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The aldose reductase (AR) enzyme is an important target enzyme in the development of therapeutics
against hyperglycaemia induced health complications such as retinopathy, etc. In the present study, a
quantitative structure activity relationship (QSAR) evaluation of a dataset of 226 reported AR inhibitor
(ARi) molecules is performed using a genetic algorithm – multi linear regression (GA-MLR) technique.
Multi-criteria decision making (MCDM) analysis furnished two five variables based QSAR models with
acceptably high performance reflected in various statistical parameters such as, R2 = 0.79–0.80,
Q2
LOO = 0.78–0.79, Q2

LMO = 0.78–0.79. The QSAR model analysis revealed some of the molecular features that
play crucial role in deciding inhibitory potency of the molecule against AR such as; hydrophobic Nitrogen
within 2 Å of the center of mass of the molecule, non-ring Carbon separated by three and four bonds from
hydrogen bond donor atoms, number of sp2 hybridized Oxygen separated by four bonds from sp2
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MDS
Virtual screening
hybridized Carbon atoms, etc. 14 in silico generated hits, using a compound 18 (a most potent ARi from pre-
sent dataset with pIC50 = 8.04 M) as a template, on QSAR based virtual screening (QSAR-VS) furnished a scaf-
fold 5 with better ARi activity (pIC50 = 8.05 M) than template compound 18. Furthermore, molecular docking
of compound 18 (Docking Score = –7.91 kcal/mol) and scaffold 5 (Docking Score = –8.08 kcal/mol) against
AR, divulged that they both occupy the specific pocket(s) in AR receptor binding sites through hydrogen
bonding and hydrophobic interactions. Molecular dynamic simulation (MDS) and MMGBSA studies right
back the docking results by revealing the fact that binding site residues interact with scaffold 5 and com-
pound 18 to produce a stable complex similar to co-crystallized ligand’s conformation. The QSAR analysis,
molecular docking, and MDS results are all in agreement and complementary. QSAR-VS successfully iden-
tified a more potent novel ARi and can be used in the development of therapeutic agents to treat diabetes.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The aldose reductase (AR) belongs to the Aldo-Keto Reductase
superfamily (AKRs) composed of 190 enzymes. AR catalyzes the
reduction of carbonyl substrates such as sugar aldehydes along
with few other biomolecules and marks their role in lipid, carbohy-
drates, and xenobiotic metabolism (Jez et al., 1997). AR is the first,
rate-limiting enzyme in the polyol pathway and it causes sorbitol
accumulation in the insulin-independent tissues. Hence, AR has
been linked to retinopathy – cataract in particular – and the patho-
physiology of diabetes sequelae such as angiopathy, neuropathy,
and nephropathy (Moon et al., 2006).

AR inhibitors reduce diabetes-related disorders, particularly in
the tissues that exhibit insulin-independent glucose uptake such
as; neural tissues, the lens, and glomeruli. Various AR inhibitors
such as, alrestatin, benurestat, epalrestat, fidarestat, imirestat,
lidorestat have been developed to treat secondary complications
in diabetes (Krans 1993, van Gerven and Tjon-A-Tsien 1995, Tsai
and Burnakis 2016). ONO Pharmaceuticals developed Epalrestat,
the only AR inhibitor approved for the treatment of diabetic neu-
ropathies in Japan, India, and China (Steele et al., 1993,
Kucerova-Chlupacova et al., 2020). Many of them have been stud-
ied in clinical trials, but eventually discontinued due to no effect or
harmful side effects such as fever, nausea, diarrhea, increased liver
enzymes, rash including toxic epidermal necrolysis, Stevens-
Johnson syndrome, marked thrombocytopenia, lymphadenopathy,
splenomegaly and adult dyspnea syndrome (Foppiano and
Lombardo 1997). Due to these concerns, the need for the develop-
ment of the de novo ARi inhibitor has been increased.

In QSAR study, statistical approaches are used to identify a
mathematical correlation between structural properties of similar
molecules and their bioactivity. Traditional QSAR study employs
a variety of scientific disciplines including chemistry, computer
science, mathematics, statistics, and biology. Following are the
stages in a standard QSAR analysis procedure: (1) to Assemblage
molecules with the specified activity/property (referred as a data-
set); (2) to draw structures in 2D, convert them into 3D and to opti-
mize them using an appropriate force field; (3) to calculate of as
large as possible number of and variety of molecular descriptors
and subsequent data pruning using a suitable statistical method;
(4) to employ an appropriate feature (molecular descriptor) selec-
tion algorithm to build a QSAR model; and (5) adequate validation
of the developed QSAR model (Pourbasheer et al., 2015, Masand
et al., 2016).

To find out structural and molecular features of the molecule
that govern the expected activity of the molecule is the main goal
of a QSAR study (i.e. descriptive QSAR). Whereas prediction of
dezired activity of the molecule prior to its wet lab synthesis and
bio-testing is a secondary goal of the QSAR study (i.e. statistical
QSAR) (Fujita and Winkler 2016). A good balance of descriptive
and statistical elements in a QSAR model not only provides more
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information about the structural configurations that have a posi-
tive association with an intended activity/property of a drug candi-
date, but it also improves understanding of the drug’s mechanism
of action. To find a potential hit as an AR inhibitor, we have used
QSAR, QSAR-based virtual screening, molecular docking, MD simu-
lation and MMGBSA analysis in this study.
2. Materials and methods

2.1. Preparation of data sets

A crude dataset of 432 compounds with experimental AR inhi-
bitory potency measured in terms of IC50 values is procured from
ChEMBL (Gaulton et al., 2017) database. After removing structural
duplicates, multi-component compounds or salts, and compounds
with imprecise IC50 values finally a limited data set of 226 AR inhi-
bitors with accurate IC50 values is obtained. IC50 values in nanomo-
lar (nM) units were first converted into molar (M) and then into
pIC50 M (pIC50 = -logIC50 M) for ease of data set handling. (See sup-
plementary information Table S1 for SMILES notations for all the
226 compounds with experimental IC50 and pIC50 M values).
2.2. Model development and validation

We did use ChemSketch to create 2D structures of all the 226
molecules, an Open Babel 3.1.1 programme (O’Boyle et al., 2011)
to transfigure them into corresponding 3D structures, and a hyper-
chem programme (Ivanciuc 1996) to optimize these 3D molecular
structures by employing the semi-empirical PM6 method (Bikadi
and Hazai 2009). The resultant conformers were used for the calcu-
lation of the molecular descriptors using PyDescriptor available as
a PyMOL plugin. More than 40,000 descriptors makeup the
PyDescriptor, which covers topological, geometric, and constitu-
tional chemical space of molecules (Masand and Rastija 2017).

Furthermore, the pre-filtration of descriptors (excluding semi-
constant descriptors (greater than80%) and highly intercorrelated
descriptors (greater than95%)) give rise to a contracted dataset of
2546 descriptors. The present data set of 226 molecules was
divided into training (an 80% i.e. 181) for the QSAR model develop-
ment and test sets (a 20 % i.e. 45) for its validation. The QSAR Mod-
els were built by multiple linear regression. The descriptor
selection for the training set was carried out by using the entire
subset and Genetic function algorithm available in QSARINS 2.2.4
software (Gramatica 2020) (Dearden et al., 2009, Gramatica 2013,
Cherkasov et al., 2014, Gramatica 2014, Fujita and Winkler 2016,
Harit et al., 2017).

To ascertain the robustness of the develop model various vali-
dation criteria are reported in the literature. The internal predictiv-
ity and statistical quality of the built model is verified by the
parameters like the coefficient of determination (r2), the

http://creativecommons.org/licenses/by-nc-nd/4.0/
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leave-one-out cross-validation (Q2
LOO), and leave-many-out cross-

validation (Q2
LMO). Additionally, for every developed model the stan-

dard error of estimate (s) is described. To add an extra portion of the
accuracy for the reported QSAR models, Root Mean Squared Error
(RMSE) for the training (RMSEtr) and external prediction (RMSEext)
set that account on the whole error of the model are also described.
To ensure least possible inter-correlation among descriptors, the
QUICK rule was fixed to 0.05. A Y-randomization test at 2000 itera-
tions was performed to ascertain the reliability of the developed
QSAR model and to rule out the possibility of any speculative
correlation.

The external validation of all the models were verified with the
subsequent validation criteria; r2ext (external determination coeffi-
cient), Q2

F1, Q2
F2, Q2

F3, CCCext, r2m, and Dr2m. The parameter R2m (overall)
penalizes a model for large differences between observed and pre-
dicted values of the compounds of the whole set (considering both
training and test sets). The Dr2m estimates the indulgence between
the values of the predicted and the resultant experimental activity
data (pIC50 M value). It has been suggested that the observed value
for the r2m should be greater than 0.5. All of the QSAR models were
also tested for validation parameters, such as Golbraikh and Trop-
sha’s criteria to justify model reliability and robustness.

Generally, good predictive ability of the developed QSAR model
depends upon the closeness of predicted value against experimen-
tal biological activity value. Even, presence of a single outlier
diminishes the predictive capability of the developed QSAR model.
Subsequently, we have tried to highlight the outlier on the basis of
those compounds who showed significantly high residual value in
GA-MLR based QSAR models. Moreover, we have identified the
outlier compounds by comparing the predicted value with the
standardized residual values. Likewise, structural variation in
Fig. 1. Showing few representative examples of
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database compounds was observed by leverage effect in Williams
plot. The applicability domain of the developed QSAR model is
ascertained by merging the leverage and the standard residuals.

The multi criteria decision making (MCDM) function available
in QSARINS v4.1.1 software is used to rank the developed models.
It includes some criteria related to the external and internal valida-
tion whose values fall between 0 and 1, wherein 0 represents worst
validation while 1 represents the best validation performance. The
geometric average of all the values obtained in internal and exter-
nal validation gives rise to MCDM values. The model with the high
MCDM agreement among the best selected validation criteria is
sorted as the best QSAR model for the analysis. In addition, the best
model is evaluated for OECD (organization for economic corpora-
tion and development) guidelines (Gramatica et al., 2013,
Gramatica et al., 2014, Consonni et al., 2019).
2.3. QSAR based virtual screening

In QSAR based virtual screening, we have carried out scaffold
hopping by using the RDKIT module. Herein, we have used the
most active compound 18 as a template molecule to generate dif-
ferent variants. This has given rise to 14 different scaffolds with
enhanced chemical space. Accordingly, 14 variants of compound
18 were used for QSAR-based virtual screening. Erstwhile to
molecular descriptor calculations, the 3D- structures of the mole-
cules were arranged in the same way as a modeling set. Then
molecular descriptors were calculated and the appropriately vali-
dated five parametric QSARmodel was used to envisage the biolog-
ical property of novel compounds (Jawarkar et al., 2021). The
structures of some representative scaffolds are given in Fig. 1.
compounds generated by scaffold hopping.
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(Depiction of 14 scaffolds, their smiles notations, calculated
descriptors and predicted IC50 Values is available as Table S2 in
supplementary material).

2.4. Molecular docking study experimental

The human AR in the pdb file was obtained from the Protein
Data Bank (https://www.rcsb.org/structure/1fzd). The pdb:1fzd
was selected on the origin of X-ray resolution and conclusion of
the sequence. The optimized protein is suitable for docking analy-
sis. All the active compounds were docked in the active site, but for
the sake of ease, herein, the docking pose for most active molecule
18 as a symbol has been depicted.

The software NRGSuite was used to investigate molecular dock-
ing. This open source programme is available as a PyMOL plugin
(https://www.pymol.org). It has the competence to ascertain the
surface cavities in a protein and use them as target binding-sites
for docking simulations with the aid of FlexAID. It practices genetic
algorithms for conformational search, simulates ligand and side-
chain flexibility and permits for the simulation of covalent docking.
In the current work, flexible-rigid docking procedure was hired
with succeeding default settings to get finest performance from
NRGSuite: binding sites input method, spherical shape; spacing
of three dimensional grid: 0.375 Å; side chain flexibility- no; ligand
flexibility- yes; ligand pose as reference- no; constraints- no; HET
groups- comprised water molecules; van der Waals permeability-
0.1; solvent types- no type; number of chromosomes- 1000; num-
ber of generations- 1000; fitness model- share; reproduction
model- population boom; number of TOP complexes-5, Biovia Dis-
covery studio software was used to visualize the docking results
(Gaudreault et al., 2015).

2.5. MD simulations study

Based on the virtual screening results, the scaffold 5 with a
docking score of �8.08 kcal/mol and Molecule 18 (-7.91 kcal/
mol) is further investigated in molecular dynamics and simulation
using the Schrodinger Desmond module (MD simulation) and
MMGBSA binding free energy analysis. The protein ligand docking
complexes of scaffold 5 and molecule 18 docking complexes were
created using the Desmond module’s SPC (Simple point charge)
configuration. The OPLS-2005 force field (Bowers et al., 2006)
and explicit solvent model with the SPC water molecules were
used in this system (Jorgensen et al., 1996, Shivakumar et al.,
2010). Na+ ions were added to neutralize the charge. 0.15 M, NaCl
solutions added to the system to simulate the physiological envi-
ronment. The NPT ensemble was set up by using the Nose-
Hoover chain coupling scheme (Martyna et al., 1992) with temper-
ature 300 K, relaxation time of 1.0 ps and pressure 1 bar was main-
tained in all the simulations. A time step of 2 fs was used. The
Martyna-Tuckerman–Klein chain coupling scheme (Martyna
et al., 1994)barostat method was used for pressure control with a
relaxation time of 2 ps. The particle mesh Ewald method
(Toukmaji and Board 1996) was used for calculating long-range
electrostatic interactions and the radius for the Coulomb interac-
tions was fixed at 9 Å. RESPA integrator was used to calculate
the non-bonded forces. The root mean square deviation (RMSD),
root mean square fluctuation (RMSF), radius of gyration (Rg), pro-
tein ligand interactions were monitored to observe the stability of
the complex in MD simulations.

2.6. Molecular mechanics generalized born and surface area
(MMGBSA) calculations

During MD simulations of aldose reductase enzyme in com-
plexed with molecule 18 and scaffold 5, the binding free energy
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(Gbind) of docked complexes was calculated using the premier
molecular mechanics generalized Born surface area (MM-GBSA)
module (Schrodinger suite, LLC, New York, NY, 2017–4). The bind-
ing free energy was calculated using the OPLS 2005 force field,
VSGB solvent model, and rotamer search methods (Jawarkar
et al., 2022, Kumar et al., 2022). After the MD run, 10 ns intervals
were used to choose the MD trajectories frames. The total free
energy binding was calculated using equation (1):

DGbind ¼ Gcomplex� ðGproteinþ GligandÞ ð1Þ
where,DGbind = binding free energy, Gcomplex = free energy of the
complex, Gprotein = free energy of the target protein, and Gli-
gand = free energy of the ligand. The MMGBSA outcome trajectories
were analyzed further for post dynamics structure modifications.

2.7. In silico ADMET property prediction

The ADME (Absorption, Distribution, Metabolism, and Excre-
tion) properties of the chosen phytocompound were calculated
using the SWISS adme web server (https://www.swissadme.ch/).
The molecular as well as pharmakokinetic behaviour of molecule
18 and scaffold 5 were assesed for drug like properties, total polar
surface area (TPSA), water solubility, blood brain barrier (BBB) per-
meant, gastro intestinal (GI) absorption, Lipinski, Ghose, Veber,
Egan and Muegge violations and synthetic accessibility. If the test
molecules e.g. molecule 18 and scaffold 5 pass the drug like filters
therefore, it can be predicted to be candidate molecule against
aldose reductase. For the analysis of ADME, the SMILEs format of
molecule 18 and scaffold 5 have been used individually to
retrieved the outcomes from the server.
3. Results

In the present investigation, QSAR analysis is performed using a
dataset composed of 226 ARi inhibitors with reported IC50 values
and molecular docking is accomplished to pinpoint the important
structural features. The QSAR model was developed by using easily
interpretable molecular descriptors to correlate them with struc-
tural features. The five parametric GA–MLR based QSAR model
has decent external predictive ability with the incidence of easily
comprehensible molecular descriptors alongside the interpretation
in terms of structural features. For the aim of model selection,
Multi-Criteria Decision Making (MCDM) analysis has been
employed in this study. As a result of the MCDM study, a robust
QSAR model was chosen for the analysis. The findings are given
below.

3.1. Multi-Criteria decision making (MCDM) analysis

In the current QSAR analysis, we have implemented Multi-
Criteria Decision Making (MCDM) (Pavan and Todeschini 2009)
technique that involves combining the performances of a certain
number of criteria simultaneously, as a single number (score)
between 0 and 1.

The MCDM is achieved by associating to each validation criteria
a desirability function whose value falls in the range from 0 to 1
(where 0 designates the worst validation criteria value and 1 the
best). Using the geometric average of all the values obtained from
the desirability functions gives the MCDM value. By default, the
MCDM of fitting (maximizing R2, R2

adj and CCCtr, while minimizing
R2-R2

adj), cross validation (maximizing Q2
LOO, Q2

LMO and CCCcv, while
minimizing R2

Yscr) and external validation (maximizing Q2
F1, Q2

F2, Q2
F3

and CCCEXT), are automatically calculated using all the above criteria
in QSARINS v2.2.4 programme. If any one of the criteria is missing,
then the MCDMmodel will not be obtained. The model with the best

https://www.rcsb.org/structure/1fzd
https://www.pymol.org
https://www.swissadme.ch/


Table 1
Display of five variable models in MCDM.

Model
id

Size Variables/Descriptor

134 5 com_ringCminus_2A H_ringN_2B com_Nhyd_2A
notringC_don_3B allminus_SASA

133 5 H_ringN_2B lipo_don_3Bc com_Nhyd_2A notringC_don_5B
allminus_SASA

132 5 H_ringN_2B lipo_don_3Bc com_Nhyd_2A notringC_don_3B
allminus_SASA

129 5 minus_H_3B H_ringN_2B com_Nhyd_2A notringC_don_3B
allminus_SASA

131 5 all_HASA3 H_ringN_2B com_Nhyd_2A notringC_don_3B
allminus_SASA

130 5 all_HASA3 H_ringN_2B com_Nhyd_2A notringC_don_5B
allminus_SASA

128 5 H_ringN_2B ringN_H_8Ac com_Nhyd_2A notringC_don_5B
allminus_SASA

127 5 H_ringN_2B ringN_H_8Ac com_Nhyd_2A notringC_don_3B
allminus_SASA

126 5 H_ringN_2B ringN_H_5Ac com_Nhyd_2A notringC_don_5B
allminus_SASA
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MCDM criteria is selected for analysis(See Table 1). In the present
analysis, model no 134 has satisfied the best MCDM criteria (See
Table 2 for various MCDM parameters), therefore it is selected for
the analyses (see Fig. 2).

In Fig. 3, model no 135 depicts very good fitting performance
but it is lacking in external predictive performance. For instance,
model no 133 showed very good external predictive performance
but not satisfactory in fitting. Therefore, model no 134 in between
133 and 135 showed better compromise between fitting and pre-
dictivity, hence selected as best model for analysis and QSAR based
virtual screening. Moreover, apart from model no 134, we have
developed a full set model.
3.2. QSAR model 1.1 (Model no 134)

pIC50 = 2.603 (±0.447) � 0.193 (±0.085) com_ringCmi-
nus_2A + 0.249 (±0.074) H_ringN_2B � 1.331 (±0.226) com_N-
hyd_2A � 0.34 (±0.113) notringC_don_3B + 0.012 (±0.001)
allminus_SASA.

(The experimental and predicted pIC50 M value for the divided
dataset model is available as Table no S3 in supplementary
material).

R2:0.80, R2
adj:0.79, R2-R2

adj:0.01, LOF:0.26, Kxx:0.20, DeltaK:0.09,
RMSEtr: 0.49, MATer:0.40, RSStr:42.75, CCCtr:0.89, s:0.50, F:140.68,
Q2
loo:0.79, R2-Q2

loo:0.02, RMSEcv: 0.50, MAEcv: 0.41, PRESScv: 45.25,
CCCcv: 0.88, Q2

LMO: 0.79,R2Yscr: 0.03, Q2 scr: �0.04, RMSE AVYscr:
1.07, RMSEext: 0.54, MAEext: 0.44, PRESSext:12.98, Q2

F1: 0.80,Q2
F2: 79,

Q2
F3: 0.75,CCC exe: 0.88, r2m aver.: 0.68, r2m delta: 0.18.
3.3. QSAR model 1.2 (Full set model)

PIC50 = 2.619 (±0.399) � 0.085 (±0.033) minus_don_3B + 0.431
(±0.086) don_ringC_6Ac � 0.353 (±0.166) don_notringC_4B �
0.584 (±0.123) fsp2Osp2C4B + 0.012 (±0.001) allminus_SASA
(The experimental and predicted pIC50 M value for the full dataset
model is available as table no S4 in supplementary material).

R2 = 0.79, R2
adj = 0.79, R2-R2

adj = 0.01, LOF = 0.28, Kxx = 0.16, Del-
taK = 0.14, RMSEtr = 0.50, MAEtr = 0.40, RSStr = 57.41, CCCtr = 0.89,
s = 0.51, F = 168.60, Q2

loo = 0.78, R2-Q2
loo = 0.01, RMSE cv = 0.52,

MAEcv = 0.41, PRESScv = 60.39, CCCcv = 0.88, Q2
LMO = 0.78, R2Yscr = 0.02,

Q2Yscr = -0.03, RMSE AV Yscr = 1.10.
The statistical validation parameters listed above are recom-

mended for judging internal and external robustness, and they
have the same meaning as before (see Supplementary Material
Table S5 for detailed formulae and Table S6 for the detailed
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descriptions of the descriptors). The high value of R2
tr (coefficient

of determination), R2
adj. (adjusted coefficient of determination), R2

cv

(Q2
loo) (cross-validated coefficient of determination for leave-one-

out), R2
ex (external coefficient of determination), Q2

Fn, and CCCex

(concordance correlation coefficient), and the low value of LOF
(lack-of-fit), RMSEtr (root mean square error).The various graphs
associated with the model(see Figs. 3 and 5), such as MAEtr (mean
absolute error), R2

Yscr (R2 for Y-scrambling), and others, show that
the model is statistically robust, with high internal and external pre-
dictive capacity, and is free of chancy correlation. Furthermore, the
Williams plot (see Fig. 4) demonstrates that the model is statistically
acceptable.Moreover, insubris As a result, it complies with all of the
OECD’s suggested standards for developing an effective QSAR model.
4. Discussion

4.1. Allminus_SASA

The solvent accessible surface area, integrates shape and elec-
trical property which additionally can be contributed by the pres-
ence of hydrogen bond donor/acceptor atoms (heteroatoms, such
as N, O, etc.) in a molecule and is determined by mapping atomic
partial charges. Owing to the electronegativity difference between
such heteroatoms and carbon/hydrogens there occurs a partial
charge separation, subsequent dipole formation, thereby intensify-
ing the drug – water solubility and facilitating drug – biological
target interaction, ultimately. The molecular descriptor, allmi-
nus_SASA (solvent accessible surface area (Å2) of all negatively
charged atoms) is in a positive relationship with pIC50 M (positive
coefficient in both QSAR equation) and hence, increase in its value
may possibly lead to better AR inhibitory activity.

This can be well illustrated by comparing compound 190
(allminus_SASA = 131.34, Number hydrogen bond donor/accep-
tor = 2; pIC50 = 4.0 M) and 16 (allminus_SASA = 411.21,Number
hydrogen bond donor/acceptor = 7; pIC50 = 7.48 M) wherein possi-
bly, for about three fold increase in allminus_SASA value leads to
more than 3000 fold increase in AR inhibitory potency. Illustrative
Fig. 6 depicts the allminus_SASA.

4.2. Minus_don_3B

The minus_don_3B (presence of a donor within three bonds
from a negatively charged atom) has a negative relationship with
the inhibitory activity of AR and its value should be kept as low
as possible. The importance of this bioactivity governing feature
can be supported by comparing compound 20 (minus_don_3B = 0;
pIC50 = 6.40 M) with the compound 172 (minus_don_3B = 12;
pIC50 = 4.69 M). Both, compounds 20 and 172 constitute a compa-
rable number of hydrogen bond donors/acceptors which are
expected to bring very close AR inhibitory potency to both (as
explained for allminus_SASA in preceding section). But contrast
observation in case of the compound 20 and 172 pair, highlights
the importance of absence of not all but specific donor atoms or
negatively charged carbons, defined by minus_don_3B. Further-
more, the lone pair of electrons, associated with the donor NH &
OH groups can be deployed to make a covalent link with a biolog-
ical target. Plausibly, a good compromise between phenyl and
moderately long chain ether functionality induced lipophilicity
and donor atoms induced hydrophilicity, enhanced the AR inhibi-
tory potency of compound 20 (see Fig. 7).

4.3. Don_ringC_6Ac

The Don_ringC_6Ac (presence of partially charged ring carbon
atoms within 6 Å of the donor) being having positive correlation



Fig. 2. Depiction of MCDM graph for model 135. The � axis indicates MCDM fit while y axis shows MCDM ext (Black circle showing three best models).

Fig. 3. Depiction of Scatter plot of experimental vs. predicted data by LOO.

Table 2
Presentation of different MCDM parameters.

Model id R2 R2
adj Q2

LOO Q2
LMO CCC tr CCC cv Q2

F1 Q2
F2 Q2

F3

134 0.7999 0.7942 0.7881 0.7888 0.8888 0.8824 0.7975 0.7935 0.7488
133 0.7984 0.7926 0.7848 0.7821 0.8879 0.8805 0.8164 0.8128 0.7724
132 0.7965 0.7908 0.7838 0.7803 0.8867 0.8798 0.8163 0.8127 0.7722
129 0.7953 0.7895 0.7816 0.7782 0.886 0.8785 0.7435 0.7385 0.682
131 0.7951 0.7893 0.7833 0.7814 0.8858 0.8794 0.7945 0.7904 0.7451
130 0.7947 0.7889 0.7817 0.7766 0.8856 0.8785 0.7882 0.784 0.7373
128 0.7942 0.7883 0.7802 0.7773 0.8853 0.8777 0.7859 0.7817 0.7345
127 0.7933 0.7874 0.78 0.7767 0.8847 0.8775 0.7873 0.7831 0.7362
126 0.7927 0.7869 0.7782 0.7759 0.8844 0.8765 0.7814 0.7771 0.729
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Fig. 4. Display of Williams plot using data predicted by LOO. (Molecules out of applicability domain have been shown with their serial numbers).

Fig. 5. Insubria plot for Divided set model 134. (Molecules out of applicability domain have been shown with their serial numbers).

Fig. 6. Depiction of the descriptor allminus_SASA for compound 16 & 190. (The negatively charged atoms are depicted by a bold red color).
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Fig. 7. Depiction of the descriptor minus_don_3B for the compound 20 and 172 only. (Donors are indicated by the dotted circle while negatively charged atoms are shown by
red bold color).
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with the pIC50 (M), high possible value of don_ringC_6Ac is advis-
able for better AR inhibitor lead optimization. In Compound 85
(don_ringC_6Ac = 2.49, number of H-bond donor/acceptor = 9;
pIC50 = 7.52 M), a blend of hydrogen bond donors capable of form-
ing electrostatic interactions, with equally important lipophilic
carbons (in unsaturated region of the isoquinoline and the pyrro-
lidine ring) enabling lipophilic interactions of molecule, for AR
inhibition makes it 2.83 unit more potent than compound 103
(don_ringC_6Ac = 0, number of H-bond donor/acceptor = 7;
pIC50 = 4.59 M) (see Fig. 8).

4.4. Don_notringC_4B

The don_notringC_4B (non-ring carbon atom within four bonds
from the donor) has negative correlation with biological activity
and hence minimum possible value of this molecular descriptor
while AR inhibitor lead optimization is recommended. Absence of
non– ring carbon atoms within four bonds from the donor atom
probably makes compound 46 about 660 times more potent than
compound 185 where there are two such non-ring carbons present
(Fig. 9). In corollary, a non-ring carbon atom within a molecule
must be placed at a distance of five or more bonds from the donor
atoms to develop leads with desired potency.

4.5. fsp2Osp2C4B

A molecular descriptor fsp2Osp2C4B (the frequency of occur-
rence of a sp2 hybridized carbon atom exactly four bonds from a
sp2 hybridized oxygen atom) has a negative correlation with bio-
logical activity and keeping its value minimum possible is advis-
able for better AR inhibitory potency. Absence of this specific
Fig. 8. Representation of descriptor Don_ringC_6Ac for the compound 85 and 103 onl
indicated by red bold color).
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combination of sp2-O a distance of four bonds from the sp2-C atom
in compound 37 possibly make it more potent than compound 1 in
which such a combination is observed twice. (Fig. 10). Further-
more, overall lipophilicity of the molecule to the large extent is
contributed by unsaturated ring carbons. Importance of lipophilic-
ity in molecules for its AR inhibitory potency highlighted in fore-
gone discussion support and supported by the importance of
absence of not all but specific combination of sp2C and sp2O.
4.6. com_ringCminus_2A

com_ringCminus_2A encodes information on the number of
negatively charged ring Carbon atoms within 2 Å from the center
of mass of the molecule. AR inhibitory potency is inversely propor-
tional to the value of this molecular feature and hence, low possi-
ble value of com_ringCminus_2A in a molecule is advisable for
better AR inhibitory potency. This observation can be supported
by Comparison of 203 (com_ringCminus_2A = 4; pIC50 = 4.000 M)
with 109 (com_ringCminus_2A = 0; pIC50 = 7.95 M) wherein
decrease in value of com_ringCminus_2A from 4 in compound
203 to 0 in compound 109 cause about 10,000 fold increase in
AR inhibitory activity (see Fig. 11).

Generally, molecules in the receptor pocket should be more
steadily balanced if its center of mass is below the balance point,
but unstable if it is above the balance point. The appropriate orien-
tation of the molecule within the active site pocket is determined
by the molecule’s center of mass. This finding supports the idea
that having a larger number of negatively charged carbon atoms
within the 2 Å radius can cause problems with molecular align-
ment within the receptor active site pocket. This could be the cause
y. (Donors are highlighted by a dotted circle while carbon atoms within 6 A0 are



Fig. 9. Depiction of descriptor don_notringC_4B for the compound 46 and 185.

Fig. 10. pictorial depiction of descriptor fsp2Osp2C4B for the compounds 1 and 37.
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of the differences in biological activity between molecules 203 and
109 (see Fig. 11).
4.7. com_Nhyd_2A

In the established QSAR model, the molecular descriptor
com_Nhyd_2A (presence of hydrophobic nitrogen within 2 Å of
the center of mass) is negatively connected with biological activity
and hence it is advisable to abstain from introduction of such
hydrophobic nitrogen (partial charge in between �0.2 to + 0.2) to
avoid deterioration of biological activity. Here, in compound 57,
one hydrophobic nitrogen is present with a charge of �0.09 while
another nitrogen has a charge of 0.06. (see Fig. 12).

The poor activity for the molecule 16, 22, 36, 26, 32, 33 and 51
can be correlated with the high value of such hydrophobic Nitro-
gens within 2A0 from the center of mass of the molecule
(com_Nhyd_2A = 1).
4.8. H_ringN_2B

The descriptor H_ringN_2B represents a combination of ring
nitrogen and hydrogen separated by within 2 bonds. This descrip-
tor has a positive coefficient in the QSARmodel; therefore the com-
bination of ring nitrogen within 2 bonds from the hydrogen
701
element is the favorable combination to be used for hit/lead opti-
mization. (see Fig. 13).

Generally, Hydrogen is the smallest element, it implies that
there should be minimum bulk in the vicinity of ring Nitrogen
atoms. Therefore, in future modifications, steric bulk nearer to ring
Nitrogen atoms should be avoided to have better activity against
AR.

A poor activity profile of molecules 112, 113, 100, 102, 118 and
133 is due to absence of such hydrogen and ring nitrogen combina-
tions within 2 bonds (H_ringN_2B = 0), therefore higher the num-
ber of such combinations, greater will be AR inhibitory activity.
This may be a plausible reason for the difference in the biological
activity of these molecules.
4.9. QSAR based virtual screening

The QSAR based virtual screening was performed by employing
a divided set QSAR model.

Among these 14 scffolds furnished by QSAR-VS, scaffold 5
turned out as the more potent AR inhibitor than a template com-
pound 18. Close observation of the values of molecular features
for both scaffold-5 and compound 18 revealed that the large value
of two molecular descriptors viz. number of Hydrogen atoms that
are two bond away from ring Nitrogen atoms (H_ringN_2B) and
solent accessible surface area of all the negatively charged atoms



Fig. 11. Presentation of the descriptor com_ringCminus_2A for the compound 203 and 109.

Fig. 12. Representation of the descriptor com_Nhyd_2A for the compound 57 and 18(Star in the figure indicates center of mass of the molecules).

Fig. 13. Depiction of the descriptor H_ringN_2B for the compound 2 and 25.
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(allminus_SASA) which are in positive corelation with AR inhibi-
tory potency suffice to enhance the AR inhibitory potency of the
scaffold-5 (H_ringN_2B = 4, allminus_SASA = 353.8; pIC50 = 8.05 M)
over template compound-18 (H_ringN_2B = 2, allminus_SASA = 3
37.4; pIC50 = 8.04 M). In other scaffolds, increase in either
H_ringN_2B or allminus_SASA or both is not as in case of scaffold
�5. Hence, the synchronous effect of H_ringN_2B and allmi-
nus_SASA is the possible reason for the increase in the potency
of AR inhibitor (scaffold 5).

4.10. Molecular docking analysis of molecule 18

Human AR (Pdb-1fzd), a 36 kDa enzyme with a supple and mal-
leable active site, is the target protein under consideration. The
enzyme folds into a TIM-barrel and is thought to be involved in
diabetic retinopathy and angiopathy. (Docking score, RMSD and
pedicted pIC50 M values are displayed in Table 3).

As a result, it was created to be a promising drug target. It uses
NADPH as a reducing cofactor to convert various aldehydes (in-
cluding glucose in diabetic circumstances) to their corresponding
alcohols. NADPH contributes a hydride ion to the carbonyl carbon
of the aldehydes, resulting in a negatively charged intermediate,
Table 3
Depiction of docking Results along with pIC50 M and IC50 by QSAR based virtual screening

Sn DockingScore (kcal/mol)

Molecule 18 �7.91
Scaffold 1 �7.89
Scaffold 2 �7.69
Scaffold 3 �7.86
Scaffold 4 �7.81
Scaffold 5(Pose 1) �8.08
Scaffold 5(Pose 2) �8.00
Scaffold 6 �7.91
Scaffold 7 (Pose 1) �8.06
Scaffold 7(Pose 2) �8.04
Scaffold 8 �7.87
Scaffold 9 �7.91
Scaffold 10 �7.83
Scaffold 11 �7.91
Scaffold 12 �7.96
Scaffold 13 �8.01
Scaffold 14 �8.00

Fig. 14. Showing 3D and 2D interaction of Mo
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although the exact mechanism is still debated. Furthermore, a sub-
sequent proton transfer from one of the nearby acidic active site
residues is used to trace this step. The binding site consists of
two sub-pockets, one encompassing the residues possibly involved
in catalysis (Tyr48, Lys77, and His110) sideways with the nicoti-
namide moiety of the cofactor, while the second so-called speci-
ficity pocket is formed by Trp111, Ala299, Leu300 and Phe122.

With a docking score of �7.912 kcal/mol, molecule 18 orients in
the specificity pocket in the same way as the pdb-1fzd ligand (see
Fig. 14). Through typical hydrogen bonding, carbon hydrogen
bonding, and hydrophobic interactions, molecule 18 forms a com-
plex with human AR. Molecule 18 resides in the second pocket,
known as the specificity pocket, in which the 4-oxothiazolidine
oxygen acts as an acceptor, forming a conventional hydrogen bond
with the NH2 hydrogen atom of specificity pocket residue A:
LEU300 (1.90 A0) and so acting as a hydrogen bond donor. Further
the same 4-oxo thiazolidine oxygen acceptor atom anchored car-
bon hydrogen bond with hydrogen atom of ALA299 (2.74A0) resi-
due therefore, acts as hydrogen bond donor in the drug receptor
interaction. (see Fig. 15).

Furthermore, molecule 180s terminal acceptor carboxyl oxygen
forms a carbon hydrogen bond with the specificity pocket A:
for the Molecule 18 and the series of 14 Scaffolds.

RMSD pIC50 M IC50 in nM

0.95659 8.04 9.12
1.02 6.21 616.5
1.28 7.83 14.79
1.41 7.61 24.54
1.65 7.83 14.79
1.29 8.05 8.91
0.88
1.20 7.84 14.4
1.11 7.83 14.7
1.25
1.82 7.52 30.2
1.44 7.79 16.2
1.18 7.97 10.7
0.81 7.74 18.1
1.50 7.61 24.5
1.21 7.75 17.7
0.99 7.83 14.7

lecule 18 with Human aldose Reductase.



Fig. 15. Depiction of superimposed orientation of Molecule 18 (green) with Pdb-1fzd ligand (yellow) in specificity pocket.

Fig. 16. Showing 3D and 2D interaction of Scaffold 5 with Human aldose Reductase.
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ALA299 (2.62A0) residue, where the side chain carbon atom acts as
a donor in drug receptor interactions. Furthermore, the acceptor
hydroxy group of the terminal carboxyl substituent forms a carbon
hydrogen bond with the donor hydrogen atom of the secondary
amino group of PRO310 (2.74 Å) residue, producing the human
704
aldose reductase specificity pocket. Following that, the naph-
thalene component of Molecule 18 intercalates with the benzene
ring of TRP 20(5.21 Å) residue, resulting in a p - p stacking
hydrophobic interaction between the naphthalene ring and the
benzene ring of TRP20 residue due to the involvement of p orbitals.



Fig. 17. Depiction of superimposed orientation of scaffold 5 (green) with Pdb-1fzd ligand (yellow) in specificity pocket.

Fig. 18. Presentation of human AR with (A) Molecule 18; (B) scaffold 5, RMSD to measure the average change in displacement of a selection of atoms for a particular frame
with respect to a reference frame.
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Through p -sulphur interactions, the thioxozolidine ring’s sul-
phur atom forms a 4.90 Å contact with the oxygen atom of trypto-
phan. As a result, the specificity pocket residue TRP111 (3.57 Å)
causes p -sulphure and p - p stacking (3.80 Å) interactions with
the thioxozolidine ring’s sulphure atom. Likewise another speci-
ficity pocket residue PHE122 forms a p -suphur contact of 4.94 Å
with sulphure atom of thioxozolidine ring of Molecule 18. TRP79
705
residues (5.53 Å) also create p -sulphure contacts with the sulphur
atom of the thioxozolidine ring through p - p T shaped hydropho-
bic interactions with the naphthalene ring. Subsequently, speci-
ficity pocket residue LEU300 (5.03 Å) form p -alkyl hydrophobic
contact with thioxozolidine ring, CYS303 anchored p -alkyl
hydrophobic contact with thioxozolidine ring while VAL47 interca-
late with naphthalene ring through p -alkyl hydrophobic interac-



Fig. 19. Presentation of human AR – (A) Molecule 18; (B) scaffold 5 RMSF for characterizing local changes along the protein chain.

Fig. 20. 2D interaction plots showing ligand interactions of (A) Molecule 18; (B) Scaffold 5 with the binding cavity residues of Aldose Reductase (AR).

Fig. 21. (A) Molecule18 contact histogram (H-bonds, Hydrophobic, Ionic, Water bridges) of the ligand, molecule-18 bound with protein recorded in a 100 ns simulation
interval; (B) Scaffold 5 contact histogram (H-bonds, Hydrophobic, Ionic, Water bridges) of the ligand, molecule-5 bound with protein recorded in a 100 ns simulation interval.
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Fig. 22. Stepwise trajectory analysis for every 20 ns displaying the protein, (A)
Scaffold 5 and molecule 18 and (B) Scaffold 5 and molecule 18; these show the
conformation during 100 ns of simulation scale.
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tions. Docking analysis revealed that Molecule 18 bind with speci-
ficity pocket residues Trp111, Ala299, Leu300 and Phe122 through
conventional hydrogen bond, carbon hydrogen bond, p -sulphur
interaction, p - p stacked hydrophobic and p -alkyl hydrophobic
interactions. In Molecule 18, thioxozolidine ring, naphthalene ring,
terminal carboxyl substituent, methoxy substituent on naph-
thalene ring plays crucial role for enhancing binding affinity
against the human aldose reductase receptor.
4.11. Molecular docking analysis of scaffold 5.

As previously stated, the human AR receptor is divided into two
sub-pockets, one containing residues that may be involved in catal-
ysis (Tyr48, Lys77, and His110) that are sideways with the nicoti-
namide moiety of the cofactor, and the other containing Trp111,
Ala299, Leu300, and Phe122 residues.

With a docking score of �8.08 kcal/mol, scaffold 5 achieved the
same conformation in the specificity pocket as Pdb-1fzd ligand (see
Fig. 16) and was anchored with specificity pocket residues Trp111,
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Ala299, and Leu300 via conventional hydrogen bonds, carbon
hydrogen bonds, pi-sulfur contact, pi-donor hydrogen bond, p - p
stacked hydrophobic contact, and p - p T-shaped contact, pi-
alkyl contact and alkyl contacts.(see Fig. 17) According to the
results of the molecular docking analysis, scaffold 5 has an excel-
lent binding characteristic and affinity for the AR receptor. It also
aligns into the specificity pocket in the same way the co-
crystallized pdb ligand does.

The allminus SASA descriptor further emphasizes the need of a
solvent-accessible surface. The presence of abundant SASA in the
ligand molecule means that the ligand is exposed to the vander-
waals surface of the receptor molecule, increasing hydrophobic
interactions. The network of solvent accessible surfaces of the
ligand molecules around them remains intact as a result of
hydrophobic groups tending to join together. This means that
the results of QSAR and docking are complementary and
consistent.

Furthermore, the Don_ringC_6Ac descriptor represents a blend
of electronic and lipophilic features in the ligand molecule that
contribute to hydrogen bonding and hydrophobic interactions. As
a result, it is reasonable to conclude that the results of molecular
docking and QSAR are complementary and in good agreement. As
a result, the descriptor H_ringN_2B emphasizes the role of reduced
steric bulk in enhancing receptor surface binding affinity. When we
look at the docking score for ligand molecule 18 and scaffold 5, we
can see that this observation is correct. As a result, the docking
results match the QSAR analysis perfectly.

4.12. Molecular dynamics (MD) simulation study

MD simulation studies were performed in order to define the
structural stability and conformational analysis of the screened
nitrogen heterocycles with target protein is human aldose reduc-
tase (Pdb: 1fzd) which is a 36 kDa sized enzyme displays marked
flexibility and malleability with respect to its active site. The Mole-
cule 18 and scaffold 5 anchored with human aldose reductase and
docking results were analyzed for 100 ns in MD simulation and
displayed in Fig. 18. The conformation of Molecule 18 bound to
the human aldose reductase displayed stable and converged con-
formation at the end of 100 ns (Fig. 18.A). Earlier till 50 ns a little
RMSD fluctuations observed but later the system was fully con-
verged with 1 Å deviation (Fig. 18 A, blue). On the other hand,
ligand RMSD exhibited quite stable conformation from the begin-
ning to end of the 100 ns simulation suggesting good fit and stable
accommodation at the binding site of human aldose reductase pro-
tein (Fig. 18 A, red). The scaffold 5 bound to aldose reductase dis-
played stable conformation with less fluctuations in RMSD of both
protein and ligand as displayed in Fig. 18.

TheRMSFplotsofMolecule18andscaffold5boundaldose reduc-
tase were displayed in Fig. 19. The C-a backbone displayed very less
fluctuations in the respective amino acids positions with an average
of 0.4Å (Fig. 19 (A)).Whereas, scaffold 5 boundaldose reductase dis-
played significant fluctuations 1.2–2.0 Å between 110 and 120 resi-
dues and 2.8 Å between 210 and 220 residues (Fig. 19 (B)).

The interaction plots (Fig. 20 (A) and (B)) displayed the interac-
tion of binding site residues of aldose reductase with the ligands
Molecule 18 and scaffold 5. After 100 ns of simulation Molecule
18 formed conventional H-bonds with the Arg296, Leu300 and
Tyr309 (Fig. 20 (A)) to entail into a stable complex. On the other
hand, scaffold 5 binds by conventional H-bonds with Lys21 and
pi-pi interaction with Trp111 (Fig. 20 (B)).

Throughout the simulation, protein interactions with the ligand
can be observed. As seen in the graph above, these interactions can
be classified and summarized by type. Hydrogen Bonds, Hydropho-
bic, Ionic, and Water Bridges are the four forms of protein–ligand
interactions (or ’contacts’). Each interaction type has a number of



Fig. 23. MMGBSA trajectory (0 ns, before simulation and 100 ns, after simulation) exhibited conformational changes of molecule 18 and scaffold 5 upon binding with the
protein, molecule 18 (A) and scaffold 5 (B). The arrows indicate the overall positional variation (movement and pose) of ligands at the binding site cavity.

Table 4
Binding energy calculation of molecule 18 and Scaffold 5 and non-bonded interaction
energies from MMGBSA trajectories.

Energies (kcal/mol) Molecule 18 Scaffold 5

DGbind �61.839 ± 5.673 �55.590 ± 3.705
DGbindLipo –23.517 ± 1.693 �20.995 ± 1.509
DGbindvdW �49.459 ± 1.857 �43.737 ± 3.695
DGbindCoulomb 17.834 ± 7.867 9.519 ± 3.212
DGbindHbond �1.829 ± 0.723 �1.128 ± 0.388
DGbindSolvGB 16.579 ± 8.341 12.866 ± 10.172
DGbindCovalent 1.362 ± 0.728 1.253 ± 0.801
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subtypes that can be examined usingMaestro’s ’Simulation Interac-
tions Diagram’ panel, shown in Fig. 21. (A) and (B)). The stacked bar
charts are standardized over the course of the trajectory. Some pro-
tein residues may make several interactions of the same subtype
with the ligand, values above 1.0 are feasible. As seen in Fig. 21;
the majority of the significant ligand–protein interactions discov-
ered by MD are hydrogen bonds and hydrophobic interactions.

The stepwise trajectory analysis of every 25 ns of simulation of
Scaffold 1 bound to molecule 18 and Scaffold 6 bound to molecule
5 displayed the positional alteration with reference to 0 ns struc-
ture [Fig. 22]. It has been observed that the ligand, molecule 18
with Scaffold 5 in Fig. 22 (A) and molecule 18 with Scaffold 5 in
Fig. 22 (B) have possessed a structural angular movement at the
end frame to achieve its conformational stability and convergence.
4.13. Molecular mechanics generalized born and surface area (MM
GBSA) calculations

To assess the binding energy of ligands to protein molecules,
the MMGBSA technique is commonly employed. The binding free
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energy of each molecule 18 complex and Scaffold 5, as well as
the impact of other non-bonded interactions energies, were esti-
mated. With Scaffold 1, the ligand molecule 18 has a binding
energy of �61.836 kcal/mol, whereas with Scaffold 6, the ligand
molecule 18 has a binding energy of �57.590 kcal/mol Non-
bonded interactions like GbindCoulomb, GbindCovalent, GbindHbond,
GbindLipo, GbindSolvGB, and GbindvdW govern Gbind. Across all
types of interactions, the GbindvdW, GbindLipo, and GbindCoulomb
energies contributed the most to the average binding energy. On
the other side, the GbindSolvGB and Gbind Covalent energies con-
tributed the least to the final average binding energies. Further-
more, the GbindHbond interaction values of molecule 18 and
Scaffold 5 complexes demonstrated stable hydrogen bonds with
amino acid residues. In all of the compounds, GbindSolvGB and
GbindCovalent exhibited unfavorable energy contributions, and so
opposed binding. Fig. 23 (A) reveals that between pre-simulation
(0 ns) and post-simulation (100 ns), molecule 18 in the binding
pocket of Scaffold 1 has undergone a large angular change in the
pose (curved to straight) and Fig. 23 (B) reveals that between
pre-simulation (0 ns) and post-simulation (100 ns), molecule 5 in
the binding pocket of Scaffold 6 has undergone a large angular
change in the pose (curved to straight). These conformational
changes lead to better binding pocket acquisition and interaction
with residues, which leads to enhanced stability and binding
energy (shown in Table 4).

Thus, MM-GBSA calculations resulted, from MD simulation tra-
jectories well justified with the binding energy obtained from
docking results moreover, the last frame (100 ns) of MMGBSA dis-
played the positional change of the molecule 18 and scaffold 5 as
compared to 0 ns trajectory signify the better binding pose for best
fitting in the binding cavity of the protein (see Fig. 23).
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4.14. ADMET study of molecule 18 and scaffold 5

ADMET study of molecule 18 and scaffold 5 showed interesting
molecular as well as pharmakokinetic properties. Total polar sur-
face area of a molecule should be within the range of 20–130 Å.
The molecule 18 TPSA was calculated to be 124.23 and for scaffold
5 TPSA is quite high 150 Å. The next descriptor (LogS, ESol model)
was calculated to be water solubility whose range should be < 6.
The molecule 18 showed high solubility having �4.5 whereas, scaf-
fold 5 displayed �3.49. Therefore, it can be suggetsed that both
molecule 18 and scaffold 5 have good solubility in water. GI
absorption of molecule is found to be significant whereas, scaffold
5 has less GI absorption capacity. For drug likeliness property,
molecule 18 displayed significant likeiness since none of the prop-
erties violate Lipinski, Ghose, Veber, Muegge and Egan filters.
Whereas, scaffold 5, except Lipinski and Ghose all other filters
are violated. Therefore, suggestively molceule 18 could be a proper
drug where as scaffold has drug like properties. Molecule 18 has
good capacity to tavel through BBB whereas, the possibility for
scaffold 5 to pass through BBB is less. Moreover, both molecule
18 and scaffold 5 displayed to have good syntesizing accessibility
score 3.37 and 3.2, respectively, which signifies both the lead
molecules can be syntheiszed in the laboratory. As per the
recommedation which should be < 6, both the molecule 18 and
scaffold 5 are synthesizable. The overall comparative analysis of
ADMET parmaters suggested that molecule 18 has better chance
to become drug molecule instead scaffold 5.
5. Conclusions

In the present investigation, we used QSAR analysis, QSAR-
based virtual screening, Molecular docking, and Molecular
dynamic simulation to find a new AR receptor inhibitor that is a
strong antidiabetic agent. To identify hidden structural features
responsible for AR inhibition, a five parametric GA MLR-based full
set and divided set QSAR model was developed. Pharmacophoric
features such as solvent accessible surface area, partially charged
ring carbon atoms within 6 Å of donor, combination of ring nitro-
gen and hydrogen separated by 2 bonds, and others emerged as
projecting features that govern AR inhibition based on the devel-
oped QSAR model analysis. We conducted virtual screening using
QSAR yielded a novel hit molecule (scaffold 5) with a pIC50 of
8.05 M (IC50 = 8.91 nM). Furthermore, molecular docking analysis
of molecule 18 and scaffold 5 demonstrates that both molecules
in the specificity binding pocket of AR adopted the same conforma-
tion as the pdb ligand. This study offered light on the pharma-
cophores involved in the binding interactions that inhibit AR. It
gives the impression that, molecule18 and scaffold 5 bind with
the specificity pocket residue A: LEU 300(1.90 Å, ALA299
(2.74 Å), ALA299 (2.62 Å), PRO310 (2.74 Å), TRP 20(5.21 Å). The
QSAR and molecular docking results are consensus and comple-
mentary, and the identified pharmacophoric properties must be
retained in the development of new and potential AR inhibitors
as antidiabetic agents in the future. Finally, the high docking score
alongside increase in IC50 value (8.91 nM) for scaffold 5 by 0.21 nm
shows that it has a higher affinity for the specificity binding pocket
of AR receptors, and this study could lead to the development of
novel AR inhibitors as new antidiabetic agents. Subsequently, The
formation of the significant number of hydrogen bonds in MD sim-
ulation corroborated the findings with molecular docking also sug-
gested for a stable complex formation during the MD simulation
over 100 ns time scale. MMGBSA is a powerful tool in determining
the binding energy of the ligand with its respective protein targets.
MMGBSA studies accurately predicted the total binding energy of
theWedelosin at the binding cavity of ALK and BTK and exhibited
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a very low binding energy suggesting the capacity of theWe Scaf-
fold 5 to conform into a stable complex. The binding energies in
MMGBSA trajectory supported by van der Walls energy, Lipophilic
energy, Coulombic energies and similarly reported elsewhere.The
ADMET study revealed that scaffold 5 beheave as drug like candi-
date. The findings of this study may be relevant in the development
of novel therapeutic targets for AR as an antidiabetic agent in the
future.
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