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ep-learningmodel combined with
high-throughput screening to discover fused [5,5]
biheterocyclic energetic materials with excellent
comprehensive properties†

Youhai Liu,a Fusheng Yang, *a Wenquan Zhang, *b Honglei Xia,b Zhen Wua

and Zaoxiao Zhanga

Finding novel energetic materials with good comprehensive performance has always been challenging

because of the low efficiency in conventional trial and error experimental procedure. In this paper, we

established a deep learning model with high prediction accuracy using embedded features in Directed

Message Passing Neural Networks. The model combined with high-throughput screening was shown to

facilitate rapid discovery of fused [5,5] biheterocyclic energetic materials with high energy and excellent

thermal stability. Density Functional Theory (DFT) calculations proved that the performances of the

targeting molecules are consistent with the predicted results from the deep learning model.

Furthermore, 6,7-trinitro-3H-pyrrolo[1,2-b][1,2,4]triazo-5-amine with both good detonation properties

and thermal stability was screened out, whose crystal structure and intermolecular interactions were also

analyzed.
Introduction

Energetic materials are a type of compound or mixture con-
taining explosive groups or oxidants and fuels, which undergo
intense redox reactions under specic external energy stimuli,
releasing a large amount of energy. Energetic materials are
widely used in weapons and equipment, aerospace propulsion,
engineering construction, mineral mining and other elds.1–5

Energy and stability are the two most important properties of
energetic materials. However, a relationship of mutual contra-
diction is always present between them. Therefore, the devel-
opment of energetic materials with high energy and
outstanding stability simultaneously remains a great challenge.
Recently, fused cyclic energetic materials, which feature
a unique conjugated structure consisting of shared atoms and
bonds, has been considered as a promising alternative to
traditional energetic materials.6 Fused heterocyclic energetic
materials exhibit high heat of formation due to their planar
fused backbone with multiple nitrogen atoms, meanwhile the
presence of p–p interactions between the fused ring endows
them with high thermal stability.7–11 Among fused backbones,
nology, Xi'an Jiaotong University, Xi'an

du.cn

enome Science, Institute of Chemical

hysics (CAEP), Mianyang, 621900, P. R.

tion (ESI) available. See DOI:

23682
[5,5]-fused ring is the simplest one for energetic molecules
construction.12,13 In recent years, several representative struc-
tures of fused [5,5]-bicyclic heterocycle energetic materials were
designed and synthesized.13–16 However, these molecules were
obtained based on the method of structural design, such as
increasing number of N atoms into a fused ring, or substituting
explosophoric groups like –NO2, –NHNO2, –C(NO2)2, –NH2 or –
C(NO2)3 at certain positions, which heavily relies on the
chemical experience (intuition) of researchers, develop through
trial-and-error processes, involving long period, high costs and
safety risks.17

In the past decades, with the advent of the big data era,
machine learning (ML) technique has been widely used in
almost all the material research elds, such as organic photo-
electric materials, perovskite materials, lithium-ion battery
materials, photovoltaic materials etc.18–22 The application of
machine learning methods in energetic materials has also
drawn increasing attention. In order to shorten the develop-
ment cycle of energetic materials, recent work23–28 presented
attempts to use high-throughput screening methods together
with ML to target new promising explosives, including insen-
sitive high explosives (IHEs),23 molten castable explosives,24

uorinated explosives,25 bridged explosive,27 and some positive
results were well achieved. However, mostly traditional machine
learning models such as KRR,29 SVM30 were used without
considering specic characteristics of candidate molecules,
resulting in relatively low prediction accuracy for certain crucial
properties, e.g. decomposition temperature.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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In this work, we present a deep learning model D-MPNN
(Directed Message Passing Neural Networks)31 of embedded
molecular descriptors combined with high-throughput molec-
ular generation, so as to rapidly screen promising target mole-
cules from 2698 generated fused [5,5]-bicyclic heterocycle
structures. Aer the screening procedure, 2,6,7-trinitro-3H-pyr-
rolo[1,2-b][1,2,4]triazo-5-amine (ID number:1439), a promising
fused [5,5] biheterocyclic backbone-based energetic material
was selected. DFT calculation of the properties, along with
crystal structure prediction and intermolecular interaction
analysis revealed that this new energetic material has
outstanding comprehensive properties, including high energy
and good thermal stability. These ndings demonstrate the
great potential of deep learning combining with embedded
features in high-performance energetic materials design.
Methods
Workow

Firstly, the generation of a large number of molecules is
implemented and used as search space of fused [5,5] biheter-
ocyclic energetic materials. Subsequently, the high-precision
model was obtained by directed Message Passing Neural
Networks (D-MPNN) embedded with features, and was used to
predict the molecular properties. Aer that the virtual screening
of energetic materials regarding comprehensive performance
was carried out. The workow has been shown in Fig. 1.

The work mainly includes four steps, the rst step is the data
collection. The second step is the prediction of energetic
materials properties. With the collected dataset as input and the
embedded features as enhancements to the graph structure
Fig. 1 Workflow of this work.

© 2024 The Author(s). Published by the Royal Society of Chemistry
features, the so-called module b outputs a model for property
prediction. The third step involves searching for the spatial
construction of energetic materials. The nal step is molecule
screening, which lters candidates based on the property
prediction model developed in step 2 (including density, deto-
nation performance, and decomposition temperature) and the
search space constructed in step 3. Step 4 is further divided into
two stages. In the rst stage, the deep learning model is used to
rapidly screen materials with high density, explosive velocity
and decomposition temperature, whereas in the second stage,
the DFT calculation is applied to evaluate the performance of
the selected molecules, thereby assessing the predictive accu-
racy of this model. It is also utilized for analysing the molecular
structures and intermolecular interaction of the candidate
molecules.
Dataset

Our dataset consists of two parts. The rst part is derived from
the reference Song, S. et al.29 Aer removing data of substances
involving halogens and duplicates, we obtained 562 compounds
with data for density, detonation velocity and detonation pres-
sure, and 545 compounds for decomposition temperature (see
dataset1 in the ESI†). Additionally, 379 publicly available data
records for energetic compounds were extracted from Elton
et al.30 by also removing data of substances involving halogens
and duplicates. In total, 941 data for density, detonation velocity
and detonation pressure, and 545 data for decomposition
temperature were obtained for training regression models. The
dataset covers various structures that have been used as
constitute of energetic materials, e.g. aliphatic, aromatic,
monocyclic, and polycyclic. Detailed description about the
RSC Adv., 2024, 14, 23672–23682 | 23673
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dataset has been provided in Fig. S1 of the ESI.† Essentially the
samples in the dataset are divided into three parts: training set,
validation set, and testing set. The training set and validation
set are used to train the model and perform ne-turning of
hyper-parameters, and the testing set is used for the nal veri-
cation of the model's generalization performance and
accuracy.
D-MPNN

The Message Passing Neural Network (MPNN), that was rstly
summarized and proposed by Gilmer et al.,32 is a deep learning
model based on graph neural network, operating with atom
(node) features and bond (edge) features on an undirected
graph G, and has already been used to predict crystal density of
energetic materials.33 Based on this, Yang et al.31 made key
adjustments to the original messaging neural network frame-
work by adopting messages related to directed bonds and
proposed D-MPNN, which has dramatically reduced the noise
caused by nodes passing through random paths. D-MPNN
consists of two phases: a message passing phase which
constructs neural representations of the molecule by trans-
mitting information through the molecule, and a readout phase
which generates the nal representation of the molecule to
predict the properties of materials.

The message passing is made up of T steps. On each step t,
hidden states hwv and message mvw

t(v and w represent the nodes
between the bond) are updated using message function Mt and
vertex update function Ut.

mvw
tþ1 ¼

X

k˛fNðvÞ=wg
Mtðxv; xk; hkv

tÞ (1)

hvw
t+1 = Ut(hvw

t, mvw
t+1) (2)

Where N(v) is the set of adjacent nodes of v in graph G. In the
readout phase, the properties are predicted according to the
nal hidden state through a readout function R:

ŷ = R({hvTjv ˛ G}) (3)
Fig. 2 Structure of D-MPNN neural network.

23674 | RSC Adv., 2024, 14, 23672–23682
Fig. 2 shows the structure and principle of learning molec-
ular expression of D-MPNN neural network. Module in the le-
handed panel of the gure, represents the aggregation of
information from two directions on the same bond in the
molecule and the process of updating and aggregating infor-
mation, respectively. The internal structure of the feedforward
neural network FNN has been displayed in the right-handed
panel of the Fig. 2 u represents the encoded feature vector, w
represents the weight update in the training process, h repre-
sents the hidden layer, and u0 is the output of the feature vector,
which is passed through the activation function. During the
training, the D-MPNN networks use the simplied molecular
input line entry specication (SMILES) as the molecular input
and predict the outputs value through the loss gradient based
on the readout phase.

Embedded molecular descriptors

Ideally, the above-described D-MPNN model described above
should be able to extract most information about molecules,
which is sufficient to complete specic attribute prediction
tasks. Nevertheless, there are still limitations to molecular
graph features in practice. Firstly, the decomposition tempera-
ture dataset is relatively small in size, with only a few hundred
molecules. Due to the limited amount of data, D-MPNN could
be not able to recognize and extract all the features related to
thermal stability. Secondly, the shapes of molecular graphs are
rather irregular, and in the message passing process of MPNN,
the number of steps is much fewer than the diameter of the
molecular graph. Atoms that are farther apart will never receive
information from each other. Therefore, for some properties of
energetic materials, there are still considerable number of
features that cannot be captured simply via the graph convo-
lution process, so it is necessary to add additional features to
improve prediction accuracy.

In order to effectively combine the additional features, we
modied the readout phase of D-MPNN. The feedforward
neural network f can be applied to the cascade of the learned
molecular feature vector h and the additional input global
feature hf. Themethod for model enhancement is also known as
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 Custom descriptors set and its heatmap of feature distribution.
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knowledge embedding or feature enhancement. The combina-
tion of the graph's feature representation h and the global
feature hf can be expressed as the following formula:

ŷ = f(cat(h,hf) (4)

Our embedded molecular features is composed of two parts.
The rst part includes ngerprints derived from the electro-
topological state (E-state) ngerprint, which only involve
elements carbon (C), hydrogen (H), oxygen (O), and nitrogen (N)
(Table S1 in ESI†), have been widely utilized to construct
quantitative relationships between molecular structure and
properties.34,35 The second part includes 30 custom molecular
descriptors based on molecular electronic states, the number of
typical energy groups, molecular composition and three-
dimensional shape of molecules (Table S2 in ESI†) obtained
from RDKit library. These custom descriptors enhance the
description of molecular composition and shape, such as
oxygen balance (OB) and normalized principal distance ratio 1
(NPR1), which will help model learn the properties of energetic
materials. The heat map in Fig. 3 demonstrates that most of the
custom descriptors are not signicantly correlated, which is
benecial for model training.
Fig. 4 (a) Flow chart for molecular structural generation; (b) generation

© 2024 The Author(s). Published by the Royal Society of Chemistry
Molecule generation

We have used a homemade script for generating the molecules.
The ow chart of the whole generation process is shown in
Fig. 4(a), where the yellow part describes the generation of
nitrogen-substituted fused ring using the carbon rings as input
and the green part illustrates the process of adding the groups
to the mother ring skeleton in a manner of permutation and
combination.

Fig. 4(b) shows the generation process of the fused [5,5]
biheterocyclic molecules. Initially, the structure of the molecular
generation containing six [5,5] bicyclic carbon skeletons, 1N-
substitution cannot form fused heterocycle structure, therefore
we used the structures (from 2N to 6N) to replace the carbon in
the carbon skeleton, by which 112 different fused [5,5] biheter-
ocyclic skeletons were obtained. Collectively, 2698 possible fused
[5,5] biheterocyclic were generated via the introduction of nitro
(used as energetic group)/amino (group used as balance energy
and sensitivity) into 112 fused [5,5] biheterocyclic skeletons.
DFT calculation

In this study, we employ density functional theory (DFT) to
investigate the key properties of the selected fused [5,5] bicyclic
heterocycle energetic materials. The computational calculations
were performed using Gaussian 16 (A.03),36 and the results were
analyzed using the wave function analysis soware Multiwfn 3.8
(dev),37 more detail is referred to the ESI.†
Results and discussion
Molecular screening based on predicted properties

We used our dataset to train and test the model of D-MPNN
embedded with molecule features comprising of Estate nger-
prints and custom descriptors. In general, the framework of D-
MPNN can spontaneously generate their features form molec-
ular graphs through message passing and aggregation algo-
rithms to predict the properties. The initial atom and bond
features of the model are list in Table S3 and S4.† All features
are calculated using the open-source package RDKit.38 Aer
obtaining hyperparameters via Bayesian Optimization.39 The D-
MPNN's depth (number of message-passing steps), hidden size
process of the fused [5,5] biheterocyclic molecules.

RSC Adv., 2024, 14, 23672–23682 | 23675



Fig. 5 Prediction results before and after the inclusion of embedded features for density and detonation velocity.
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(size of bondmessage vectors), number of feed-forward network
layers, and dropout were set as 5, 1700, 1700, 0.1, respectively.
We used a 0.8/0.1/0.1 split for the training, validation, and test
sets, and performed 5 folds cross-validation, using ReLU as
activation functions, which can extend to act independently on
each element of the vector output from the hidden layer, and
effectively leverages non-linear activation functions to enhance
its capacity for learning and representation of intricate features
in the data. Fig. 5 displays the predicted density and detonation
velocity before and aer the inclusion of embedded features.
For density, the R2 increased from 0.846 to 0.917, while the MAE
decreased from 0.0365 to 0.026. The trend is similar for deto-
nation velocity, with R2 increasing to 0.879 and MAE decreasing
to 0.20. This suggests that the predictive accuracy of the model
was improved through the incorporation of embedded features.
The same effect was also found in the detonation pressure and
decomposition temperature (see Fig S3 in ESI†). Such high
accuracy may result from the reasonable features added, which
can capture both crystal and molecular characteristics. As for
the decomposition temperature, the relatively poor prediction
Table 1 Compared with models in previous literature

Property Our models Song29

Electronic structure calculation Yes No
Density (g cm−3) Samples >900 >1000

MAE 0.027 0.042
Detonation velocity and pressure
(km s−1/GPa)

Samples >900 >500
MAE 0.20/1.58 0.24/2.38

Decomposition temperature (oC) Samples >500 >500
MAE 21.5 30.8

23676 | RSC Adv., 2024, 14, 23672–23682
evidenced by R2 of 0.787, may be due to the weaker ability of
embedded features in describing intermolecular interactions
than the molecular structural characteristics. However, in
comparison to the message passing neural network (MPNN)
without embedded features, which has an MAE value of 39 °C,
the smaller MAE suggests that our model achieves better
prediction accuracy.40,41 In a word, considering the potential
impact of dataset differences on the model's prediction results,
our model shows satisfactory performance in terms of accuracy,
effectiveness, and comprehensiveness compared to previous
work, as is shown in Table 1.

Aer training the model, the properties including density,
Dv, P and Td of the 2698 generated molecules, were predicted by
the model (see the ESI data†) and screened through various
criteria. The step-by-step screening can be visualized using
colour-mapped three dimensional (3D) scatter plots in Fig. 6. As
shown in the top le panel, the predicted properties of the 2698
molecules conform to some known common rules of energetic
materials, such as a linear correlation between density and Dv/P,
and a negative correlation between density and decomposition
Elton30 Casey42 Hou43 Huang44 Yang45

No Yes No Yes Yes
>26 000 >400 —

0.06 0.035 0.026 — 0.040
>26 000 >400 >400 —

0.31/2.73 0.30/1.80 0.34/1.49 0.235/1.788 (RMSE) —
— — — —
— — — 52.07 (RMSE)

© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 3D scatter plots of molecules after different screening steps, as well as projections on various planes (green, pink, and black dots represent
projections on density/Dv plane, density/P plane, and Dv/P plane, respectively).
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temperature.40 We used the density of 1,3,5-trinitro-1,3,5-
triazinane, (RDX), a typical energetic material, as the rst
criterion for screening, and only the molecules with density
greater than 1.80 g cm−3 were retained, decreasing the number
of molecules from 2698 to 361 as indicated in the top right
panel of Fig. 6. The 3D scatter plot shows that the molecules
with Td (thermal decomposition temperatures) above 270 °C
(red dots) were located in areas with relatively low Dv (detona-
tion velocities) values of 8000 m s−1, whereas the molecules
with Dv greater than 8800 m s−1 (blue dots) were mostly scat-
tered in areas with relatively low Td of 210 °C. Upon introducing
Fig. 7 (a) SAscore and (b) molecule structure of the screened molecule

© 2024 The Author(s). Published by the Royal Society of Chemistry
screening criteria on energy (Dv greater than 8400 m s−1) and
thermal stability (Td greater than 270 °C) successively, the
number of molecules decreased from 361 to 88 (bottom right
panel of Fig. 6) at rst, and then further decreased to 18 (bottom
le panel of Fig. 6).

On the other hand, the synthetic accessibility also plays an
important role in the application of the targeted molecules. In
2009, Ertl and Schuffenhauer proposed SAscore for estimating
the synthesizability of drug molecules46 based on contributions
of molecular fragments and complexity, which has been used in
the eld of energetic materials.26,27 The greater synthesis
s.

RSC Adv., 2024, 14, 23672–23682 | 23677



Table 2 Calculated results of density for the 10 molecules

Index M (g mol−1) V (cm3 mol−1) n stot
2 r (g cm−3)

A 257.115 140.630 0.172 192.0087 1.816
B 257.111 140.659 0.176 241.136 1.841
C 257.115 139.668 0.125 521.1232 1.917
D 257.119 140.135 0.142 410.3513 1.892
E 257.119 140.517 0.178 202.3609 1.825
F 257.116 140.745 0.219 325.1201 1.886
G 257.116 140.661 0.158 393.938 1.897
H 257.116 141.156 0.140 354.151 1.856
I 257.106 139.686 0.208 239.494 1.874
J 301.121 160.692 0.179 199.691 1.865

Fig. 8 Comparison between the predicted and calculated results of
density for the 10 molecules.

RSC Advances Paper
difficulty corresponds to the larger score. Fig. 7 depicts the
SAscore and structures of the 18 screened molecules. Most of
the candidate molecules that are easy to synthesize are found to
be 3N-substituted molecules. Next, the top 10 molecules (ID
number: 1518, 1439, 879, 799, 805, 1039, 1525, 469, 1441 and
1521) with lowest SAscore, were taken for DFT simulation to
further evaluate their overall performance, as well as prediction
accuracy of the D-MPNN model.

Model evaluation

In this study, we utilized DFT to evaluate the fundamental
properties of selected fused [5,5] bicyclic heterocycle energetic
materials. We ensure that all optimized structures exhibit local
energy minima on the potential energy surface with no imagi-
nary frequencies before performing calculations. For clarity the
molecules with the 10 lowest SAscores (ID805, ID799, ID1039,
ID1518, ID1525, ID879, ID1439, ID1521, ID1441, ID469) were
represented by letter A to J following ascending order, and the
ID number alongside the structures of the 10 molecules is show
in Table S7 of ESI.†

Density

We used the equation proposed by Politzer et al.47 to calculate
the density of the selected 10 fused [5,5] biheterocyclic energetic
materials. Table 2 shows the calculated results of molecular
mass, volumes and related data aer all of the structures were
optimized (more detail is referred to the ESI†).

As shown in Table 2, the densities of the 10 fused [5,5]
biheterocyclic molecules are within the ranges of 1.816 g cm−3
Table 3 The calculated results of E0 (total energy), ZPE (zero-point ene

Index E0 (a.u.) ZPE (kJ mol−1) DHf,ga

A −1026.851 322.850 373.79
B −1026.860 322.724 341.56
C −1026.865 324.415 337.39
D −1026.843 323.112 397.90
E −1026.844 322.193 403.90
F −1026.836 327.742 302.59
G −1026.824 322.986 443.61
H −1026.823 323.199 453.97
I −1026.832 321.705 423.91
J −1215.340 358.095 365.68

23678 | RSC Adv., 2024, 14, 23672–23682
to 1.917 g cm−3. Except for molecule J (C6H3O8N7), the
remaining molecules share the same molecular formula
(C5H3O6N7) and similar structure, which results in the close
values of M and V. On the other hand, the scattered values of n
(the balance between positive and negative electrostatic poten-
tials) and stot

2 (the total mean square error of the electrostatic
potential), could be responsible for the differences in density.
Among the 10 molecules, G and D were found to possess rela-
tively high density.

We further evaluated the accuracy of the D-MPNN model by
comparing the predicted results with those obtained from
rigorous DFT calculation. As shown in Fig. 8, the density pre-
dicted by the D-MPNN embedded with features closely
approximates that predicted by the DFT method. The largest
relative deviation, occurring at molecule C, is 0.01 g cm−3, and
the average deviation is 0.006 g cm−3. Moreover, the ordering of
results from DFT calculations is consistent with the model,
which demonstrates the high prediction model accuracy of the
D-MPNN model embedded with additional features.
Heat of formation

We calculated heat of formation (HOF) of the 10 selected
molecules based on the designed isodesmic reactions (Table S5
in ESI†). The calculated results are shown in Table 3.

The HOFs of the ten molecules are within the ranges of
271.314 kJ mol−1 to 424.924 kJ mol−1. As energetic materials,
their high positive HOF means higher energy contained, which
rgy), and HOF of the 10 molecules

s (kJ mol−1) DHsub (kJ mol−1) DHf,solid (kJ mol−1)

7 26.526 347.271
2 26.608 314.954
9 29.859 307.540
7 29.525 368.381
6 26.858 377.048
7 31.282 271.314
0 30.125 413.484
9 29.055 424.924
8 28.405 335.691
4 29.994 395.512

© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 4 The calculated results of Q, Dv and P of the 10 molecules

Index Q (cal g−1) D (m s−1) P (GPa)

A 1482.992 8526.319 33.024
B 1452.951 8482.811 32.688
C 1146.060 8472.734 32.610
D 1502.613 8554.386 33.241
E 1501.669 8565.828 33.331
F 1412.388 8422.975 32.228
G 1544.537 8613.439 33.702
H 1555.171 8628.227 33.818
I 1527.832 8590.055 33.519
J 1569.385 8603.008 33.528

Paper RSC Advances
could be attributed to the introduction of nitrogen-rich
heterocycles and fused skeletons.

Detonation velocity and detonation pressure

Based on the density and heat of formation calculated by DFT,
their detonation heat (Q), detonation velocity (Dv), and deto-
nation pressure (P) of the 10 candidate molecules were obtained
using the semi empirical Kamlet–Jacobs formula, which has
been proven to be reliable for predicting the detonation
performance of high-nitrogen compounds.48 Table 4 shows the
calculated results of Q, Dv and P of the 10 molecules.
Fig. 9 Comparison between the predicted and calculated values of (a)
Dv, (b) P for the 10 molecules (blackish green represents the results
measured by calculated using K–J equation, whereas purple repre-
sents the results predicted by model).

Table 5 The calculated results of BDEa

Index Ea (kJ mol−1) Eb (kJ mol−1)

A −1026.852 −821.619
B −1026.860 −821.629
C −1026.865 −821.632
D −1026.843 −821.612
E −1026.844 −821.611
F −1026.880 −821.630
G −1026.824 −821.591
H −1026.824 −821.592
I −1026.832 −821.601
J −1215.340 −1010.111

a (Ea and Eb represent the total energy of molecule before and aer disso

© 2024 The Author(s). Published by the Royal Society of Chemistry
The comparison between the calculated results and the
values predicted by the D-MPNNmodel is depicted in Fig. 9. The
average deviations for detonation velocity and detonation
pressure is 0.018 km s−1 and 1.202 GPa, respectively, indicating
a high level of agreement.

Thermal stability analysis

In this section, we used bond dissociation energy (BDE),
HOMO–LUMO energy gap, electrostatic surface potential (ESP)
to evaluate the thermal stability of the 10 promising candidates.

Bond dissociation energy

The smallest Mayer bond order for all molecules is C–NO2, so
we only consider BDE aer nitro group dissociation. The
calculated results are shown in Table 5. The values of all the
molecules are greater than 120 kJ mol−1, meeting the stability
criteria for high energy density materials,49 and regional
distribution of molecular electrostatic potential in Fig. S4 (ESI)†
also provides additional evidence for the stability of concerning
molecule. Molecule F and molecule G have high BDE value,
implying relatively high stability.

HOMO–LUMO energy gap

HOMO represents the ability of to give electrons, while LOMO
represents the ability to receive electrons, hence the HOMO–
LUMO energy gap is related to the electronic transition from
HOMO to LUMO. A high HOMO–LUMO gap means low sensi-
tivity to external stimuli.50 The HOMO–LUMO diagram and
energy gap values of the candidate molecules are shown in
Fig. 10 and Table 6, respectively.

Electrostatic surface potential

The ESP of the 10 molecules is shown in Fig. 11, where the red
and blue regions represent the positive and negative charge
areas,51 are mainly locating in the electron-withdrawing part
(nitro group) or the electron-donating part (amino group). The
integral area of the negative region exceeds that of the positive
region, indicating that all ten compounds exhibit low
mechanical sensitivity (Fig S3 in ESI†). Molecule F andmolecule
G demonstrate higher stability, as lower ESP values correspond
E (NO2) (kJ mol−1) BDE (kJ mol−1)

−205.133 261.224
−205.133 257.895
−205.133 261.214
−205.133 255.372
−205.133 264.081
−205.133 308.446
−205.133 264.916
−205.133 260.526
−205.133 257.396
−205.133 253.172

ciation, respectively).

RSC Adv., 2024, 14, 23672–23682 | 23679



Fig. 10 HOMO–LUMO diagram of the 10 molecules.

Table 6 Molecular orbital values of the 10 moleculesa

Index HOMO (ev) LUMO (ev) GAP (ev)

A −7.011 −4.148 2.863
B −7.130 −3.914 3.216
C −7.487 −4.167 3.320
D −7.305 −3.541 3.763
E −7.150 −4.072 3.078
F −7.399 −2.983 4.417
G −7.159 −3.309 3.850
H −7.027 −4.099 2.927
I −6.717 −3.944 2.773
J −6.992 −4.472 2.520

a From the calculation results, F and G also show superior stability
among the 10 molecules.

Fig. 12 (a) The crystal structure, (b) planar molecular structure and (c)
three-dimensional (3D) structure based on p–p stacking of molecule G.

RSC Advances Paper
to stronger stability.52,53 The calculated results are consistent
with those of BDE and HOM–LUMO energy gap. Among the two
notable molecules with high and comparable stability, mole-
cule G exhibits better detonation performance than F, making it
a suitable candidate for of fused [5,5] biheterocyclic energetic
material.
Fig. 11 The maximal and minimal ESP values (kcal mol−1) of the 10 mol
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Crystal prediction and intermolecular interaction

Crystal structure. For molecule G, Dreiding force eld was
adopted to predict the crystal structure,47 and the result is
shown in Fig. 12(a). The predicted space group and cell
parameters are listed in Table 7. Since the stable polycrystalline
form usually shows lower total energy, molecule G is inferred to
the P�1 space group, of which the total energy is the lowest
among the structures under discussion. Moreover, the corre-
sponding density for P�1 space group agrees well with the pre-
dicted value of molecule G in Table 7, further conrming the
conjecture. As shown in Fig. 12(c), molecule G present a layered
p–p stacking structure with face-to-face type, which could offset
the shortening of the interlayer distance, increase interlayer
attraction, and makes the crystal packaging compact. Thereby
the generation of hot spots is prevented through interlayer
sliding when subject to external stimuli,54 accounting for the
superior stability of molecule G.

Intermolecular interaction analysis. In order to further
understand the stability and sensitivity of molecule G, the two-
dimensional (2D) ngerprint based on Hirshfeld surface was
analysed on detailed intermolecular interaction.55,56 The
Hirshfeld surface is shown in Fig. 13(a), where red and blue
regions respectively represent strong and weak intermolecular
interactions, respectively. As can be found, the red area only
ecules.

© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 7 Parameters calculated by Dreiding force field

SG Etotal (kJ mol−1) a (Å) b (Å) c (Å) a (°) b (°) g (°) r (g cm−3)

P�1 58.859 11.314 7.812 8.178 134.667 71.509 87.218 1.898
P21/c 59.237 11.512 5.210 15.107 90.000 69.364 90.000 2.014
C2/C 59.621 14.766 5.247 28.167 90.000 53.102 90.000 1.957
PBCA 60.516 11.369 11.369 19.611 90.000 90.000 90.000 1.944
P212121 62.245 6.432 7.907 17.687 90.000 90.000 90.000 1.913
PNA21 62.389 18.170 7.832 6.272 90.000 90.000 90.000 1.913
Cc 62.339 6.012 14.895 5.433 90.000 113.473 90.000 1.913
P21 61.269 7.813 12.261 9.566 90.000 83.585 90.000 1.875

Fig. 13 (a) Hirshfeld surfaces, (b) fingerprint plots and (c) populations of close contacts of molecule G.

Paper RSC Advances
exists at the edge, indicating a lowmechanical sensitivity. In the
2D ngerprint (Fig. 13(b)), the red area mainly locates at the
edge corresponding to intermolecular hydrogen bonding
interactions within the layer, with N/H interaction (15% of the
total weak interactions) and the O/H interaction (32.4% of the
total weak interactions) accounting for the main portion, see
Fig. 13(c). Obviously, these relatively strong hydrogen bonds
(total 47.4%) are the key driving force that connect molecules to
one-dimensional molecular lines and then to molecular planes.
In addition, signicant N/O interactions (16.5%) are also
observed, indicating strong p–p stacking interaction between
layers of molecules.57
Conclusions

In this work, a high accuracy deep learning model based on D-
MPNN embedded with features was established. This model
assisted with high-throughput molecular screening was also
applied to efficiently explore fused [5,5]-bicyclic heterocycle
energetic materials. We rapidly targeted ten promising candi-
dates from 2698 molecular structures. Further DFT calculations
demonstrate that 2,6,7-trinitro-3H-pyrrolo[1,2-b][1,2,4]triazo-5-
amine exhibited excellent comprehensive performance
regarding both detonation properties and thermal stability,
which attributes to high value of BDE andHOMO–LUMO energy
gap value, low maximal ESP and unique face-to-face crystal
structure. This work indicates that the combination of deep
learning model embedded with features and high-throughput
molecular screening, is a powerful tool for aiding rational
design of novel energetic materials.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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