeek, The Netherlands) equipped with gratings of 2400 grooves·mm−1, and the distance
from an optical fiber to the nozzle of plasma jet is the same as the distance from sample to the nozzle
of plasma jet.

4.2. The Application of APLTP for Sterilization of Fresh-Cut Cucumber

4.2.1. APLTP Treatment

Fresh cucumbers were purchased from the local supermarket, sterilized with 70% ethanol in order
to reduce the background microbial load, and then washed with sterile deionized water to remove any
remaining ethanol residue. The sterilized cucumber was sliced with a sterile knife in a sterile operating
room. E. coli (1 mL) was inoculated onto 25 g of fresh-cut cucumbers and then dried for 30 min in a
sterile operating room. Eventually, the fresh cucumber was treated under a plasma jet. The plasma
discharge was produced at a voltage of 2.5 kV and a frequency of 33 kHz. In the experiments, the flow
rate of the argon was fixed at 0.75 dm3·min−1. Slices of fresh-cut cucumbers were put in a petri dish.
The distance between the cucumber sample and the plasma outlet was 2.2 cm. To ensure that the entire
surface was treated by the plasma, the petri dish was moved regularly. After 5 min APLTP treatment,
fresh-cut cucumber slices were transferred into a sterilized bag with 10 mL PBS, and treated for 10 min
at the highest speed in a homogenizer. 100 µL of cell suspension of the PBS were spread uniformly
over LB nutrient agar plates, and then incubated at 37 ◦C for 24 h for CFU counting. The inactivation
rate is defined as (1 − CFUtreated/CFUcontrol) × 100%.

4.2.2. Influences of the Plasma Treatment on the Physicochemical Properties of the Cut Cucumber

The moisture content was measured according to GB 5009.3-2016 National Food Safety Standard.
Fresh-cut cucumber were squeezed and homogenized. Aliquots of the homogenized material
were analysed for SSC and pH. SSC (PAL-Fu refractometer, Atago Scientific Instrument Co. Ltd.,
Guangzhou, China) was analysed by measuring the refractive index with a digital refractometer;
pH was measured with a pH meter (pHS-3C pH meter, Qi Wei Co. Ltd., Hangzhou, China); MDA
content was measured by the thiobarbituric acid colorimetry method; Vc was determined by the
molybdenum blue colorimetry method. Triplicate measurements were taken for each sample and the
results were averaged.

To determine the relative conductivity, cucumbers were cut into slices with the same size and
uniform thickness. Two grams of cucumber slices were accurately weighed and immersed in 50 mL
distilled water for 2 h. Conductivity was measured with a conductivity meter (FE38 conductivity meter,
Mettler-Toledo Instrument Co. Ltd., Shanghai, China). Then, the cucumber slices were heated and
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boiled for 20 min, and the conductivity was measured after cooling. The measurement was performed
in triplicate. The relative conductivity was calculated according to Equation (1).

R(%) =
R1

R2
× 100 (1)

Determination of the aroma components—extraction of volatile components: 6 mL of minced
cucumber sample was filtrated into a 20 mL headspace bottle with 1.5 g NaCl. The headspace bottle
was tightened and placed in a water bath at 50 ◦C for 5 min with shaking. The aged ZZ-SPME-06
extraction head was allowed to adsorb for 40 min, and then the extraction head was inserted into
the gas chromatography system (5975B/6890N GC-MS, Agilent Technologies, Santa Clara, CA, USA)
inlet for desorption for 20 min. Gas chromatography conditions: HP-5MS column (30 m × 320 µm,
0.25 µm); inlet temperature was 260 ◦C; carrier gas was 99.999% He; splitless injection. The temperature
program was started at 40 ◦C for 2 min, and then ramped to 60 ◦C for 1 min at 4 ◦C/min, and then
ramped to 150 ◦C for 0 min at 2 ◦C/min, and finally raised to 210 ◦C for 5 min at 10 ◦C/min. The
column was baked for 5 min at 260 ◦C. Mass spectrometry conditions: The scope of the scan was
50–550 amu, the threshold was 150 and the sampling frequency was 5 scans/s. Qualitative analysis of
the chromatographic peaks: The mass spectral data of each component was automatically searched
in the NIST2002 standard library. The results of both the positive and the negative matching degrees
higher than 800 only are reported. The quantitative analysis used the peak area normalization method.

4.2.3. The Influences of the Plasma Treatment on the Sensory Indicators of the Cut Cucumber

Determination of the flesh color: The color difference was measured using a colorimeter
(CR-400 colorimeter, Konica Minolta Company, Tokyo, Japan), and the measured parameters were
L * value, a * value and b * value. Each sample was analyzed in triplicate.

The determination of the flesh morphology: The treated cucumber slices were fixed with 4%
glutaraldehyde at 4 ◦C for 6 h, rinsed three times with PBS and then fixed with 1% osmium tetroxide
at 4 ◦C for 2 h followed by three rinses with PBS. The samples were dehydrated with a 10%, 30%, 50%,
70%, 80%, 90% and 95% alcohol gradient and then alcohol was removed stepwise with 25%, 50% and
75% t-butyl alcohol. Eventually, the cucumber slices were immersed in pure t-butyl alcohol and dried
for about 3 h. Subsequently, the slices were subjected to the conductive plastic spray treatment, and
the samples were examined by SEM.

4.3. Statistical Analysis

Statistical analysis was performed using the SPSS 19.0 software (SPSS Inc., Chicago, IL, USA). The
data collected following APLTP treatment were subjected to analysis of variance (ANOVA). Means
were compared according to Fisher’s least-significant difference method at the 0.05 level. All the results
represent the average of three separate experiments.
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