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Abstract

Assessing geographic patterns of species richness is essential to develop biological conser-

vation as well as to understand the processes that shape these patterns. We aim to improve

geographic prediction of tree species richness (TSR) across eastern USA by using: 1)

gridded point-sample data rather than spatially generalized range maps for the TSR out-

come variable, 2) new predictor variables (forest area FA; mean frost day frequency MFDF)

and 3) regression models that account for spatial autocorrelation. TSR was estimated in 50

km by 50 km grids using Forest Inventory and Analysis (FIA) point-sample data. Eighteen

environmental predictor variables were employed, with the most effective set selected by a

LASSO that reduced multicollinearity. Those predictors were then employed in Generalized

linear models (GLMs), and in Eigenvector spatial filtering (ESF) models that accounted for

spatial autocorrelation. Models were evaluated by model fit statistics, spatial patterns of

TSR predictions, and spatial autocorrelation. Our results showed gridded TSR was best-

predicted by the ESF model that used, in descending order of influence: precipitation sea-

sonality, mean precipitation in the driest quarter, FA, and MFDF. ESF models, by account-

ing for spatial autocorrelation, outperformed GLMs regardless of the predictors employed,

as indicated by percent deviance explained and spatial autocorrelation of residuals. Small

regions with low TSR, such as the Midwest prairie peninsula, were successfully predicted by

ESF models, but not by GLMs or other studies. Gridded TSR in Florida was only correctly

predicted by the ESF model with FA and MFDF, and was over-predicted by all other

models.

Introduction

Spatial variation in species richness has been studied for over 200 years [1]. Causes of these

variations have been explored for many taxonomic groups, from microscopic to global scales,

using descriptions, experiments, and spatial environmental models (hereafter “models”).
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Many factors have been forwarded to explain spatial variation in species richness: environ-

ment, ecology, area, and evolution [2–4]. However, improved ability to predict species richness

is required to better-model its spatially heterogeneous responses to global change [5]. In this

study we model spatial variations in gridded tree species richness (TSR) at the subcontinental

scale.

Eight previous studies that modeled TSR found different single-best predictors: actual

evapotranspiration [6,7], net primary productivity [8], median temperature [9], glacial history

[10], accessibility [11], mean temperature of coldest quarter of the year [12], and phylogenetic

species variability [13]. Multivariate models have explained much variance in TSR: 74.0% [10],

81.5% [11], 83.2% [12], 84.7% [7], 86% [6], 97.1% [13], and 97.5% [8]. Those studies employed

50 different predictor variables, from four [7,11] to 25 [12], with few variables common to

multiple studies.

Despite the high predictive power of those models, geographic errors in TSR predictions

have been little considered. Only Wang et al. [12] considered them, though they only noted

their over-prediction of TSR in Florida. Their model also failed to predict areas of low TSR in

the Midwestern prairie peninsula [14], along the lower Mississippi River, and along the Gulf

Coast, that were apparent in their map, and that of Montoya et al. [10], of TSR input data cre-

ated using species range maps [15]. We aim to improve subcontinental predictions of TSR in

four regards: using point-sample data rather than range maps for the TSR outcome variable,

using additional predictor variables, addressing spatial autocorrelation, and considering geo-

graphic error.

First, for the TSR outcome variable, all eight aforementioned TSR studies estimated it by

overlaying spatially generalized species range maps, such as those of Little’s range maps [15].

However, range maps are well-known to overestimate area of a species’ occupancy for trees

[16] and animals [17]. For example, Little’s range maps are produced as spatially generalized

polygons delineated from published tree distributions, herbarium records, and field surveys of

varying sample intensity. Further, range maps exhibit higher spatial autocorrelation than do

point-sample data, resulting in artificially inflated variance explained by spatial environmental

data [18]. Use of TSR point-sample data should thus improve spatial accuracy of TSR

predictions.

Second, although subcontinental predictions of TSR in the eight aforementioned studies

already employed 50 predictor variables, models might be improved by inclusion of two addi-

tional variables: forest area (FA) and frost frequency. In regards to FA, when TSR data were

gathered from irregular-sized study areas, TSR was related to study area size [19,20] as

expected from species-area relations [21]. The collection of TSR data into regular-sized grids,

such as employed in the eight aforementioned TSR studies, might be thought to remove the

species-area relationship. However, since grids contain variable amounts of FA, due to pres-

ence of waterbodies and crops, a species-FA relation might remain in gridded TSR data. In

regards to frost, Fine [3] outlined how frost may influence TSR as tropical tree species are sus-

ceptible to frost, and as temperate tree species incur reduced growth rates to increase frost

resistance. Relatedly, Wang et al. [12] found that TSR was strongly and positively related to

mean temperature in the coldest quarter, and suggested that it was due to colder winters hav-

ing more frost days. If that is the case, we suggest it would be more appropriate to employ a

quantitative measure of frost incidence because, for example, continental areas should have

more frost days than maritime areas with the same mean winter temperature [22].

Third, if spatial autocorrelation is present in the predictor or outcome variables, it may vio-

late the statistical assumption that observations are independent and identically distributed,

and may thus lead to biased parameter estimates [23]. Since most species and environmental

data exhibit spatial autocorrelation, and since the species range maps employed by all previous
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TSR studies have additional spatial autocorrelation [18], the modeled predictions of TSR

might contain much error. Spatial autocorrelation has been accounted for in models of species

richness of vascular plants [24], reptiles [25] and various vertebrate groups [4], but in models

of TSR only by Svenning & Skov’s work [11]. Models that account for spatial autocorrelation

explain more variance and have lower spatial autocorrelation than do general linear models

[24].

We will model TSR across eastern USA and evaluate it for geographic errors. We hypothe-

size that geographic predictions of TSR for eastern USA will improve through the use of

gridded, FIA point-sample data as the outcome variable, forest area and frost frequency

included as predictor variables, and a regression model that accounts for spatial

autocorrelation.

Materials and methods

Forest inventory and analysis (FIA) database

The FIA program of the USDA Forest Service conducts nation-wide field-measured tree

point-sample surveys using a systematic five-year inventory [26]. Each FIA plot inventories

trees in four 7.2 meter fixed-radius subplots. Privacy issues require the latitude and longitude

of plots be perturbed up to 0.8 km, and that some plots on private lands have locations

swapped [27]. The influence of perturbing and swapping should be negligible in this study

since FIA plots were aggregated into 50 km by 50 km grids. The FIA database (FIADB, version

5.1) was downloaded for the 31 easternmost USA states from the FIA DataMart (https://apps.

fs.usda.gov/fia/datamart/) for the five-years 2009 to 2013.

Tree species richness (TSR)

TSR was estimated from FIA data, with individual plots aggregated into 50 km by 50 km grids,

matching those of Wang et al. (2011). We included all trees (live trees with stems�12.7 cm

DBH) from the four sub-plots. If a grid was fully forested it would contain 100 plots at the cur-

rent FIA sampling intensity, though five states (Delaware, Indiana, Michigan, Rhode Island,

and Wisconsin) employ double-sampling intensity. To account for variance in numbers of

plots per grid, we employed non-parametric bootstrapping to estimate each grid’s mean TSR.

We randomly selected, without replacement, the same number of plots from each grid 1000

times, giving 1000 TSR estimates. We tested three numbers of plots drawn 1000 times: 31 plots

from the 1234 grids with�31 plots, 41 plots from the 945 grids with�41plots, and 51 plots

from the 596 grids with�51 plots. The 134 grids with�30 plots were not employed. Further

analyses focused on the 1234 grids with�31 plots, which together contained 79,145 FIA plots

with 2,745,363 trees from 254 species. Bootstrapped estimates of TSR using 41 and 51 plots

drawn from, respectively, grids with�41 and�51 plots, were strongly related (R2>0.96) to

their TSR estimated using 31 plots. Using more grids provided a greater range of environmen-

tal conditions for parameterization of environmental models, and a larger area over which to

assess geographic errors.

Environmental predictor variables

Eighteen environmental predictor variables (Table 1) were grouped into seven categories: cli-

matic seasonality, energy availability, energy-water dynamic, habitat heterogeneity, water

availability, areal factors, and limiting climatic factors. The first five categories contain vari-

ables previously used to explain species richness [9,12]. The areal and limiting climatic catego-

ries were added to potentially account for over-predicted TSR in Florida. The 18 variables and
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seven categories were chosen to represent the variety of predictors and the specific variables

that had been most successful. Temporal factors (e.g. glacial history or phylogenetic informa-

tion) were not included due to incomplete data availability.

Forest Area (FA, km2) and Waterbody Area (WA, km2) were calculated from 1 km by 1 km

resolution MODIS land-cover data (MCD12Q1). FA in each grid was calculated by overlaying

all MODIS forest-related classes. MODIS land cover was employed instead of FIA plot counts

to ensure independence of the FA predictor and TSR outcome variables. WA was calculated as

water-cover classified in MCD12Q1 in a 100 km radius from the center of each 50 km by 50

km grid.

Monthly temperature and precipitation data (http://www.worldclim.org) were obtained for

1950 to 2000 with a 30 arc-second resolution (ca. 1 km at the Equator). Climate variables were

created as means and differences (Table 1): Annual Range of Temperature (ART, oC), Mean

Annual Temperature (MAT, oC), Mean Temperature of Warmest Quarter (MTWQ, oC),

Range of Mean Annual Precipitation (RMAP, mm), Range of Mean Annual Temperature

(RMAT, oC), Mean Precipitation of Driest Quarter (MPDQ, mm), Mean Temperature of

Coldest Quarter (MTCQ, oC), and Mean Annual Precipitation (MAP, mm). Precipitation Sea-

sonality (PSN, mm) was the coefficient of variation (standard deviation of monthly precipita-

tion totals divided by mean monthly precipitation) and Temperature Seasonality (TSN, oC)

was standard deviation of mean monthly temperature. Quarters of the year were three-month

groupings: DJF, MAM, JJA, and SON.

Three climate variables with 30 arc-second resolution were downloaded from CGIAR

(http://www.cgiar-csi.org): Mean frost day frequency (MFDF, days per month) calculated as

mean days per month for 1901 to 2006, and Potential evapotranspiration (PET, mm) and

Aridity Index (AI, unitless) calculated as annual mean for 1950 to 2000. Actual evapotranspira-

tion (AET, mm) with a 1 km by 1 km resolution was downloaded as annual mean from

Table 1. GLM-based relations between the 18 individual predictor variables and tree species richness.

Category Variable Standardized coefficient Deviance (%) explained

Areal factors FA 0.172 30.31

WA -0.104 13.28

Climatic seasonality ART -0.128 21.36

PSN -0.170 31.85

TSN -0.109 20.72

Energy availability MAT 0.122 23.59

MTWQ 0.124 23.89

PET 0.119 23.41

Energy-water dynamic PET–PET2 + MAP 0.104 18.72

Habitat heterogeneity RA 0.019 0.60

RMAP -0.102 18.07

RMAT -0.121 20.07

Limiting climatic factors MFDF -0.173 33.32

MPDQ 0.174 32.28

MTCQ 0.117 23.83

Water availability AET 0.140 28.16

AI 0.000 0.02

MAP 0.132 24.31

P-values are less than 0.01 for all variables.

https://doi.org/10.1371/journal.pone.0203881.t001
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MODIS Global Evapotranspiration Project (http://www.ntsg.umt.edu) for 2000 to 2010. PET

indicates net atmospheric energy balance independent of water availability, AET is amount of

water actually removed, and AI indicates precipitation availability over atmospheric water

demand [28]. A frost day occurred when minimum temperature was below 0˚C, as modelled

from monthly average daily minimum temperature [29].

Energy-water dynamics were evaluated using PET–PET2 + MAP (cf. Wang et al. [12]).

Range of altitude (RA, m) was the difference between absolute minimum and maximum eleva-

tion in each 1 km by 1 km grid of a digital elevation model (https://lta.cr.usgs.gov/GTOPO30).

Difference based variables (RA, RMAP, and RMAT) were aggregated into 50 km by 50 km

grids as differences between absolute minimum and maximum values in all 1 km by 1 km

grids within larger 50 km by 50 km grids. All other variables were aggregated into 50 km by 50

km grids as means of 1 km by 1 km climate or land-cover data within it following removal of

outliers (including NA-coded values along coastline grids).

Analytic methods

TSR predictions employed two steps. First, variables were selected using a Least Absolute

Shrinkage and Selection Operator (LASSO; [30]). LASSO is superior to regular stepwise ordi-

nary least squares in its handling of multicollinearity [31]. LASSO was used only for variable

selection and not for TSR prediction because its model coefficients for selected variables are

greatly penalized (described below), making its results difficult to compare with those from

traditional regressions. Second, using the variables selected by LASSO, TSR was modelled

using generalized linear models (GLM) and Eigenvector spatial filtering (ESF). These two

steps are further detailed in the next three subsections.

Variable selection

To reduce the number of predictor variables with multicollinearity, we used a LASSO under

the GLM with logarithmic link function. LASSO uses a penalty term to constrain the size of

estimated coefficients (i.e. shrink the effect of less important predictor variables) by minimiz-

ing the deviance (i.e. sum of squared differences) of the linear model fit to the observed out-

come. LASSO penalizes the coefficients of unimportant variables to zero, resulting in a subset

of predictor variables in the model. All continuous predictor variables were standardized

(mean = 0, SD = 1) so regression coefficients could be compared as measures of relative impor-

tance [32]. The LASSO penalty parameter λ for variable selection was determined using a

10-fold cross-validation. We applied LASSO to two sets of variables: all predictors (“full

model”), and all predictors except MFDF and FA (“reduced model”). LASSO was conducted

using the R package glmnet [33].

Generalized linear models (GLMs)

GLMs allow the distribution of the outcome variable to be modeled to fit any member of the

exponential family [34]. We used a GLM with a Poisson error distribution and a logarithmic

link function since TSR generally satisfies the Poisson error distribution as a count variable.

We first ran GLMs for the 18 single predictor variables of TSR to evaluate their individual

explanatory power. We then developed two sets of predictor variables using LASSO to obtain

non-penalized coefficients and predictions: LASSO output from all 18 predictor variables

(“full model”) and LASSO output from 16 predictor variables not including MFDF and FA

(“reduced model”). Performance of these two models was assessed by the Akaike Information

Criterion (AIC) value and residual deviance (% explained). GLM analyses were conducted

using the R package stats.
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Eigenvector spatial filtering (ESF)

Two popular methods to account for spatial autocorrelation are simultaneous autoregressive

models, and conditional autoregressive models. They both include a spatial autocorrelation

parameter using a spatial weight matrix (usually a 0 and 1 binary contiguity matrix with a n-

by-n dimension) on the right-hand side of the equation. These models can be specified in vari-

ous ways based on which component has spatial autocorrelation [35]. Eigenvector spatial fil-

tering (ESF; [36]) has become a more popular method as it successfully accounts for spatial

autocorrelation in a regression model specification. Although the fundamentals of autoregres-

sive-models and ESF are similar, ESF has advantages over autoregressive-models. In particular,

ESF models are simpler as they capture spatial autocorrelation as a mean response rather than

as variance [36]. Moreover, an autoregressive-Poisson model cannot account for negative spa-

tial autocorrelation while ESF can through its integrability conditions [36]. Its flexible struc-

ture, which introduces eigenvectors extracted from a transformed spatial weights matrix using

a stepwise selection procedure, facilitates different model specifications.

ESF is a nonparametric method that can be adapted to GLMs. It uses a set of eigenvectors

extracted from the decomposition of (I − 11T/n)W(I − 11T/n), where I is an identity matrix, 1

is a vector of ones, n is the number of spatial units, W is the binary spatial weight matrix, and

T is the matrix transpose operator. We extracted n eigenvectors from a n – by – n matrix, with

all eigenvectors uncorrelated and orthogonal to each other. These eigenvectors can represent

distinctive map patterns and be employed as components in a regression to capture spatial

autocorrelation. The general ESF form is:

Y ¼ Xβx þ Ekβk þ � ðEq 1Þ

where βx is a set of parameter vector for predictor variables, Ek is a set of eigenvectors, and βk

is another set of parameter vector for Ek. The set of eigenvectors are selected based on the sig-

nificance level of the estimated coefficients using a stepwise regression procedure [37]. We uti-

lize AIC for the model quality measure in each step of stepwise regression. ESF analyses were

conducted using the R packages MASS and spdep.

Model evaluation

The GLMs and ESF models, both full and reduced, were compared in several regards: variable

multicollinearity as indicated by variance inflation factors (VIFs), model fit as indicated by

AIC and percent of total deviance explained, and spatial autocorrelation of standardized resid-

uals as indicated by Moran’s I. VIFs indicate if multicollinearity exists in a regression analysis

by measuring how much the variance of estimated regression coefficients are inflated relative

to when predictor variables are not linearly related. Total deviance explained by a model was

calculated in two steps. First the difference between the deviance for the given model and the

saturated model deviance was calculated as:

2
Xn

i¼1
ðyiðlog

yi

ui

� �

� ðyi � uiÞÞ ðEq 2Þ

Second, percent deviance explained was calculated: (100-null deviance/residual deviance)�

100.

Spatial autocorrelation was assessed in two steps. First, for each grid the standardized Pear-

son residual was calculated as its raw residual divided by the standard error of all residuals.

Second, residuals for all 1234 grids were evaluated using Moran’s I.

TSR predictions made by our four models (GLM full, GLM reduced, ESF full, ESF reduced)

and the model of Wang et al. (2011) were compared with gridded FIA TSR point-sample data
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using the non-parametric Wilcoxon signed-rank test, paired at the grid-scale. This was done as

TSR data are not normally distributed. This test compared the predicted TSRs for each grid for

two areas: Florida, and the inland eastern USA area not including Florida. The null hypothesis

was that the median difference of TSR between predictions and FIA observations of matched

grids was zero.

Results

Tree species richness (TSR)

TSR in the 1234 grids ranges between 6 and 52, has a mean of 36.4, a median of 37.9, and is

left-skewed (Fig 1). TSR in gridded FIA point-sample data (Fig 2C) is low in the northern

states and Florida, and high in the southern states though slightly lower along the Gulf Coast.

Grids with no mapped TSR values contain<31 FIA plots and thus TSR could not be estimated;

one block of them is along the lower Mississippi River, and a second block from Iowa to west-

ern Ohio corresponds with the Midwestern prairie peninsula [14].

Variable selection

Assessed using individuals GLMs, five predictor variables each explained >25% of deviance in

gridded TSR (presented in descending order): MFDF, MPDQ, PSN, FA, AET (Table 1). The

absolute value of the standardized coefficient followed the same order as deviance explained.

Relations with gridded TSR were negative for PSN and MFDF and positive for the other three

predictors.

LASSO, using a 10-fold cross validation so that error was<1 S.E. of the minimum, selected

four of the 18 variables for the full model and four of the 16 variables for the reduced model

(Table 2). In the full model, the effect of variables, as indicated by the absolute size of standard-

ized and penalized regression coefficients was, in descending order: MFDF, PSN, FA, MPDQ.

For the reduced model, the effect of variables was, in descending order: PSN, PET, MPDQ,

MTCQ. The variables common to the full and reduced models were PSN and MPDQ. All vari-

ables had the same sign in LASSO (Table 2) as in individual GLMs (Table 1) but, due to the

LASSO penalization procedure, penalized standardized coefficients were smaller.

Model predictions

Gridded TSR was predicted best by the full ESF model as indicated by the highest percent devi-

ance explained and lowest AIC value, second-best by the reduced ESF model, third-best by the

full-GLM, and poorest by the reduced GLM (Table 3). Standardized regression coefficients

indicate PSN was the most influential variable in all four models (Table 3), MFDF was second-

most influential in the full GLM and fourth-most in the full ESF model, and FA was third-

most influential in the full ESF model and fourth-most in the full GLM. For the reduced mod-

els, LASSO chose PET and MTCQ to replace FA and MFDF. The sign of the coefficients in all

four models was the same as in individual GLMs (Table 1) and in LASSO variable choice

(Table 2). VIF values for all four variables in all four models were less than five, indicating neg-

ligible multicollinearity among predictor variables [38].

The spatial pattern of TSR predicted by all four models, similar to that in gridded FIA

point-sample data, was low values in northern states, Florida, and along the Mississippi River,

and high values in southern states (Fig 2). GLM and ESF predictions varied in four regards:

ESF predicted lowered TSR in the prairie peninsula from Iowa to Ohio while GLMs did not,

ESF predicted lower values of TSR along the Gulf coast while GLMs did not, ESF predicted

minor reductions in TSR along the lower Mississippi River while GLMs predicted marked
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reductions, and ESF predicted spatially heterogeneous patterns of high TSR in southern states

while GLMs predicted blocky patches of high TSR. In comparison, the model of Wang et al.

[12] also did not predict lowered TSR in the prairie peninsula, along the lower Mississippi

River, along the Gulf coast, or in Florida (Fig 2F).

Fig 1. Frequency of tree species richness in the 1234 grids of 50km2. The smoothed line is the kernel density estimate; the red line indicates the median

of 37.9 species.

https://doi.org/10.1371/journal.pone.0203881.g001
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The observed and z-scores of Moran’s I values indicate that standardized residuals were

highly significantly clustered (positive) for both GLMs, but the majority of positive spatial

Fig 2. Tree species richness (TSR): observed by the FIA (c), and predicted by our GLMs, full (a), and reduced (b), our ESF models, full (d) and

reduced (e), and by the model of Wang et al. (2011; f). The same TSR classes are employed in all maps.

https://doi.org/10.1371/journal.pone.0203881.g002

Table 2. Variables chosen by the LASSO method to reduce multicollinearity in the GLM.

Full model (variables selected from all 18 predictors) Reduced model (variables selected from the 16 predictors other than MFDF and

FA)

Selected variables Standardized penalized coefficient Selected variables Standardized penalized coefficient

MFDF -0.0063613 PSN -0.0056451

PSN -0.0050020 PET 0.0031112

FA 0.0002133 MPDQ 0.0001843

MPDQ 0.0001359 MTCQ 0.0001213

Variables are ordered from highest to lowest absolute standardized coefficient.

https://doi.org/10.1371/journal.pone.0203881.t002
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autocorrelation was captured and slightly dispersed in both ESF models (Fig 3, Table 3). Pre-

dicted and FIA values of TSR at the grid-scale were not significantly different in Florida for the

full ESF model, and not significantly different in inland Eastern USA for the full and reduced

ESF models (Table 4). TSR was significantly over-predicted in Florida by the GLMs and the

reduced ESF model and especially by Wang et al. [12]. TSR was significantly under-predicted

in inland eastern USA by the two GLMs and especially by Wang et al. [12]. The inclusion of

the two new predictors, FA and MFDF, improved prediction accuracy such that the full mod-

els of GLM and ESF had 13.7% and 5.9% higher deviance explained than their respective

reduced models.

Discussion

Our predictions of TSR across eastern USA obtained high deviance explained, non-clustered

residuals, and comparable geographic patterns to observed TSR. This was accomplished by

Table 3. Model comparisons between GLM and ESF.

Full models (variables selected from all 18 predictors)

Variables GLM Poisson ESF

Standardized Coefficient Standard Error VIF Standardized Coefficient Standard Error VIF

(Intercept) 3.11841 0.003725��� NA 3.23212 0.0653319��� NA

PSN -0.16512 0.006331��� 3.66 -0.25411 0.0036453��� 1.70

MFDF -0.13262 0.003424�� 1.41 -0.12807 0.0043615�� 1.91

MPDQ 0.11226 0.017050 ��� 4.11 0.16448 0.0197261��� 4.48

FA 0.09734 0.004991��� 2.36 0.15963 0.0151168�� 3.71

AIC 9061 7715

Null Deviance 6113 6113

Residual Deviance (% explained) 2275 (62.78%) 749 (87.74%)

Moran’s I 0.68 0.13

Z-score of Moran’s I 23.893��� 2.063�

# selected eigenvectors - 160

Reduced models (variables selected from the 16 predictors other than MFDF and FA)

Variables GLM Poisson ESF

Standardized Coefficient Standard Error VIF Standardized Coefficient Standard Error VIF

(Intercept) 3.0027 0.00541��� NA 3.0095 0.01823��� NA

PSN -0.1930 0.011649��� 3.61 -0.19932 0.017165��� 4.55

MPDQ 0.13483 0.017770�� 4.14 0.07313 0.006333�� 2.61

PET 0.10386 0.003566�� 1.41 0.08173 0.003745�� 1.80

MTCQ 0.08233 0.013201��� 3.60 0.04512 0.004363��� 1.92

AIC 9899 8019

Null Deviance 6113 6113

Residual Deviance (% explained) 3111 (49.10%) 1108 (81.87%)

Moran’s I 0.75 -0.14

Z-score of Moran’s I 28.90��� 2.57��

# selected eigenvectors - 188

Variables are ordered in descending order of absolute size of the standardized coefficient for the GLM; VIF is the variance inflation factor.

Significance level

���0.001

��0.01

�0.05

https://doi.org/10.1371/journal.pone.0203881.t003

Tree species richness predictions, eastern USA

PLOS ONE | https://doi.org/10.1371/journal.pone.0203881 September 18, 2018 10 / 16

https://doi.org/10.1371/journal.pone.0203881.t003
https://doi.org/10.1371/journal.pone.0203881


using gridded FIA point-sample-based TSR as the outcome variable, FA and MFDF as predic-

tor variables, and ESF as the regression model. We discuss use of FIA data for TSR,

Fig 3. Standardized Pearson residuals for our two GLMs, full (a) and reduced (b), and two ESF models, full (c) and reduced (d). The

same residual classes are employed in all maps.

https://doi.org/10.1371/journal.pone.0203881.g003
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performance of different models, spatial patterns of predicted TSR, and meanings of the cho-

sen variables.

FIA point-sample data provided a reliable geographic record of TSR as it came from spa-

tially explicit plot locations. In contrast, species range maps used in eight studies of TSR dis-

cussed in the Introduction have unknown amounts of spatial generalization that result in

increased spatial autocorrelation that artificially inflates variance explained by environmental

models [18]. That said, similar spatial patterns of TSR occur in maps created using FIA data

(Fig 2C) and using Little’s range maps (Fig 1B, [10]; Fig 3A, [12]): lower TSR in northern than

southern states, and regionally lower TSR in the Midwest prairie peninsula, along the lower

Mississippi River and Gulf coast, and especially in Florida. One key difference is less spatial

clustering of TSR from FIA point-sample data than from species range maps. Lower spatial

clustering of TSR from FIA data likely reflects influence of local factors [7,39], something not

reflected in spatially generalized range maps.

The geographic features just described in maps of TSR from gridded FIA data and Little’s

maps were all reproduced in maps of TSR predicted by our ESF models. GLM models, how-

ever, did not predict the lowered TSR in the Midwest prairie peninsula nor along the Gulf

coast. The GLM predictions were still an improvement on those of Wang et al. [12] that, in

addition to not predicting lowered TSR in the prairie peninsula nor along the lower Missis-

sippi River, also incorrectly predicted high TSR in Florida and along the Gulf coast. Of the

seven other studies that developed environmental models of TSR, only three others presented

maps of their TSR input data [6,9,10] and none mapped their TSR predictions. Our mapped

output highlights the value of ESF models to help reproduce geographic realism in predicted

TSR.

The full ESF model’s deviance explained of 87.7% was strong, exceeded by only two of the

seven multivariate models of TSR described in the Introduction [8][13]. However, the devi-

ance explained in TSR by our full GLM was lower than that by GLMs in seven other studies.

Two likely reasons for weaker performance of our full GLM are multicollinearity and scale.

First, our use of LASSO selected predictors with minimal multicollinearity, while stepwise

regression used in other TSR models often chooses multicollinear predictors that artificially

increase variance explained [40]. Second, our study area is smaller than the seven other TSR

studies and, since smaller areas have a smaller range of TSRs and predictor variables, they have

lower variance explained [7,39].

The importance of PSN in this study, the most influential predictor in all four multivariate

models, and third in influence in individual GLMs, was unexpected as it was the fifth weakest

of the 25 predictors used by Wang et al. [12] the only other TSR study that employed it. The

negative relation between TSR and PSN was also unexpected given positive relations between

Table 4. Wilcoxon signed-rank test between FIA and predicted TSR for eastern USA and Florida.

Model Eastern USA inland (Median = 39.2, N = 1182) Florida (Median = 32.3, N = 52)

Median W� P-value

(two-tailed)

Median W� P-value

(two-tailed)

GLM full 36.9 317412 0.032 34.9 694 0.017

GLM reduced 36.3 323471 0.013 35.4 964 0.001

ESF full 39.1 337540 0.368 31.4 569 0.330

ESF reduced 40.4 324220 0.453 33.7 785 0.028

Wang’s model 35.9 291739 < 0.001 53.3 1312 < 0.001

�W is the sum of ranks assigned to differences with positive signs.

https://doi.org/10.1371/journal.pone.0203881.t004
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PSN, net primary productivity and TSR: Robinson et al. [41] found net primary productivity

to be positively related to PSN, and Adams & Woodward [8] found NPP to be positively

related to TSR, and thus PSN and TSR should also be positively correlated. Supporting a posi-

tive relationship is the suggestion that an increase in PSN should increase niche availability

[42] and thus species richness. In contrast, Cavanaugh et al. [43] found no relation between

PSN and genus diversity of trees in tropical areas. It would be valuable to resolve this contra-

diction as changes in precipitation rather than temperature are the strongest driver of the

changes in tree species distributions in the eastern USA [44].

MPDQ was the second strongest predictor in individual GLMs, in ESF full and GLM

reduced models, and 3rd strongest in ESF reduced and GLM full models. In contrast, it was

15th strongest of 25 predictors in Wang et al. [12]. MPDQ suggests the importance of reducing

physiological stress; the spatial pattern of MPDQ is the inverse of that for PSN, such that areas

with high MPDQ having low PSN (S1 Fig). MPDQ has also been found to have a strong posi-

tive relation with oak species diversity [45].

MFDF was the strongest predictor in individual GLMs, second strongest in the full GLM,

and fourth strongest predictor in the full ESF model. The negative relation between MFDF

and TSR concurs with the killing effect frost has on tropical tree species and on the reduced

growth rates that temperate trees incur to increase frost resistance [3]. The stronger relation

between TSR and MFDF than with MTCQ, the strongest predictor of TSR for Wang et al.

[12], was likely due to a non-linear relation between MTCQ and MFDF (S2 Fig). While

MTCQ and MFDF were linearly related for all of Eastern USA, the slope of the relation was

weaker in Florida with increasing MTCQ causing little reduction in MFDF. Thus, while

MFDF showed a latitudinal pattern similar to that for MTCQ, the maritime influence on pen-

insular Florida was more meaningfully expressed in MFDF. Inclusion of MFDF in the full ESF

model was thus critical in it being the only model to successfully predict Florida TSR. Note:

MFDF was also selected by LASSO as the strongest predictor for just those grids with�41 and

�51 FIA plots (S1 Table).

FA was the fourth strongest predictor in individual GLMs, third strongest in the full ESF,

and fourth strongest in the full GLM. Low FA occurs in the areas with low TSR predicted by

ESF and low TSR observed in Little’s maps (e.g. Montoya et al. [10]): the Midwest prairie pen-

insula, the lower Mississippi River, the Gulf Coast, and Florida (S1 Fig). Low TSR in those

areas has been related to climatic factors similar to those in our models, but also edaphic and

hydrographic factors not included in ours [46]. Low TSR there might also be due to a decrease

in FA reducing the number of habitats and thus the number of species that can survive [21].

That these regional low-TSR features could be predicted by the ESF models and not by GLMs

points out the value of accounting for spatial autocorrelation. The relations between FA and

TSR are unlikely to be due to grids with more FA also having more FIA plots for two reasons.

First, our bootstrapped estimates of TSR resampled the same number of plots (31) in all grids.

Second, variable selection with LASSO for just grids with�41 plots and�51 plots also chose

FA as its fourth strongest predictor (S2 Table).

The ESF models in two manners excelled in predicting the spatial pattern of TSR. First,

they predicted regional variations in TSR such as the Midwest prairie peninsula and the Gulf

coast that were not predicted by GLMs that employed the same variables. Second, standardized

residuals were strongly clustered for GLMs, and slightly dispersed for ESF models. Clustering

in GLMs highlights that the spatial autocorrelation present in outcome and predictor variables,

when combined with spatially autocorrelated outcome variables from species range maps, can

result in high variance explained but poor spatial predictions [18]. In contrast, slight disper-

sion in ESFs standardized residuals may reflect a tendency for ESF to over-correct spatial auto-

correlation in geo-referenced data when too many eigenvectors are selected and added to the
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model [37]. Analyses conducted using only grids with�41 and�51 plots provided identical

results in terms of the greater predictive power of ESF models, predictors chosen by LASSO,

and the ability of ESF to best-predict TSR in Florida and Eastern inland USA (S3 Table).
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