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Abstract
There is a strain of Clostridium perfringens, W5052, which does not produce a known

enterotoxin. We herein report that the strain W5052 expressed a homologue of the iota-

like toxin components sa and sb of C. spiroforme, named Clostridium perfringens iota-
like enterotoxin, CPILE-a and CPILE-b, respectively, based on the results of a genome

sequencing analysis and a systematic protein screening. In the nicotinamide glyco-hydro-

lase (NADase) assay the hydrolysis activity was dose-dependently increased by the con-

centration of rCPILE-a, as judged by the mass spectrometry analysis. In addition, the actin

monomer of the lysates of Vero and L929 cells were radiolabeled in the presence of
[32P]NAD and rCPILE-a. These findings indicated that CPILE-a possesses ADP-ribosylation

activity. The culture supernatant of W5052 facilitated the rounding and killing of Vero and

L929 cells, but the rCPILE-a or a non-proteolyzed rCPILE-b did not. However, a trypsin-

treated rCPILE-b did. Moreover, a mixture of rCPILE-a and the trypsin-treated rCPILE-b

enhanced the cell rounding and killing activities, compared with that induced by the trypsin-

treated rCPILE-b alone. The injection of the mixture of rCPILE-a and the trypsin-treated

rCPILE-b into an ileum loop of rabbits evoked the swelling of the loop and accumulation of

the fluid dose-dependently, suggesting that CPILE possesses enterotoxic activity. The evi-

dence presented in this communication will facilitate the epidemiological, etiological, and

toxicological studies of C. perfringens food poisoning, and also stimulate studies on the

transfer of the toxins’ gene(s) among the Genus Clostridium.

PLOS ONE | DOI:10.1371/journal.pone.0138183 November 19, 2015 1 / 25

OPEN ACCESS

Citation: Irikura D, Monma C, Suzuki Y, Nakama A,
Kai A, Fukui-Miyazaki A, et al. (2015) Identification
and Characterization of a New Enterotoxin Produced
by Clostridium perfringens Isolated from Food
Poisoning Outbreaks. PLoS ONE 10(11): e0138183.
doi:10.1371/journal.pone.0138183

Editor: Michel R. Popoff, Institute Pasteur, FRANCE

Received: May 10, 2015

Accepted: August 26, 2015

Published: November 19, 2015

Copyright: © 2015 Irikura et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All files are available
from the NCBI database (accession number(s)
AB921559 and AB921560).

Funding: This study was supported by a grant from
the Ministry of Health, Labour and Welfare of Japan.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0138183&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Clostridium perfringens is a toxin-producing bacterium, causing gas gangrene and food-borne
illnesses in human and digestive diseases in other animals. C. perfringens produces four typing
toxins (alpha, beta, epsilon, and iota) and at least eleven other toxins [1–3]. C. perfringens is
classified into five types, A through E, on the basis of its production of the four typing toxins.
Enterotoxin (CPE) is one of the toxins produced by C. perfringens, evoking diarrhea and the
enterotoxin gene is cloned and sequenced [4]. Most CPE-producing C. perfringens belong to
type A. Type E C. perfringens produces alpha and iota toxins and leads to antibiotic-associated
enterotoxaemia in rabbits and sporadic outbreaks in bovine and ovine species [5]. C. spiroforme
causes enteritis in rabbits [6]. The production of an iota toxin homologue, iota-like toxin, by C.
spiroforme was reported previously [7]. Our survey of the literature found no reports indicating
that type E C. perfringens causes any diseases in humans.

Type E C. perfringens specifically produces iota toxin. Iota toxin consists of two compo-
nents; enzymatic and binding components, named ia and ib, respectively. Iota toxin is a mem-
ber of the binary toxin group [8], which also includes C. botulinum C2 toxin (C2I and C2II)[9]
and C. difficile ADP-ribosyltranferase (cdtA and cdtB) [10]. Iota-like toxin produced by C. spir-
oforme also belongs to the binary toxin group. Components of iota-like toxin are designated as
Sa and Sb [11]. Iota toxin ib is produced as inactive precursors. An N-terminal region is then
removed by bacterial proteases after secretion from the bacterial cell body, and then both com-
ponents become active [12]. Iota toxin ia mediates ADP-ribosylation by catalyzing the nicotin-
amide glyco-hydrolase (NADase) reaction and the transfer of the ADP-ribose to intracellular
actin monomers. Component ia is known to contain three conserved regions: the arginine resi-
due as the catalytic center for both reactions, a Glu-X-Glu (EXE) motif, and an STS motif. The
EXE motif, located in the ADP-ribosylating tune-tune loop, is particularly important for the
enzymatic activity [13–15]. Iota toxin ib displays significant homology to the protective antigen
of anthrax toxin (54.5% similarity overall) and C2II (39.0% similarity overall) [16].

The molecule of iota toxin ib and its homologues are divided into four domains. Each
domain possesses distinct functions, such as binding to the cells, oligomerization of the binding
components, insertion of the binding components into the membrane, and binding to the
enzymatic component ia [17]. Recently, iota toxin ib was found to mediate the internalization
of ia into the cytosol [18]. After transfer of ADP-ribose to globular actin by ia, depolymeriza-
tion of the actin cytoskeleton occurred, and then cell rounding and cell death were evoked in
various mammalian cell lines including L929 cells not Vero cells [19].

It is necessary to determine the presence of the cpe gene and the production of CPE protein
in isolates from the affected patients/foods in order to diagnose C. perfringens type A food poi-
soning. PCR and the reversed-passive latex agglutination test are available for the detection of
the cpe gene and CPE protein. In 1997, we encountered a strange outbreak of food poisoning in
Japan. Although the clinical symptoms of the patients and epidemiological characteristics indi-
cated that the outbreak was caused by C. perfringens, the isolates of C. perfringens did not har-
bor the cpe gene nor produce CPE protein in culture. Three more outbreaks (for a total of two
in Tokyo, one in Osaka, and one in Tochigi) were identified [20]. The culture supernatant of
the C. perfringens strain W5052 originated from the outbreak that occurred in Tokyo in 1997
evoked the death of the L929 and Vero cells. The supernatant also evoked swelling and fluid
accumulation of the ileal loops of rabbits, suggesting the presence of enterotoxin. It is well
known that CPE kills Vero cells, but not L929 cells, because the L929 cells do not harbor the
receptor for CPE [21]. Anti-alpha toxin and anti-CPE antibodies did not neutralize the cell kill-
ing and enterotoxic activity of the strain W5052 culture supernatant. These findings suggested
that the strain W5052 produces an unidentified enterotoxin.
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At the International Conference on the Molecular Biology and Pathogenesis of Clostridia-
ClostPath 2013, we presented the evidence for a new, previously unknown enterotoxin. We
named the toxin as Clostridium perfringens iota-like enterotoxin, CPILE, on the basis of a geno-
mic DNA sequence analysis of the causative C. perfringens strain W5052 using next generation
DNA sequencing and systematic protein screening by mass spectrometry. In this communica-
tion, we present the processes by which CPILE was screened and identified, and the properties
of CPILE as characterized by the molecular biological, protein-chemical, and cellular biological
methods. The information revealed here promises to improve the epidemiological study of C.
perfringens food poisoning and research into the toxins produced by the Genus Clostridium.

Materials and Methods

Strain and culture
C. perfringens strain W5052, which lacks cpe gene and the expression of CPE, was isolated
from the diarrheal feces of patients during a food poisoning outbreak that occurred in Tokyo
in 1997 [20]. Three similar outbreaks occurred in 2003 in Tokyo, 2009 in Osaka, and 2010 in
Tochigi, all lacking CPE, were also used. Strain W5052 was maintained in a cooked meat
medium (CMM, BD). The suspended culture supernatant of the stocked CMMwas inoculated
into a new CMM and cultured overnight at 37°C. A tiny volume of the suspension of the cul-
ture supernatant was inoculated in a Brain Heat Infusion (BHI) medium (BD) and was cul-
tured overnight at 37°C. A 1% of the supernatant cultured in BHI medium was inoculated into
a modified Duncan-Strong (DS) medium [22], and cultured for four days at 37°C for identifica-
tion of the production and for purification of the new enterotoxin.

Genomic sequencing and bioinformatic studies of C. perfringens strain
W5052
The genomic DNA of the strain W5052 was purified from the BHI culture medium using a
DNeasy Blood & Tissue Kit (Qiagen). The sequence of the genomic DNA was determined by a
Roche Genome Sequencer FLX. This analysis was carried out by Hokkaido System Science Inc.
(Hokkaido, Japan). Jemboss, a computer software program, was used to predict possible open
reading frames [23]. Homologues to the deduced amino acid sequence were searched using the
BLAST program [24]. A multiple sequence alignment was performed using the Genetyx soft-
ware program (Software Development Inc., Tokyo, Japan).

Partial purification of a new enterotoxin produced by C. perfringens strain W5052.
The strain W5052 was cultured in modified DS medium. After centrifugation of the culture at
10,000 x g for 10 min at 4°C, the clear supernatant was harvested. Ammonium sulfate was
added into the culture supernatant to achieve 0–70, 0–40, 40–50, 50–60, and 60–70% satura-
tion fractions. The protein precipitates were harvested by centrifugation at 10,000 x g at 4°C for
10 min, suspended in a small volume of phosphate-buffered saline (PBS), and then dialyzed
against PBS. The suspended precipitates were cleared by filtration with a 0.2-μm filter (Techno
Plastic Products). The protein concentration of the fractions was determined using a BCA pro-
tein assay kit (Pierce, Rockford, IL USA). The final products were kept at -80°C until protein
mass spectrometry analysis and determination of cell toxicity.

A fraction containing cytotoxic activity was subjected to FPLC-gel filtration on a Superdex
200 10/300 GL column (GE Healthcare) using an AKTA Purifier. The solvent was PBS, with a
flow rate of 0.5 ml/min.
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Mass spectrometry to identify the proteins
A fraction containing cytotoxic activity was digested by trypsin after reductive alkylation.
One μg of protein in 10 μl containing the cytotoxic activity was dissolved in 100 mM sodium
hydrogen carbonate, and 1 μl of 45 mM dithiothreitol (DTT) was added into the protein solu-
tion. The mixture was incubated at 55°C for 15 min and the reaction was terminated by the
addition of 1 μl of 100 mM iodoacetamide. After incubation of the products at room tempera-
ture for 15 min, 1 μl of trypsin (0.1 mg/ml in 100 mM sodium hydrogen carbonate solution)
was added, and the mixture was incubated at 37°C for 3 hr. The reaction was terminated by the
addition of 1 μl of 0.1% trifluoroacetic acid. The reaction products were kept at -80°C until the
mass spectrometry analysis.

The LC system used was an Agilent Technologies Series 1200 system (Agilent, USA)
equipped with a nanoflow pump (G2226A) as an analytical pump, a capillary pump (G1376A),
a degasser (G1379B), an autosampler (G1377A), a chip cube interface (G4240A) and a ALS
Thermo (G1330B). Chromatographic separations were performed on a ZORBAX 300SB-C18
column (0.075 μm × 43 mm, 5 μm), and the column temperature was maintained at 25°C. A gra-
dient frommobile phase A (0.1% formic acid) to mobile phase B (0.1% formic acid/acetonitrile)
was adopted. The sample injection volume and the flow rate were 40 nl and 300 nl/min, respec-
tively. The LC program was as follows: 0.0 min, 5% B; 0.0–60.0 min, 5% to 60% B; 30.0–30.1 min,
60% to 90% B and; 30.1–40 min, 90% B. The stop time was 55 min. Detection was carried out
with an Agilent 6530 instrument equipped with an Electrospray™ ionization source, controlled by
the OpenLAB software program (Agilent, USA). Positive ionization was performed, and the fol-
lowing parameters were used: drying gas, N2 (5 L/min); drying gas temperature, 325°C; MS
range, 350–2000 (MS) and 50–3000 (MS/MS); fragmentor (V), 175V; capillary voltage, 1800V;
and acquisition mode, AutoMSMS. The mass spectroscopy analysis was carried out at Agilent
Technologies Inc. (Tokyo, Japan). SpectrumMill, a computer software program, was used for the
determination and identification of peptide sequences from the mass spectroscopy data.

Expression of mRNA for the new enterotoxin analyzed by RT-PCR
Total RNA was extracted from the C. perfringens isolates originated from the four outbreaks.
The isolates were cultured in BHI medium and the cell bodies were harvested by centrifugation
at 5,000 x g for 10 min, and the total RNA of the cells was extracted using a RiboPure-Bacteria
Kit (Ambion, Thermo Fisher Scientific) according to the manufacturer's protocol. The isolated
total RNA (2 μg) was reverse-transcribed using random primers with the High-Capacity
cDNA Reverse Transcription Kits (ABI) according to the manufacturer's protocol, and was
subsequently amplified by PCR using the Ex Taq HS (Takara).

The RT-PCR reaction mixture included 2 μl of the reverse transcriptase-reaction solution,
1×Ex Taq buffer, 200 μM dNTPs, 1 μM sense primer, 1 μM anti-sense primer and 1.25 units
Ex Taq HS in a total volume of 50 μl. RT-PCR was performed using a GeneAmp PCR System
9700 (Applied Biosystems). The PCR conditions were: 10 min at 95°C, then 30 cycles of dena-
turation at 95°C for 30 sec, annealing at 60°C for 30 sec, and extension at 72°C for 1 min, fol-
lowed by 10 min at 72°C. The specific sense and anti-sense primers for cpile-a were 5’-CAATG
GGGCGAAGAAAATTA-3’ and 5’-GTTTCCTCTTAGCAAAAGCTGA-3’, respectively. The
specific sense and anti-sense primer for cpile-b were 5’-TTGCAGTTCAGTCTGAGAAACC-3’
and 5’-CAGGGGAATTCGTATAATCTGC-3’, respectively.

cDNA cloning, expression and purification of CPILE
A cDNA encoding the two components was amplified by PCR using KOD plus DNA polymer-
ase (TOYOBO). The forward and reverse primers for cpile-a were 5’-
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GGATCCATGTTAGACGATAACCGACCTATG-3’ and 5’-GTCGACCTATATTAAAGTAG
CATCAATAAT-3’, respectively. The forward and reverse primers for cpile-b were 5’-GGATC
CATGATAAATAATACTTTTTTTATG-3’ and 5’-GTCGACCTAAAAAGGGTATTCAAG
CACAAT-3’, respectively. Both forward primers contained a BamHI restriction site (underlined)
at the 5’ end, and both reverse primers contained a SalI restriction site (underlined). The PCR
products were purified using the illustra GFX PCR DNA and Gel Band purification kit (GE
Healthcare). The purified DNA fragments were sub-cloned into pCR-TOPO-XL (Invitrogen).

These cDNAs containing sub-cloned vectors digested using BamHI/SalI were ligated into a
pGEX 4T-2 vector that expressed a glutathione S-transferase (GST)-fusion protein, including a
thrombin site at the N-terminus. The expression vectors were transformed into E. coli BL21
star competent cells (Invitrogen). Transformed E. coli were plated onto LB agar plates contain-
ing ampicillin (100 μg/ml). Single colonies of E. coli with homologue a/pGEX-4T-2 and homo-
logue b/pGEX-4T-2 were picked up and inoculated into LB broth containing ampicillin
(100 μg/ml) and were grown overnight at 37°C with shaking (150 rpm). A 4% volume of the
overnight culture was then inoculated into LB broth containing ampicillin. The broth was cul-
tured at 37°C until the absorbance of the culture at 600 nm reached to 0.6, then isopropyl β-D-
thiogalactoside (IPTG, final concentration of 1 mM) was added. The cultivation continued for
another 24 hr at 16°C with shaking. The E. coli cells transformed with cpile-a/pGEX4T-2 were
harvested by centrifugation at 10,000 rpm for 10 min at 4°C. Proteins were extracted from the
E. coli cells with the Bugbuster1 protein extraction reagent (Novagen). After centrifugation at
9,000 x g for 30 min at 4°C, the supernatant was mixed with GSH Sepharose 4B beads (GE
healthcare) overnight at 4°C with gentle agitation. The beads were washed in PBS by centrifu-
gation at 1,000 x g for 10 min at 20°C, and then were suspended in a small volume of PBS.
Thrombin (GE Healthcare) was added into the suspension of the beads and the suspension was
agitated at room temperature for 30 min. The supernatant resulting from centrifugation of the
sample at 1,500x g for 10 min was harvested and a suspension of benzamidine beads (Sigma-
Aldrich) was added into the supernatant to remove thrombin.

The E. coli transformed with cpile-b/pGEX-4T2 were harvested and proteins were extracted
from the E. coli with the Bugbuster1 protein extraction reagent. After centrifugation at 9,000
x g for 30 min at 4°C, the supernatant was mixed with GSH-Sepharose 4B beads (GE health-
care) overnight at 4°C with gentle agitation. The beads were packed in a column and then
exhaustively washed in PBS. The rCPILE-b was eluted from the beads with 10 mM glutathione,
and treated with trypsin at 37°C for an appropriate period. The ratio of rCPILE-b:trypsin was
10:1 (w:w). The rCPILE-a and the trypsin-treated rCPILE-b were further purified by gel filtra-
tion using a Superdex 200 column. The final preparation of rCPILE-a and -b was checked for
their purity by SDS-polyacrylamide gel electrophoresis (SDS-PAGE).

Measurement of NADase activity for the recombinant CPILE-a. The rCPILE-a (50 μl)
was incubated for 6 hr at 37°C in the presence of 1 mMNAD+, 10 mM EDTA, 10 mM DTT,
and 100 μg of bovine serum albumin in 40 mM Tris-HCl buffer (pH 7.5). The reaction was ter-
minated by the addition of 40 μl of 0.1% formic acid in acetonitrile. Ten μl of an internal con-
trol solution (0.5 mM diethylnicotinamide/50% acetonitrile) was added into the reaction
products. The final products were cleared by filtration using a10-kDa cut-off Nanosep1 and
Nanosep MF Centrifugal Devices (Pall, Port Washington, USA).

Nicotinamide (NA) and diethylnicotinamide were quantified by a 3200 Q TRAP LC/MS/
MS System (AB Sciex, Foster City, CA, USA), equipped with an ESI source and a LC-20A
Series HPLC System (Shimadzu Corporation, Kyoto, Japan). The HPLC conditions were: col-
umn, Poroshell 120 EC-C18, 2.1 mm i.d. × 50 mm, 2.7 mm (Agilent Technologies, Palo Alto,
CA, USA); mobile phase, 10 mM ammonium acetate/acetonitrile, hold at 5% acetonitrile for
1 min, linear gradient of 5–90% acetonitrile in 6 min, hold at 90% acetonitrile for 1 min;
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retention time, NA 0.6 min and diethylnicotinamide 3.2 min. The MS parameters were as fol-
lows: source polarity, positive; source temperature, 300°C; ionization voltage, 5500 V; curtain
gas, 20 psi and nebulizer gas, 70 psi. The ion transitions: parent> daughters (quantifier, Q;
identifier, I) were as follows: nicotinamide, 123 [M+H]+ > 80 (Q), 78 (I) and diethylnicotina-
mide, 179 [M+H]+ > 108 (Q), 72 (I).

Assay of the ADP-ribosyltransferase activity for the recombinant CPILE-a. Vero and
L929 cells were seeded at 5 × 105 cells/dish into 60-mm culture dishes, and then were incubated
for 24 hr in a CO2 incubator. After incubation, the cells from two plates were washed with PBS,
scraped with a rubber policeman in PBS, and then harvested by centrifugation at 1,200 rpm for
10 min. The cells were suspended in 200 μl of 10 mM phosphate buffer (pH 8.5), and then soni-
cated to obtain homogenate proteins. Ten μg of the homogenate protein was incubated with
500 ng of the rCPILE-a for 60 min at 37°C in 50 μl of a reaction mixture containing 10 mM
thymidine, 10 mM nicotinamide, 10 mM DTT, 5 mMMgCl2 and 10 μM

[32P]NAD (92.5 kBq,
GE Healthcare) in 100 mM Tris-HCl buffer (pH 8.5). Trichloroacetic acid (5.5 μl of 100% w/v)
was added to the reaction mixture. The precipitates obtained by centrifugation (10,000 x g,
10 min, 4°C) were washed with ice-cold ethylether, solubilized in 67.5 mM Tris-HCl, pH 6.8,
containing 1% SDS, 25 mM DTT and 20% glycerol, and subjected to SDS-PAGE. Radioactive
bands were visualized by autoradiography with Fuji RX film (Fuji Film Co., Tokyo, Japan).

SDS-PAGE of the recombinant CPILE-b. The oligomerization activity of rCPILE-b was
examined by SDS-PAGE under various conditions. The trypsin-treated rCPILE-b was dena-
tured by heating at 95°C for 5 min in the presence or absence of 50 mMDTT as a reductant.
The denatured products were subjected to SDS-PAGE. Denaturation of the rCPILE-b by incu-
bation at 37°C for 30 min was also performed instead of 95°C-heating.

Cell culture and cytotoxicity assay. The Vero and L929 cells were purchased from the
Human Science Research Resources Bank (Osaka, Japan). All cells were cultured in Dulbecco's
modified Eagle's minimum essential medium (DMEM, Sigma-Aldrich) supplemented with 5%
fetal bovine serum (FBS, Gibco), non-essential amino acids (Sigma-Aldrich), 50 unit /ml peni-
cillin, and 50 μg/ ml streptomycin.

The Cell Counting Kit-8 assay (Doujin-kagaku, Kumamoto, Japan) was used to evaluate
the cytotoxicity. In 96-well plates, cells were seeded in 100 μl D-MEMmedium supplemented
with 1% FBS, non-essential amino acid, 50 unit/ml penicillin, and 50 μg/ml streptomycin at
1×104 cells/well. A serially diluted rCPILE-a or -b was added into the wells 16 hr atfter incuba-
tion. Ten μl of 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tet-
razolium, monosodium salt (WST-8, in kit) was added to the wells after a further 24 hr
incubation, and the culture was continued for 3 hr. The absorbance of the reaction products at
450 nm was measured by an iMark Microplate Reader (Bio-Rad). A titer of the toxic effects
was designated as U, based on the dilution factor showing the cytotoxicity.

Observation of the morphology of L929 cells. In 24-well plates, the cells (2 x 104 cells/
well) were seeded in 100 μl DMEMmedium supplemented with 1% FBS, non-essential amino
acids, 50 unit/ml penicillin, and 50 μg/ml streptomycin. The recombinant CPILE was added
into the wells at 10−7, 10−8, or 10−9 M 16 hr after incubation, and the culture continued for
another 24 h. The morphological changes of L929 cells were observed by optical microscopy.

Rabbit ileum loop test. Rabbits (Japanese white, male, 2.0 kg) were fasted for 24 hr before
the operation. Various combinations of rCPILE-b and the trypsin-treated rCPILE-b
(0.1 μg:0.9 μg, 1 μg:9 μg, and 10 μg:90 μg) were prepared in 1.0 ml of PBS and injected into a
loop of the ileum. The doses of rCPILE were based on a previous study [25]. Cholera toxin
(Wako Chemicals, Osaka, Japan) was injected as a positive control (1 μg/loop). The fluid accu-
mulation ratio (F/A ratio) was calculated based on the volume of fluid of the loop (ml)/length
of the loop (cm). Experiments were humanely conducted under the regulation and permission of
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the Animal Experiment Committee of the National Institute of Health Sciences (NIHS), Tokyo,
Japan. The committee required the verbal informed consent of the participants of this study. The
name of all participants in this study was included in the application documents to do experi-
ments. The committee reviewed a design of study and contents of the experiment, approved
them. The committee interviewed one of the authors (YK), then permitted us to do this study.
The committee documented all of information according to this study. Five rabbits were used to
demonstrate the enterotoxic activity of the test materials, including the preliminary test. All rab-
bits were carefully taken care of according to the guidelines of the NIHS. The rabbits were anes-
thetized with sodium pentobarbital (Somnopentyl, Kyoritsu Seiyaku Corporation, Tokyo) and
opened the abdomen, injected the test material into a loop (approximately 5 cm) of the ileum.
After closing the abdomen, the rabbits were stayed in a clean cage under careful observation. The
rabbits were awoken from anesthesia within 1 hr. The rabbits were euthanized by the injection of
a large volume of sodium pentobarbital 18 hr after the injection of the test material.

Antibodies against recombinant CPILE-a and -b and the Western blot analysis. Anti-
serum against CPILE-a and the trypsin-treated rCPILE-b was prepared in rabbits at Funakoshi
Co., Ltd (Tokyo, Japan). The materials, which were precipitated by 60%-ammonium sulfate
saturation, from the cultures incubated strain W5052 in modified DS medium were used as a
test material. A western blot analysis was performed after protein separation on SDS-PAGE
gels, followed by electrophoretic transfer to Immun-Blot PVDF membranes (Bio-rad) using a
Trans-Blot SD Semi-Dry Electrophoretic Transfer Cell system (Bio-rad). The detection of the
homologues was accomplished by incubating the membrane with a blocking buffer (10% Skim
milk in PBS, BD) overnight at 4°C. The membrane was then incubated with 1,000-fold diluted
polyclonal antiserum in Tris-buffered saline (TBS) containing 0.1% Tween-20 (TBST) for 1 hr.
After being washed, the membrane was treated with goat anti-rabbit IgG coupled with horse-
radish peroxidase (Pierce) in TBST for 1 hour. The reaction was visualized by the use of a
Metal Enhanced DAB Substrate Kit (Pierce) according to the manufacturer's instructions.

Results

Genomic sequencing and bioinformatics of C. perfringens strain W5052
We performed mass sequencing on the total DNA isolated from strain W5052, using the
Roche/454 next generation sequencer. From 220,012 total raw reads, 132 contigs were assem-
bled. The total aggregate length was 3,336,496 nt. Since the length of 112 of total contigs was
500 nt or longer, the sequencing was valuable to analyze the genomic DNA. A comparison
between the contigs of strain W5052 and the complete genome DNA sequence of CPE-produc-
ing C. perfringens strain SM101 (DDBJ/EMBL/FASTA accession number: BA000016) was per-
formed, and 21 W5052 strain-specific contigs were obtained. The Jemboss software program
indicated that 54 genes were predicted to be present in the 21 contigs. After translation of the
54 genes to amino acid sequences, 45 amino-acid sequences were determined to be bacterio-
phage-related homologues of C. botulinum, as judged by a Blast search. Since the 9 residual
amino-acid sequences remained as unknown genes, these 9 genes were considered to be the
candidates for the new enterotoxin gene(s). Iota toxin homologue components a (ia) and b (ib)
of C. perfringens were found in contig No. 31.

Partial purification of a new enterotoxin from the culture of C. perfringens
strain W5052
A new enterotoxin was partially purified from the cultured modified-DS medium by ammo-
nium sulfate fractionation. The fraction of 0–70% saturation showed cytotoxicity to both Vero
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and L929 cells (Table 1). On the other hand, the 0–40% and 60–70% fractions were cytotoxic
only to Vero cells, while the factions of 40–50% and 50–60% were also cytotoxic to both cell
lines. These findings suggested that both the 40–50% and 50–60% ammonium sulfate fractions
contained the new enterotoxin(s). A mixture of fractions 40–50% and 50–60% was subjected to
gel filtration using a Superdex 200 column. Six major protein peaks were found (Fig 1). The
cytotoxicity to both cell lines was concentrated in fraction No. 30, suggesting the presence of
the new enterotoxin(s) in that fraction.

Analysis of the partially purified new enterotoxin by mass spectrometry
The SpectrumMill software program was used to analyze the MS data for the partially purified
new enterotoxin (fraction No. 30) to identify the proteins under the default settings. Sixty six
proteins in total were found for the candidate of a new toxin. The six proteins with the highest
credibility belonged to C. perfringens.

Predictive open reading frames were extracted from the sequence of the 132 contigs of
W5052, and the frames were listed as a protein database. The database showed 9 predicted pro-
teins. The proteins were: lipoprotein, flavoprotein, Fe-S cluster assembly protein, phospho-
transferase, elongation factor, GroES, transcription elongation factor, 30S ribosomal protein S4
of C. perfringens, and components Sa and Sb of the iota-like toxin of C. spiroforme.

The MS data were analyzed again by the Spectrum Mill software under more sensitive con-
ditions. Five distinct peptides of iota-like toxin component a and a peptide of iota-like toxin
component b were found.

Molecular biological properties of a candidate gene for a new enterotoxin
of C. perfringens strain W5052
The 4161 nucleotide sequences contained two open reading frames in contig No. 3. One was
CPILE-a, the other CPILE-b. The cDNA sequence of CPILE-a and -b, and their deduced
amino acid sequences are shown in Fig 2 (DDBJ/EMBL/FASTA accession numbers AB921559
and AB921560). The gene of CPILE-a started at the initiation codon ATG at position 299 and
ended at the stop codon at position 1556. A consensus ribosome binding like site, GGAGG,
was located six nucleotides upstream of the initiation codon. DNA stretches of TATAAT, the
-10 Clostridium consensus promoter regions [26], were identified between position 158 and
163 (underlined, Fig 2). The gene of CPILE-b, from the initiation codon ATG (position 1577)
to the stop codon at position 3974, was preceded by a consensus ribosome binding-like site
(GGAGG) between positions 2864 and 2868. The signal peptide sequence region of CPILE-a

Table 1. Cytotoxic activity in the ammonium sulfate precipitation fractions of a new enterotoxin produced byClostridium perfringens strain
W5052.

Fraction of ammonium
sulfate precipitation

Protein concentration
(mg/ml)

Toxicity*
(U/ml)

Specific toxicity
(U/mg)

Toxicity*
(U/ml)

Specific toxicity
(U/mg)

0–70% 23 6 0.26 1 0.04

0–40% 27 11 0.41 N.D.** N.D.**

40–50% 11 14 0.13 9 0.08

50–60% 110 14 0.13 11 0.10

60–70% 77 10 0.13 N.D.** N.D.**

*:Toxicity unit (U) was designated, based on the dilution factor showing the cytotoxicity determined, using Cell-counting Kit.

**:Not detected.

doi:10.1371/journal.pone.0138183.t001
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and CPILE-b was not conserved in the genome of strain W5052. No promoter consensus
sequences were found on the 18 noncoding nucleotides between the two genes.

Alignment of CPILE and other iota toxin group members
The nucleotides in the coding region of CPILE-a corresponded to 419 amino acid residues. The
calculated molecular weight was 47,470.66. The deduced amino acid sequences of the compo-
nent a homologue are shown in Fig 3. The amino acid sequence of CPILE-a was highly homol-
ogous to that of ADP-ribose transferases, such as iota-like toxin Sa of C. spiroforme, C2 toxin
component I of C. botulinum, iota toxin ia of C. perfringens, and ADP-ribosyltranferase cdtA
of C. difficile. CPILE-a showed an amino acid sequence identity to that of ia (44.0%), cdtA
(43.3%), Sa (43.1%), and C2 I (28.9%), and similarity to that of Sa (83.0%), ia (82.5%), cdtA
(82.7%) and C2 I (77.7%). The arginine residue as the catalytic center and a Glu-X-Glu (EXE)
motif were completely conserved among CPILE-a of W5052, and other ADP-ribose transferase
homologues. The sequence of the STS motif of CPILE-a was 100% similarity to the other ADP-
ribose transferase homologues.

Fig 1. Gel filtration of a new enterotoxin produced byClostridium perfringens strainW5052. The elution profile of the proteins containing a new
enterotoxin is indicated with a solid line. The relative toxicity of the fraction to L929 and Vero cells was indicated with dot and dashed lines, respectively. The
relative toxicity (%) was determined with the Cell counting Kit-8 (DOJINDO, Kumamoto, Japan).

doi:10.1371/journal.pone.0138183.g001

New Diarrheal Toxin of C. perfringens

PLOSONE | DOI:10.1371/journal.pone.0138183 November 19, 2015 9 / 25



New Diarrheal Toxin of C. perfringens

PLOSONE | DOI:10.1371/journal.pone.0138183 November 19, 2015 10 / 25



The nucleotides of CPILE-b gene contained a coding region corresponding to 799 amino
acid residues. The calculated molecular weight was 91,143.18. The deduced amino acid
sequence of homologue b is shown in Fig 4. CPILE-b protein showed a sequence identical to
C2 toxin component II (36.7%), ib (37.8%), Sb (38.3%), and cdtB (38.8%), and similar to that
of C2 component II (81.0%), ib (77.6%), Sb (78.5%), and cdtB (77.7%). The cluster of aspartic
acid residues, which form the site that interacts with the enzymatic component in the presence
of Ca2+ [27], was completely conserved among all of the homologues (Fig 4).

Expression of the mRNA of the homologue a and b genes
The four strains of C. perfringens isolated from the individual outbreaks were examined for the
expression of cpile-a and -b genes. The amplicons of cpile-a (400 bp) and cpile-b (405 bp) were
detected in the test samples by RT-PCR, but were not in the strain harboring the cpe gene (neg-
ative control) (Fig 5). The gene of CPILE-a and -b was detected at almost equal amounts in the
amplicons in the four isolates. These results indicated that the isolates of C. perfringens origi-
nated from the four outbreaks expressed mRNA for cpile-a and -b.

cDNA cloning and preparation of a recombinant protein of CPILE
PCR was performed to obtain a full-length cDNA for cpile-a and -b, using the genomic DNA
as the template. The cDNA of both components was generated as distinct single fragments of
about 1200 and 2400 bp, respectively (Fig 6). The recombinant CPILE-a was successfully

Fig 2. The nucleotide and amino acid sequences of the new enterotoxin components, CPILE-a and CPILE-b, ofClostridium perfringens strain
W5052. A -10 region promoter sequence and the putative Shine Dalgarno (S. D.) sequence were presented by single and double underlining, respectively.
The in-frame stop-codon is indicated by asterisks.

doi:10.1371/journal.pone.0138183.g002

Fig 3. The alignment of the amino acid sequences of component a of the new enterotoxin, CPILE-a, of Clostridium perfringens strainW5052. The
amino acid sequence of the component a homologue was compared with those of C2I (C2 toxin Component I ofC. botulinum, DDBJ Accession Number:
AJ224480), ia (iota toxin ia of C. perfringens, DDBJ Accession Number: X73562), Sa (iota like toxin Sa of C. spiroforme, DDBJ Accession Number: X97969),
and cdtA (ADP-ribose transferase enzymatic component of C. difficile, DDBJ Accession Number: L76081). Dashes show the gap used to maximize the
identity. Black shading indicates identical amino acid residues among the 5 proteins. Gray shading indicates more than 60% identical amino acid residues
among the 5 proteins. In NADase, three conserved regions, aromatic residue-R, STS motif, and EXEmotif, indicated by asterisks.

doi:10.1371/journal.pone.0138183.g003
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expressed as a GST-fusion protein in E. coli and was purified with apparent homogeneity by
GSH-affinity chromatography and gel filtration (Fig 7A-i and 7A-ii). A yield of the rCPILE-a
was 7 mg per 1-liter culture of E. coli. The rCPILE-b was also successfully expressed as a GST-
fusion protein in E. coli. Due to resistance to thrombin cutting, the rCPIEL-b was purified as a
GST-fused protein without contaminating materials (Fig 7B-i). The yield of the GST-fused
rCPILE-b was 4 mg per 1-liter culture of E. coli. The GST-fused rCPILE-b was incubated in the
presence of trypsin. The original band of the GST-fused rCPILE-b disappeared, and products
with low (30 kDa) and high (75 kDa) molecular weights rapidly appeared (Fig 7B ii). The band
at 75 kDa remained 120 min after incubation. The trypsin-treated rCPILE-b purified by gel fil-
tration ran in the SDS-gel as a single band (Fig 7B iii).

Fig 4. The alignment of amino acid sequence of component b of the new enterotoxin, CPILE-b, of Clostridium perfringens strainW5052. The amino
acid sequence of the component b homologue was compared with those of C2II (C2 toxin component II ofC. botulinum, DDBJ Accession Number: D88982),
ib (iota toxin ib of C. perfringens, DDBJ Accession Number: X73562), Sb (iota-like toxin Sb of C. spiroforme, DDBJ Accession Number: X97969), and cdtB
(ADP-ribosyltranferase binding component of C. difficile, DDBJ Accession Number: L76081). The dashes show the gap used to maximize the identity. Black
shading indicates the identical amino acid residues among the 5 proteins. Gray shading indicates more than 60% identical amino acid residues among the 5
proteins. Asterisks represent the amino acid residues predicted to be involved in the interaction of the enzymatic component in the presence of Ca2+ (23).

doi:10.1371/journal.pone.0138183.g004
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Fig 5. The expression of mRNA for the cpile-a and -b of Clostridium perfringens strainW5052. The genes of CPILE-a and -b in the isolates of the four
outbreaks were amplified by RT-PCR. Amplicons of 400 bp (cpile-a) and 405 bp (cpile-b) are shown. Lane 1, Tokyo 1997; Lane 3, Tokyo 2003; Lane 4,
Osaka 2009; and Lane 5, Tochigi 2010). Lane 2 is a negative control (CPE-producing strain).

doi:10.1371/journal.pone.0138183.g005

Fig 6. The cDNA cloning of cpile-a and -b ofClostridium perfringens strainW5052. The PCR products
were analyzed by 1% agarose S gel electrophoresis. These amplified PCR fragments are indicated with
arrows.

doi:10.1371/journal.pone.0138183.g006
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Characterization of CPILE produced by C. perfringens strain W5052
The ADP-ribosylation activity of the rCPILE-a was evaluated. The NA released from NAD was
measured by a LC/MS/MS system to determine the NADase activity. The amount of the NA
released in the CPILE-a test samples after the addition of NA was increased compared with
that in the samples with only the rCPILE-a. The amount of the NA released was increased,
depending on the dose of the rCPILE-a (Fig 8). The released NA was not detected in a mixture
of NAD where the rCPILE-a was boiled for 10 min (data not shown). These findings suggested
that the rCPILE-a possessed NADase activity.

When the lysates from L929 and Vero cells were incubated with 500 ng of the rCPILE-a in
the presence of 10 μM [32P]NAD, a single radioactive band appeared in the SDS-PAGE with an
apparent molecular mass of 47–49 kDa, corresponding to the molecular weight of actin mono-
mer (Fig 9). Intensity of the band was dose-dependently increased by the application of the
sample, indicating that the rCPILE-a possessed ADP-ribose transferase activity. These results
demonstrated that the CPILE-a is an enzyme mediating ADP-ribosylation.

The electrophoretic properties of the rCPILE-b were then examined. The trypsin-treated
rCPILE-b was heated at 95°C in the presence of SDS and then subjected to SDS-PAGE.
Although the trypsin-treated rCPILE-b migrated into the gel as a monomer under the reduced

Fig 7. The purification of recombinant CPILE-a and -b ofClostridium perfringens strain W5052. a. Purification of the recombinant CPILE-a. Coomassie
staining of the rCPILE-a after GSH-Sepharose column chromatography. The GST-fused rCPILE-b (1 μg) was treated with thrombin (i). A final product of the
rCPILE-a (3 μg) after gel filtration using a Superdex 200 was analyzed (ii). b. Purification of the recombinant CPILE-b. Coomassie staining of the rCPILE-b
after GSH-Sepharose column chromatography. The GST-fused rCPILE-b was treated with thrombin (i, lane 1). The GST-fused rCPILE-b (0.5 μg) was run in
lane 3. The results of trypsin treatment of the GST-fused rCPILE-b were analyzed. Ten μl of the GST-fused rCPILE-b (100 μg) with trypsin (10 μg) mixture
was electrophoresed (ii). The final product (10 μl of the fraction per lane) of the rCPILE-b using gel filtration of Superdex 200 column was analyzed (iii).

doi:10.1371/journal.pone.0138183.g007

Fig 8. The NADase activity of the rCPILE-a ofClostridium perfringens strainW5052. Various
concentrations of the recombinant component a homologue were incubated at room temperature for 6 hr with
1 mM NAD+, and the NA in the products was quantified by the MS system.

doi:10.1371/journal.pone.0138183.g008
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conditions, many bands with a ladder form at the positions of higher molecular weight were
detected under the non-reduced condition (Fig 10A). The heat denaturation of the trypsin-
treated rCPILE-b without reduction induced oligomerization. Denaturation of the trypsin-
treated rCPILE-b by incubation at 37°C did not induce oligomerization (Fig 10B). These find-
ings are consistent with those of the iota toxin of C. perfringens and iota-like toxin of C. spiro-
forme [17, 28].

The influence of CPILE on the viability and morphology of cultured cells
The rCPILE-a and GST-fused rCPILE-b did not show cytotoxic activity to either Vero or L929
cells, although the crude fraction (0–70% ammonium-sulfated precipitated fraction) killed
both kinds of the cells (Fig 11A, top). The trypsin-treated rCPILE-b killed both kinds of cells at
high concentrations, like the crude faction (Fig 11A, bottom). When the cells were incubated

Fig 9. The ADP-ribosylation of the lysates prepared from Vero and L929 cells by rCPILE-a of
Clostridium perfringens strainW5052. The cells were homogenized as described in the Material and
Methods section. The cell lysates were treated with the rCPILE-a in the presence of [32P]NAD and the reaction
products were subjected to SDS-PAGE.

doi:10.1371/journal.pone.0138183.g009
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in the presence of 10−9 M of the trypsin-treated rCPILE-b neither the Vero nor L929 cells were
left intact. When the rCPILE-a was added to the medium in the presence of 10−9 M of the tryp-
sin-treated rCPILE-b, the viability of both kinds of cells decreased, depending on the amount
of rCPILE-a added (Fig 11B). The rCPILE-a and trypsin-treated rCPILE-b were co-operatively
functioned, thus suggesting that the CPILE of strain W5052 forms a binary toxin.

Treatment with a mixture of 10−7 M of rCPILE-a and trypsin-treated rCPILE-b killed the
L929 cells more effectively in comparison to treatment with trypsin-treated rCPILE-b only, fur-
ther supporting the binary effects (Fig 12). Treatment with 10−8 M of the mixture of rCPILE-a
and trypsin-treated rCPILE-b affected the morphology of L929 cells, changing them from flat
to rounded. The cells treated simultaneously with the rCPILE-a and trypsin-treated rCPILE-b
showed a balloon-like cell shape with expanding cytosol, while the cells treated with the tryp-
sin-treated rCPILE-b alone did not show this balloon-like shape. The balloon-like cell shape
would have resulted from the disrupted permeability of the cells with dysfunction of the intra-
cellular actins that were ribosylated by CPILE-a.

Fig 10. The electrophoretic properties of rCPILE-b ofClostridium perfringens strainW5052. The rCPILE-b was heated and subjected to SDS-PAGE
with or without reduction. Lane 1, 0.5 μg of the recombinant b homologue; Lane 2, 1.0 μg; Lane 3, 2.0 μg; and Lane 4, 4.0 μg.

doi:10.1371/journal.pone.0138183.g010
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Fig 11. The cytotoxicity of the rCPILE of Clostridium perfringens strainW5052. a. Vero and L929 cells were treated for 16 h with a various
concentrations of the rCPILE-a (◆), GST-fused rCPILE-b (●), trypsin-treated rCPILE-b (�), and the ammonium sulfate precipitation fraction (0–70%) (▲). The
cell survival (%) was measured using a Cell Counting Kit-8. b. Vero cells (◆) and L929 cells (●) were treated with various concentrations of the rCPILE-a in the
presence of 10 nM trypsin-treated rCPILE-b.

doi:10.1371/journal.pone.0138183.g011
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Enterotoxic activity of CPILE
The ileal loops injected with saline as a negative control (Loop No. 1 of Fig 13) and the loop
injected with a mixture of 0.1 μg of rCPILE-a and 0.9 μg of the trypsin-treated rCPILE-b
(Loop No. 2) did not show any pathological effects. The loops injected with cholera toxin
(Loop No. 5) and a mixture of the rCPILE-a and trypsin-treated rCPILE-b (Loop No. 3, 1 μg
and 9 μg and Loop No. 4, 10 μg and 90 μg) were swollen and became dark red, and fluid accu-
mulation was observed in these loops. The F/A ratios of the loops injected with 1 μg of cholera
toxin ranged from 0.5 to 1.3. The F/A ratios of the loops injected with a total 10 μg of CPILE
ranged from 0.4 to 1.0 (Table 2). The fluid accumulation was neutralized by the sera mixture of
anti-rCPILE-a and anti-rCPILE-b (data not shown). This finding indicated that CPILE exerted
enterotoxic effects.

Production of CPILE of C. perfringens strain W5052 in the culture
A band with a molecular weight of 47 kDa that bound to the antibody against rCPILE-a was
observed in the lane that migrated with the protein from a one-day culture of strain W5052, as
well as the lane that migrated with the purified rCPILE-a (Fig 14, top). Although a couple of

Fig 12. The morphological changes of the L929 cells after treatment with the rCPILE of Clostridium perfringens strainW5052. The L929 cell cells
were treated for 16 hours with various concentrations of the rCPILE-a, trypsin-treated rCPILE-b, and a mixture of rCPILE-a and trypsin-treated rCPILE-b. The
morphology of the L929 cells was observed by optical microscopy.

doi:10.1371/journal.pone.0138183.g012
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bands were observed in the upper positions, the 47 kDa band migrated at the same position in
the sample from both two- and four-day cultures. The bands with a molecular weight of 90, 74,
and 68 kDa were detected in the culture of W5052 using the antibody against the trypsin-
treated rCPILE-b. The band of 74 kDa migrated at the same position as the trypsin-treated
rCPILE-b (Fig 14, bottom). The protein with a molecular weight of 90 kDa was a putative intact
CPILE-b. The protein with a molecular weight of 68 kDa was a degraded product of CPILE-b.

Discussion
C. perfringens strain W5052 was isolated from stool samples of patients with food poisoning
that was considered to have been caused by C. perfringens based on the epidemiological find-
ings. However, strain W5052 did not harbor the enterotoxin gene nor produce the known
enterotoxin, CPE. The culture supernatant of strain W5052 was positive in the ileal loop test,

Fig 13. The rabbit ileum loop test for the rCPILE ofClostridium perfringens strainW5052. Fluid accumulation was observed in several ileal loops
(arrows) in response to the injected rCPILE. Loop 1, saline; Loop 2, rCPIILE-a (0.1 μg) and trypsin-digested rCPILE-b (0.9 μg); Loop 3, rCPILE-a (1 μg) and
trypsin-treated rCPILE-b (9 μg); Loop 4, rCPILE-a (10 μg) and trypsin-treated rCPILE-b (90 μg); and Loop 5, cholera toxin (1 μg).

doi:10.1371/journal.pone.0138183.g013
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Table 2. The enterotoxic activity of the recombinant CPILE-a and CPILE-b ofClostridium perfringens strainW5052.

Sample Rabbit

No. 1 No. 2 No. 3 No. 4

Volume(ml)/
Length(cm)

F/A* Volume(ml)/
Length(cm)

F/A Volume(ml)/
Length(cm)

F/A Volume(ml)/
Length(cm)

F/A

Saline 0/5 0 0/4 0 0/4.6 0 0/5.4 0

CPILE-a** 0.1 μg + CPILE-b*** 0.9 μg Not tested — 0/7 0 0/5.1 0 0/5.5 0

CPILE-a 1.0 μg + CPILE-b 9.0 μg 2/4.5 0.4 8/8 1 5/5.8 0.9 8/7.8 1

CPILE-a 10 μg + CPILE-b 90 μg 4.5/6.6 0.7 7.5/7.4 1 10/9.9 1 12.5/9 1.4

Cholera toxin (1 μg) 2.5/5 0.5 7.5/7.4 1 12.5/13 1 10/7.8 1.3

*Fluid/Accumulation ratio (ml/cm)

** recombinant CPILE-a

*** recombinant CPILE-b.

doi:10.1371/journal.pone.0138183.t002

Fig 14. The immunoblotting analysis of the culture of Clostridium perfringens strainW5052.C. perfringens strain W5052 strain was cultured in
modified Duncan-Strong medium for the indicated periods. Aliquots of the culture were subjected to SDS-PAGE. The CPILE-a and -b were visualized by
using the antibodies against the rCPILE-a (panel a) and trypsin-treated rCPILE-b (panel b). Lane 1, rCPILE-a or rCPILE-b as a positive control; Lane 2, the
culture on day one; Lane 3, the culture on day two; Lane 4, the culture on day three; Lane 5, the culture on day five; and Lane 6, the culture on day 7. r-a
indicates the position of recombinant CPILE-a, and r-b indicates recombinant CPILE-b.

doi:10.1371/journal.pone.0138183.g014
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suggesting the presence of a new enterotoxin in the culture [20]. We herein describe the identi-
fication and characterization of the new enterotoxin and discussed its significance in the epide-
miology of C. perfringens food poisoning.

The new candidate enterotoxin was identified by the next generation DNA sequencing of
the genome of strain W5052 and a mass analysis of the partially purified enterotoxin. The
genome of W5052 contained a gene encoding the homologue of C. spiroforme iota-like toxin.
The mass spectrometry analysis revealed that a fraction of the partially purified toxin contained
small peptides similar to components a and b of C. perfringens iota toxin. The gene encoding
the candidate homologue was cloned and sequenced, and a recombinant protein of the candi-
date homologue was prepared, using the sequence obtained by next generation sequencing.
The candidate homologue consisted of two components, a and b. The amino acid sequence of
the component a homologue of W5052 was similar to that of iota-like toxin Sa of C. spiroforme,
iota toxin ia of C. perfringens, C2 toxin component I of C. botulinum, and ADP-ribose transfer-
ase (cdtA) of C. difficile (77–83% similarity). The amino acid sequence of the component b
homologue of W5052 was similar to that of component b of these toxins (77–81% similarity).
The toxins described above, including the toxin of W5052 are binary toxins composed of both
enzymatic and binding components [2, 3, 12, 28]. The new enterotoxin components a and b
were named C. perfringens iota-like enterotoxin, CPILE-a and CPILE-b, respectively, according
to the best homology.

The rCPILE-a possessed NADase and ADP-ribose transferase activity. The rCPILE-b
treated with trypsin showed cytotoxic activity. The addition of rCPILE-a enhanced the cytotox-
icity of the trypsin-treated rCPILE-b. The mixture of the rCPILE-a and trypsin-treated
rCPILE-b evoked fluid accumulation in the ileal loop of rabbits, suggesting that the candidate
had enterotoxic activity. All of the findings described herein demonstrated that the new entero-
toxin of strain W5052 is a homologue of other binary toxins and that it is a member of the
enterotoxin family.

When the amino acid sequence of CPILE-a was compared with that of the enzymatic com-
ponent of the binary toxin family members, the arginine residue as the catalytic center and a
Glu-X-Glu (EXE) motif were completely conserved, and a STS-motif had a similarity of 100%.
When we compared the amino acid sequences of CPILE-b with that of the enzymatic compo-
nent of a binary toxin family member, the aspartic acid residue cluster involved in the interac-
tion of the enzymatic component in the presence of Ca2+ [27] was completely conserved. Based
on a homology search, the binding component of the binary toxin members could be divided
into four domains: binding to the enzymatic component, insertion into the membrane, oligo-
merization, and binding to the cell [16]. The amino acids, V578 and F799, of CPILE-b were
estimated to represent the binding site to the cell receptor, but the amino acids of the iota toxin
ib were not identical. A recent study reported that iota toxin ib bound to nonlipid rafts, formed
an oligomer, and caused a rapid necrosis of A421 and A549 cells [19]. The trypsin-treated
rCPILE-b alone showed cytotoxicity to L929 and Vero cells. However Vero cells were not sus-
ceptible to iota toxin ib [19], suggesting the presence of distinct receptors for the members of
the iota toxin group. Lipolysis-stimulated lipoprotein receptor was identified as the receptor
for C. spiroforme iota-like toxin [29]. The studies of the receptor for CPILE-b will be
interesting.

The cytotoxicity of iota toxin was also facilitated when its ib component was treated with
the λ-protease of C. perfringens, that is a zinc-dependent protease related to thermolysin [30].
Although proteolysis was necessary to activate the CPILE-b to induce its cytotoxicity, a homo-
logue of λ-protease was not found in our database of the W5052 genome. The immunoblotting
analysis of the culture of strain W5052 showed that the CPILE-b was cleaved. These findings
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indicate that another unknown endogenous protease(s) in strain W5052 would be responsible
for the activation of CPILE-b.

The conserved signal peptide sequence region of CPILE-a and CPILE-b was not identified
in the genome of strain W5052. This finding is in accordance with that of the C2 toxin of C.
botulinum. The C2 toxin was produced during sporulation and not during vegetative growth
[31]. CPILE was partially purified from the spore-forming medium cultured with strain
W5052, but the expression of the mRNA for the cpile-a and cpile-b genes was detected in the
cells cultured in the medium for vegetative growth. The mRNA expression and production of
CPILE-a and -b must be examined in the further experiments to understand how and when
cpile-a and -b are expressed and their proteins are synthesized.

Incidences of C. perfringens type A food-poisoning are currently confirmed by examinations
to detect the gene and protein of the known enterotoxin, CPE. All of the isolates from the four
incidences of C. perfringens-food poisoning expressed the mRNA of cpile-a and -b (Fig 5).
Strain W5052, which was the particular strain examined in this study, produced CPILE-a and
-b proteins in a modified DS medium (Fig 14). As presented in this communication CPILE
possesses enterotoxic activity (Fig 13).

An incidence of food poisoning caused by a strain producing CPILE would be classified as
C. perfringens food poisoning. However the isolates of the four incidences in which CPE was
not produced and did not harbor the cpe gene, or express mRNA and protein of CPE, must be
excluded from historic C. perfringens type A food poisoning. The coding sequence of cpile-a
and -b is easy to amplify by the use of a general PCR technique (data not shown) and the anti-
body against CPILE-a and -b is currently available. It is epidemiologically convinced that the
particular four incidences of food poisoning were caused by C. perfringens producing CPILE
[20]. Although the data presented in this communication do not fully support that CPILE-pro-
ducing strains are responsible for C. perfringens food poisoning, the goal would be closed. The
presence of CPE protein in the patients’ feces is one of the important findings for conclusive
diagnosis of C. perfringens type A food poisoning. The CPE can be detected by a reversed-pas-
sive latex agglutination (RPLA) test, that uses the antibodies against CPE. In a preliminary
trial, we adapted the antibodies against the trypsin-treated rCPILE-b to the RPLA system and
tried to detect the CPILE-b protein in the patients’ feces. The precise results will be reported
soon in another opportunity.

C. perfringens type E produces iota toxin and alpha toxin. Iota toxin causes enteritis and
sudden death in beef calves and lambs [32] but not in humans. Strain W5052 and other strains
that originated from the particular incidences, harbor CPILE instead of iota toxin. Furthermore
these strains cause diarrhea in human due to the enterotoxic action of CPILE. Based on these
findings, new sub-classifications of C. perfringens could be proposed, namely types E1 and E2.
Type E1 C. perfringens, which is pathogenic to animals, produces alpha and iota toxins; while
type E2 C. perfringens, which is pathogenic to human, produces alpha toxin and CPILE. Strain
W5052 belongs to type E2.

The gene of iota toxin of C. perfringens and of iota-like toxin of C. spiroforme is encoded in
its plasmid and genome, respectively [33]. BEC, binary enterotoxin of C. perfringens, which
was previously reported by Yonogi et al. [34], consists of two components: BECa and BECb.
BEC showed higher similarity to iota toxin and iota-like toxin. The genes of BECa and BECb
are located in a 54,5 kb plasmid. CPILE is also encoded in a plasmid (unpublished data). The
results of a BLAST search indicated that the sequence of cpile-a and cpile-b perfectly matched
that of beca and becb, respectively. This observation indicates that CPILE islikely BEC.

The mechanism by which genes of the iota toxin group move among Clostridia and by
which genetic mutations raise is highly interesting. Our findings will facilitate the microbiolog-
ical, epidemiological, and toxicological research on C. perfringens.
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